Mercurial > repos > xuebing > sharplabtool
view tools/discreteWavelet/execute_dwt_var_perClass.pl @ 1:cdcb0ce84a1b
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:45:15 -0500 |
parents | 9071e359b9a3 |
children |
line wrap: on
line source
#!/usr/bin/perl -w use warnings; use IO::Handle; use POSIX qw(floor ceil); # example: perl execute_dwt_var_perClass.pl hg18_NCNR_10bp_3flanks_deletionHotspot_data_del.txt deletionHotspot 3flanks del $usage = "execute_dwt_var_perClass.pl [TABULAR.in] [TABULAR.out] [TABULAR.out] [PDF.out] \n"; die $usage unless @ARGV == 4; #get the input arguments my $inputFile = $ARGV[0]; my $firstOutputFile = $ARGV[1]; my $secondOutputFile = $ARGV[2]; my $thirdOutputFile = $ARGV[3]; open (INPUT, "<", $inputFile) || die("Could not open file $inputFile \n"); open (OUTPUT1, ">", $firstOutputFile) || die("Could not open file $firstOutputFile \n"); open (OUTPUT2, ">", $secondOutputFile) || die("Could not open file $secondOutputFile \n"); open (OUTPUT3, ">", $thirdOutputFile) || die("Could not open file $thirdOutputFile \n"); open (ERROR, ">", "error.txt") or die ("Could not open file error.txt \n"); #save all error messages into the error file $errorFile using the error file handle ERROR STDERR -> fdopen( \*ERROR, "w" ) or die ("Could not direct errors to the error file error.txt \n"); # choosing meaningful names for the output files $max_dwt = $firstOutputFile; $pvalue = $secondOutputFile; $pdf = $thirdOutputFile; # count the number of columns in the input file while($buffer = <INPUT>){ #if ($buffer =~ m/interval/){ chomp($buffer); $buffer =~ s/^#\s*//; @contrl = split(/\t/, $buffer); last; #} } print "The number of columns in the input file is: " . (@contrl) . "\n"; print "\n"; # count the number of motifs in the input file $count = 0; for ($i = 0; $i < @contrl; $i++){ $count++; print "# $contrl[$i]\n"; } print "The number of motifs in the input file is: $count \n"; # check if the number of motifs is not a multiple of 12, and round up is so $count2 = ($count/12); if ($count2 =~ m/(\D)/){ print "the number of motifs is not a multiple of 12 \n"; $count2 = ceil($count2); } else { print "the number of motifs is a multiple of 12 \n"; } print "There will be $count2 subfiles\n\n"; # split infile into subfiles only 12 motif per file for R plotting for ($x = 1; $x <= $count2; $x++){ $a = (($x - 1) * 12 + 1); $b = $x * 12; if ($x < $count2){ print "# data.short $x <- data_test[, +c($a:$b)]; \n"; } else{ print "# data.short $x <- data_test[, +c($a:ncol(data_test)]; \n"; } } print "\n"; print "There are 4 output files: \n"; print "The first output file is a pdf file\n"; print "The second output file is a max_dwt file\n"; print "The third output file is a pvalues file\n"; print "The fourth output file is a test_final_pvalues file\n"; # write R script $r_script = "get_dwt_varPermut_getMax.r"; print "The R file name is: $r_script \n"; open(Rcmd, ">", "$r_script") or die "Cannot open $r_script \n\n"; print Rcmd " ###################################################################### # plot power spectra, i.e. wavelet variance by class # add code to create null bands by permuting the original data series # get class of maximum significant variance per feature # generate plots and table matrix of variance including p-values ###################################################################### library(\"Rwave\"); library(\"wavethresh\"); library(\"waveslim\"); options(echo = FALSE) # normalize data norm <- function(data){ v <- (data-mean(data))/sd(data); if(sum(is.na(v)) >= 1){ v<-data; } return(v); } dwt_var_permut_getMax <- function(data, names, filter = 4, bc = \"symmetric\", method = \"kendall\", wf = \"haar\", boundary = \"reflection\") { max_var = NULL; matrix = NULL; title = NULL; final_pvalue = NULL; short.levels = NULL; scale = NULL; print(names); par(mfcol = c(length(names), length(names)), mar = c(0, 0, 0, 0), oma = c(4, 3, 3, 2), xaxt = \"s\", cex = 1, las = 1); short.levels <- wd(data[, 1], filter.number = filter, bc = bc)\$nlevels; title <- c(\"motif\"); for (i in 1:short.levels){ title <- c(title, paste(i, \"var\", sep = \"_\"), paste(i, \"pval\", sep = \"_\"), paste(i, \"test\", sep = \"_\")); } print(title); # normalize the raw data data<-apply(data,2,norm); for(i in 1:length(names)){ for(j in 1:length(names)){ temp = NULL; results = NULL; wave1.dwt = NULL; out = NULL; out <- vector(length = length(title)); temp <- vector(length = short.levels); if(i < j) { plot(temp, type = \"n\", axes = FALSE, xlab = NA, ylab = NA); box(col = \"grey\"); grid(ny = 0, nx = NULL); } else { if (i > j){ plot(temp, type = \"n\", axes = FALSE, xlab = NA, ylab = NA); box(col = \"grey\"); grid(ny = 0, nx = NULL); } else { wave1.dwt <- dwt(data[, i], wf = wf, short.levels, boundary = boundary); temp_row = (short.levels + 1 ) * -1; temp_col = 1; temp <- wave.variance(wave1.dwt)[temp_row, temp_col]; #permutations code : feature1 = NULL; null = NULL; var_25 = NULL; var_975 = NULL; med = NULL; feature1 = data[, i]; for (k in 1:1000) { nk_1 = NULL; null.levels = NULL; var = NULL; null_wave1 = NULL; nk_1 = sample(feature1, length(feature1), replace = FALSE); null.levels <- wd(nk_1, filter.number = filter, bc = bc)\$nlevels; var <- vector(length = length(null.levels)); null_wave1 <- dwt(nk_1, wf = wf, short.levels, boundary = boundary); var<- wave.variance(null_wave1)[-8, 1]; null= rbind(null, var); } null <- apply(null, 2, sort, na.last = TRUE); var_25 <- null[25, ]; var_975 <- null[975, ]; med <- (apply(null, 2, median, na.rm = TRUE)); # plot results <- cbind(temp, var_25, var_975); matplot(results, type = \"b\", pch = \"*\", lty = 1, col = c(1, 2, 2), axes = F); # get pvalues by comparison to null distribution out <- (names[i]); for (m in 1:length(temp)){ print(paste(\"scale\", m, sep = \" \")); print(paste(\"var\", temp[m], sep = \" \")); print(paste(\"med\", med[m], sep = \" \")); pv = tail = NULL; out <- c(out, format(temp[m], digits = 3)); if (temp[m] >= med[m]){ # R tail test print(\"R\"); tail <- \"R\"; pv <- (length(which(null[, m] >= temp[m])))/(length(na.exclude(null[, m]))); } else { if (temp[m] < med[m]){ # L tail test print(\"L\"); tail <- \"L\"; pv <- (length(which(null[, m] <= temp[m])))/(length(na.exclude(null[, m]))); } } out <- c(out, pv); print(pv); out <- c(out, tail); } final_pvalue <-rbind(final_pvalue, out); # get variances outside null bands by comparing temp to null ## temp stores variance for each scale, and null stores permuted variances for null bands for (n in 1:length(temp)){ if (temp[n] <= var_975[n]){ temp[n] <- NA; } else { temp[n] <- temp[n]; } } matrix <- rbind(matrix, temp) } } # labels if (i == 1){ mtext(names[j], side = 2, line = 0.5, las = 3, cex = 0.25); } if (j == 1){ mtext(names[i], side = 3, line = 0.5, cex = 0.25); } if (j == length(names)){ axis(1, at = (1:short.levels), las = 3, cex.axis = 0.5); } } } colnames(final_pvalue) <- title; #write.table(final_pvalue, file = \"test_final_pvalue.txt\", sep = \"\\t\", quote = FALSE, row.names = FALSE, append = TRUE); # get maximum variance larger than expectation by comparison to null bands varnames <- vector(); for(i in 1:length(names)){ name1 = paste(names[i], \"var\", sep = \"_\") varnames <- c(varnames, name1) } rownames(matrix) <- varnames; colnames(matrix) <- (1:short.levels); max_var <- names; scale <- vector(length = length(names)); for (x in 1:nrow(matrix)){ if (length(which.max(matrix[x, ])) == 0){ scale[x] <- NA; } else{ scale[x] <- colnames(matrix)[which.max(matrix[x, ])]; } } max_var <- cbind(max_var, scale); write.table(max_var, file = \"$max_dwt\", sep = \"\\t\", quote = FALSE, row.names = FALSE, append = TRUE); return(final_pvalue); }\n"; print Rcmd " # execute # read in data data_test = NULL; data_test <- read.delim(\"$inputFile\"); pdf(file = \"$pdf\", width = 11, height = 8); # loop to read and execute on all $count2 subfiles final = NULL; for (x in 1:$count2){ sub = NULL; sub_names = NULL; a = NULL; b = NULL; a = ((x - 1) * 12 + 1); b = x * 12; if (x < $count2){ sub <- data_test[, +c(a:b)]; sub_names <- colnames(data_test)[a:b]; final <- rbind(final, dwt_var_permut_getMax(sub, sub_names)); } else{ sub <- data_test[, +c(a:ncol(data_test))]; sub_names <- colnames(data_test)[a:ncol(data_test)]; final <- rbind(final, dwt_var_permut_getMax(sub, sub_names)); } } dev.off(); write.table(final, file = \"$pvalue\", sep = \"\\t\", quote = FALSE, row.names = FALSE); #eof\n"; close Rcmd; system("echo \"wavelet ANOVA started on \`hostname\` at \`date\`\"\n"); system("R --no-restore --no-save --no-readline < $r_script > $r_script.out"); system("echo \"wavelet ANOVA ended on \`hostname\` at \`date\`\"\n"); #close the input and output and error files close(ERROR); close(OUTPUT3); close(OUTPUT2); close(OUTPUT1); close(INPUT);