Mercurial > repos > xuebing > sharplabtool
view tools/regVariation/best_regression_subsets.py @ 1:cdcb0ce84a1b
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:45:15 -0500 |
parents | 9071e359b9a3 |
children |
line wrap: on
line source
#!/usr/bin/env python from galaxy import eggs import sys, string from rpy import * import numpy def stop_err(msg): sys.stderr.write(msg) sys.exit() infile = sys.argv[1] y_col = int(sys.argv[2])-1 x_cols = sys.argv[3].split(',') outfile = sys.argv[4] outfile2 = sys.argv[5] print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) fout = open(outfile,'w') for i, line in enumerate( file ( infile )): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems )<1: stop_err( "The data in your input dataset is either missing or not formatted properly." ) y_vals = [] x_vals = [] for k,col in enumerate(x_cols): x_cols[k] = int(col)-1 x_vals.append([]) NA = 'NA' for ind,line in enumerate( file( infile )): if line and not line.startswith( '#' ): try: fields = line.split("\t") try: yval = float(fields[y_col]) except Exception, ey: yval = r('NA') y_vals.append(yval) for k,col in enumerate(x_cols): try: xval = float(fields[col]) except Exception, ex: xval = r('NA') x_vals[k].append(xval) except: pass response_term = "" x_vals1 = numpy.asarray(x_vals).transpose() dat= r.list(x=array(x_vals1), y=y_vals) r.library("leaps") set_default_mode(NO_CONVERSION) try: leaps = r.regsubsets(r("y ~ x"), data= r.na_exclude(dat)) except RException, rex: stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") set_default_mode(BASIC_CONVERSION) summary = r.summary(leaps) tot = len(x_vals) pattern = "[" for i in range(tot): pattern = pattern + 'c' + str(int(x_cols[int(i)]) + 1) + ' ' pattern = pattern.strip() + ']' print >>fout, "#Vars\t%s\tR-sq\tAdj. R-sq\tC-p\tbic" %(pattern) for ind,item in enumerate(summary['outmat']): print >>fout, "%s\t%s\t%s\t%s\t%s\t%s" %(str(item).count('*'), item, summary['rsq'][ind], summary['adjr2'][ind], summary['cp'][ind], summary['bic'][ind]) r.pdf( outfile2, 8, 8 ) r.plot(leaps, scale="Cp", main="Best subsets using Cp Criterion") r.plot(leaps, scale="r2", main="Best subsets using R-sq Criterion") r.plot(leaps, scale="adjr2", main="Best subsets using Adjusted R-sq Criterion") r.plot(leaps, scale="bic", main="Best subsets using bic Criterion") r.dev_off()