Mercurial > repos > xuebing > sharplabtool
view tools/data_source/upload.py @ 1:cdcb0ce84a1b
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:45:15 -0500 |
parents | 9071e359b9a3 |
children |
line wrap: on
line source
#!/usr/bin/env python #Processes uploads from the user. # WARNING: Changes in this tool (particularly as related to parsing) may need # to be reflected in galaxy.web.controllers.tool_runner and galaxy.tools import urllib, sys, os, gzip, tempfile, shutil, re, gzip, zipfile, codecs, binascii from galaxy import eggs # need to import model before sniff to resolve a circular import dependency import galaxy.model from galaxy.datatypes.checkers import * from galaxy.datatypes import sniff from galaxy.datatypes.binary import * from galaxy.datatypes.images import Pdf from galaxy.datatypes.registry import Registry from galaxy import util from galaxy.datatypes.util.image_util import * from galaxy.util.json import * try: import Image as PIL except ImportError: try: from PIL import Image as PIL except: PIL = None try: import bz2 except: bz2 = None assert sys.version_info[:2] >= ( 2, 4 ) def stop_err( msg, ret=1 ): sys.stderr.write( msg ) sys.exit( ret ) def file_err( msg, dataset, json_file ): json_file.write( to_json_string( dict( type = 'dataset', ext = 'data', dataset_id = dataset.dataset_id, stderr = msg ) ) + "\n" ) # never remove a server-side upload if dataset.type in ( 'server_dir', 'path_paste' ): return try: os.remove( dataset.path ) except: pass def safe_dict(d): """ Recursively clone json structure with UTF-8 dictionary keys http://mellowmachines.com/blog/2009/06/exploding-dictionary-with-unicode-keys-as-python-arguments/ """ if isinstance(d, dict): return dict([(k.encode('utf-8'), safe_dict(v)) for k,v in d.iteritems()]) elif isinstance(d, list): return [safe_dict(x) for x in d] else: return d def check_bam( file_path ): return Bam().sniff( file_path ) def check_sff( file_path ): return Sff().sniff( file_path ) def check_pdf( file_path ): return Pdf().sniff( file_path ) def check_bigwig( file_path ): return BigWig().sniff( file_path ) def check_bigbed( file_path ): return BigBed().sniff( file_path ) def parse_outputs( args ): rval = {} for arg in args: id, files_path, path = arg.split( ':', 2 ) rval[int( id )] = ( path, files_path ) return rval def add_file( dataset, registry, json_file, output_path ): data_type = None line_count = None converted_path = None stdout = None link_data_only = dataset.get( 'link_data_only', 'copy_files' ) try: ext = dataset.file_type except AttributeError: file_err( 'Unable to process uploaded file, missing file_type parameter.', dataset, json_file ) return if dataset.type == 'url': try: temp_name, dataset.is_multi_byte = sniff.stream_to_file( urllib.urlopen( dataset.path ), prefix='url_paste' ) except Exception, e: file_err( 'Unable to fetch %s\n%s' % ( dataset.path, str( e ) ), dataset, json_file ) return dataset.path = temp_name # See if we have an empty file if not os.path.exists( dataset.path ): file_err( 'Uploaded temporary file (%s) does not exist.' % dataset.path, dataset, json_file ) return if not os.path.getsize( dataset.path ) > 0: file_err( 'The uploaded file is empty', dataset, json_file ) return if not dataset.type == 'url': # Already set is_multi_byte above if type == 'url' try: dataset.is_multi_byte = util.is_multi_byte( codecs.open( dataset.path, 'r', 'utf-8' ).read( 100 ) ) except UnicodeDecodeError, e: dataset.is_multi_byte = False # Is dataset an image? image = check_image( dataset.path ) if image: if not PIL: image = None # get_image_ext() returns None if nor a supported Image type ext = get_image_ext( dataset.path, image ) data_type = ext # Is dataset content multi-byte? elif dataset.is_multi_byte: data_type = 'multi-byte char' ext = sniff.guess_ext( dataset.path, is_multi_byte=True ) # Is dataset content supported sniffable binary? elif check_bam( dataset.path ): ext = 'bam' data_type = 'bam' elif check_sff( dataset.path ): ext = 'sff' data_type = 'sff' elif check_pdf( dataset.path ): ext = 'pdf' data_type = 'pdf' elif check_bigwig( dataset.path ): ext = 'bigwig' data_type = 'bigwig' elif check_bigbed( dataset.path ): ext = 'bigbed' data_type = 'bigbed' if not data_type: # See if we have a gzipped file, which, if it passes our restrictions, we'll uncompress is_gzipped, is_valid = check_gzip( dataset.path ) if is_gzipped and not is_valid: file_err( 'The gzipped