Mercurial > repos > xuebing > sharplabtool
view tools/regVariation/linear_regression.py @ 1:cdcb0ce84a1b
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:45:15 -0500 |
parents | 9071e359b9a3 |
children |
line wrap: on
line source
#!/usr/bin/env python from galaxy import eggs import sys, string from rpy import * import numpy def stop_err(msg): sys.stderr.write(msg) sys.exit() infile = sys.argv[1] y_col = int(sys.argv[2])-1 x_cols = sys.argv[3].split(',') outfile = sys.argv[4] outfile2 = sys.argv[5] print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) fout = open(outfile,'w') elems = [] for i, line in enumerate( file ( infile )): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems )<1: stop_err( "The data in your input dataset is either missing or not formatted properly." ) y_vals = [] x_vals = [] for k,col in enumerate(x_cols): x_cols[k] = int(col)-1 x_vals.append([]) NA = 'NA' for ind,line in enumerate( file( infile )): if line and not line.startswith( '#' ): try: fields = line.split("\t") try: yval = float(fields[y_col]) except: yval = r('NA') y_vals.append(yval) for k,col in enumerate(x_cols): try: xval = float(fields[col]) except: xval = r('NA') x_vals[k].append(xval) except: pass x_vals1 = numpy.asarray(x_vals).transpose() dat= r.list(x=array(x_vals1), y=y_vals) set_default_mode(NO_CONVERSION) try: linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) except RException, rex: stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") set_default_mode(BASIC_CONVERSION) coeffs=linear_model.as_py()['coefficients'] yintercept= coeffs['(Intercept)'] summary = r.summary(linear_model) co = summary.get('coefficients', 'NA') """ if len(co) != len(x_vals)+1: stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") """ try: yintercept = r.round(float(yintercept), digits=10) pvaly = r.round(float(co[0][3]), digits=10) except: pass print >>fout, "Y-intercept\t%s" %(yintercept) print >>fout, "p-value (Y-intercept)\t%s" %(pvaly) if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable try: slope = r.round(float(coeffs['x']), digits=10) except: slope = 'NA' try: pval = r.round(float(co[1][3]), digits=10) except: pval = 'NA' print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) else: #Multiple regression case with >1 predictors ind=1 while ind < len(coeffs.keys()): try: slope = r.round(float(coeffs['x'+str(ind)]), digits=10) except: slope = 'NA' print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope) try: pval = r.round(float(co[ind][3]), digits=10) except: pval = 'NA' print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) ind+=1 rsq = summary.get('r.squared','NA') adjrsq = summary.get('adj.r.squared','NA') fstat = summary.get('fstatistic','NA') sigma = summary.get('sigma','NA') try: rsq = r.round(float(rsq), digits=5) adjrsq = r.round(float(adjrsq), digits=5) fval = r.round(fstat['value'], digits=5) fstat['value'] = str(fval) sigma = r.round(float(sigma), digits=10) except: pass print >>fout, "R-squared\t%s" %(rsq) print >>fout, "Adjusted R-squared\t%s" %(adjrsq) print >>fout, "F-statistic\t%s" %(fstat) print >>fout, "Sigma\t%s" %(sigma) r.pdf( outfile2, 8, 8 ) if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept) try: r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") r.abline(a=yintercept, b=slope, col="red") except: pass else: r.pairs(dat, main="Scatterplot Matrix", col="blue") try: r.plot(linear_model) except: pass r.dev_off()