uploaded file contains inappropriate content', dataset, json_file ) return elif is_gzipped and is_valid: if link_data_only == 'copy_files': # We need to uncompress the temp_name file, but BAM files must remain compressed in the BGZF format CHUNK_SIZE = 2**20 # 1Mb fd, uncompressed = tempfile.mkstemp( prefix='data_id_%s_upload_gunzip_' % dataset.dataset_id, dir=os.path.dirname( output_path ), text=False ) gzipped_file = gzip.GzipFile( dataset.path, 'rb' ) while 1: try: chunk = gzipped_file.read( CHUNK_SIZE ) except IOError: os.close( fd ) os.remove( uncompressed ) file_err( 'Problem decompressing gzipped data', dataset, json_file ) return if not chunk: break os.write( fd, chunk ) os.close( fd ) gzipped_file.close() # Replace the gzipped file with the decompressed file if it's safe to do so if dataset.type in ( 'server_dir', 'path_paste' ): dataset.path = uncompressed else: shutil.move( uncompressed, dataset.path ) dataset.name = dataset.name.rstrip( '.gz' ) data_type = 'gzip' if not data_type and bz2 is not None: # See if we have a bz2 file, much like gzip is_bzipped, is_valid = check_bz2( dataset.path ) if is_bzipped and not is_valid: file_err( 'The gzipped uploaded file contains inappropriate content', dataset, json_file ) return elif is_bzipped and is_valid: if link_data_only == 'copy_files': # We need to uncompress the temp_name file CHUNK_SIZE = 2**20 # 1Mb fd, uncompressed = tempfile.mkstemp( prefix='data_id_%s_upload_bunzip2_' % dataset.dataset_id, dir=os.path.dirname( output_path ), text=False ) bzipped_file = bz2.BZ2File( dataset.path, 'rb' ) while 1: try: chunk = bzipped_file.read( CHUNK_SIZE ) except IOError: os.close( fd ) os.remove( uncompressed ) file_err( 'Problem decompressing bz2 compressed data', dataset, json_file ) return if not chunk: break os.write( fd, chunk ) os.close( fd ) bzipped_file.close() # Replace the bzipped file with the decompressed file if it's safe to do so if dataset.type in ( 'server_dir', 'path_paste' ): dataset.path = uncompressed else: shutil.move( uncompressed, dataset.path ) dataset.name = dataset.name.rstrip( '.bz2' ) data_type = 'bz2' if not data_type: # See if we have a zip archive is_zipped = check_zip( dataset.path ) if is_zipped: if link_data_only == 'copy_files': CHUNK_SIZE = 2**20 # 1Mb uncompressed = None uncompressed_name = None unzipped = False z = zipfile.ZipFile( dataset.path ) for name in z.namelist(): if name.endswith('/'): continue if unzipped: stdout = 'ZIP file contained more than one file, only the first file was added to Galaxy.' break fd, uncompressed = tempfile.mkstemp( prefix='data_id_%s_upload_zip_' % dataset.dataset_id, dir=os.path.dirname( output_path ), text=False ) if sys.version_info[:2] >= ( 2, 6 ): zipped_file = z.open( name ) while 1: try: chunk = zipped_file.read( CHUNK_SIZE ) except IOError: os.close( fd ) os.remove( uncompressed ) file_err( 'Problem decompressing zipped data', dataset, json_file ) return if not chunk: break os.write( fd, chunk ) os.close( fd ) zipped_file.close() uncompressed_name = name unzipped = True else: # python < 2.5 doesn't have a way to read members in chunks(!) try: outfile = open( uncompressed, 'wb' ) outfile.write( z.read( name ) ) outfile.close() uncompressed_name = name unzipped = True except IOError: os.close( fd ) os.remove( uncompressed ) file_err( 'Problem decompressing zipped data', dataset, json_file ) return z.close() # Replace the zipped file with the decompressed file if it's safe to do so if uncompressed is not None: if dataset.type in ( 'server_dir', 'path_paste' ): dataset.path = uncompressed else: shutil.move( uncompressed, dataset.path ) dataset.name = uncompressed_name data_type = 'zip' if not data_type: if check_binary( dataset.path ): # We have a binary dataset, but it is not Bam, Sff or Pdf data_type = 'binary' #binary_ok = False parts = dataset.name.split( "." ) if len( parts ) > 1: ext = parts[1].strip().lower() if ext not in unsniffable_binary_formats: file_err( 'The uploaded binary file contains inappropriate content', dataset, json_file ) return elif ext in unsniffable_binary_formats and dataset.file_type != ext: err_msg = "You must manually set the 'File Format' to '%s' when uploading %s files." % ( ext.capitalize(), ext ) file_err( err_msg, dataset, json_file ) return if not data_type: # We must have a text file if check_html( dataset.path ): file_err( 'The uploaded file contains inappropriate HTML content', dataset, json_file ) return if data_type != 'binary': if link_data_only == 'copy_files': in_place = True if dataset.type in ( 'server_dir', 'path_paste' ) and data_type not in [ 'gzip', 'bz2', 'zip' ]: in_place = False if dataset.space_to_tab: line_count, converted_path = sniff.convert_newlines_sep2tabs( dataset.path, in_place=in_place ) else: line_count, converted_path = sniff.convert_newlines( dataset.path, in_place=in_place ) if dataset.file_type == 'auto': ext = sniff.guess_ext( dataset.path, registry.sniff_order ) else: ext = dataset.file_type data_type = ext # Save job info for the framework if ext == 'auto' and dataset.ext: ext = dataset.ext if ext == 'auto': ext = 'data' datatype = registry.get_datatype_by_extension( ext ) if dataset.type in ( 'server_dir', 'path_paste' ) and link_data_only == 'link_to_files': # Never alter a file that will not be copied to Galaxy's local file store. if datatype.dataset_content_needs_grooming( dataset.path ): err_msg = 'The uploaded files need grooming, so change your <b>Copy data into Galaxy?</b> selection to be ' + \ '<b>Copy files into Galaxy</b> instead of <b>Link to files without copying into Galaxy</b> so grooming can be performed.' file_err( err_msg, dataset, json_file ) return if link_data_only == 'copy_files' and dataset.type in ( 'server_dir', 'path_paste' ) and data_type not in [ 'gzip', 'bz2', 'zip' ]: # Move the dataset to its "real" path if converted_path is not None: shutil.copy( converted_path, output_path ) try: os.remove( converted_path ) except: pass else: # This should not happen, but it's here just in case shutil.copy( dataset.path, output_path ) elif link_data_only == 'copy_files': shutil.move( dataset.path, output_path ) # Write the job info stdout = stdout or 'uploaded %s file' % data_type info = dict( type = 'dataset', dataset_id = dataset.dataset_id, ext = ext, stdout = stdout, name = dataset.name, line_count = line_count ) json_file.write( to_json_string( info ) + "\n" ) if link_data_only == 'copy_files' and datatype.dataset_content_needs_grooming( output_path ): # Groom the dataset content if necessary datatype.groom_dataset_content( output_path ) def add_composite_file( dataset, registry, json_file, output_path, files_path ): if dataset.composite_files: os.mkdir( files_path ) for name, value in dataset.composite_files.iteritems(): value = util.bunch.Bunch( **value ) if dataset.composite_file_paths[ value.name ] is None and not value.optional: file_err( 'A required composite data file was not provided (%s)' % name, dataset, json_file ) break elif dataset.composite_file_paths[value.name] is not None: dp = dataset.composite_file_paths[value.name][ 'path' ] isurl = dp.find('://') <> -1 # todo fixme if isurl: try: temp_name, dataset.is_multi_byte = sniff.stream_to_file( urllib.urlopen( dp ), prefix='url_paste' ) except Exception, e: file_err( 'Unable to fetch %s\n%s' % ( dp, str( e ) ), dataset, json_file ) return dataset.path = temp_name dp = temp_name if not value.is_binary: if dataset.composite_file_paths[ value.name ].get( 'space_to_tab', value.space_to_tab ): sniff.convert_newlines_sep2tabs( dp ) else: sniff.convert_newlines( dp ) shutil.move( dp, os.path.join( files_path, name ) ) # Move the dataset to its "real" path shutil.move( dataset.primary_file, output_path ) # Write the job info info = dict( type = 'dataset', dataset_id = dataset.dataset_id, stdout = 'uploaded %s file' % dataset.file_type ) json_file.write( to_json_string( info ) + "\n" ) def __main__(): if len( sys.argv ) < 4: print >>sys.stderr, 'usage: upload.py <root> <datatypes_conf> <json paramfile> <output spec> ...' sys.exit( 1 ) output_paths = parse_outputs( sys.argv[4:] ) json_file = open( 'galaxy.json', 'w' ) registry = Registry( sys.argv[1], sys.argv[2] ) for line in open( sys.argv[3], 'r' ): dataset = from_json_string( line ) dataset = util.bunch.Bunch( **safe_dict( dataset ) ) try: output_path = output_paths[int( dataset.dataset_id )][0] except: print >>sys.stderr, 'Output path for dataset %s not found on command line' % dataset.dataset_id sys.exit( 1 ) if dataset.type == 'composite': files_path = output_paths[int( dataset.dataset_id )][1] add_composite_file( dataset, registry, json_file, output_path, files_path ) else: add_file( dataset, registry, json_file, output_path ) # clean up paramfile try: os.remove( sys.argv[3] ) except: pass if __name__ == '__main__': __main__()