Mercurial > repos > xuebing > sharplabtool
view tools/rgenetics/plinkbinJZ.py @ 1:cdcb0ce84a1b
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:45:15 -0500 |
parents | 9071e359b9a3 |
children |
line wrap: on
line source
#!/usr/bin/env python2.4 """ """ import optparse,os,subprocess,gzip,struct,time,commands from array import array #from AIMS import util #from pga import util as pgautil __FILE_ID__ = '$Id: plinkbinJZ.py,v 1.14 2009/07/13 20:16:50 rejpz Exp $' VERBOSE = True MISSING_ALLELES = set(['N', '0', '.', '-','']) AUTOSOMES = set(range(1, 23) + [str(c) for c in range(1, 23)]) MAGIC_BYTE1 = '00110110' MAGIC_BYTE2 = '11011000' FORMAT_SNP_MAJOR_BYTE = '10000000' FORMAT_IND_MAJOR_BYTE = '00000000' MAGIC1 = (0, 3, 1, 2) MAGIC2 = (3, 1, 2, 0) FORMAT_SNP_MAJOR = (2, 0, 0, 0) FORMAT_IND_MAJOR = (0, 0, 0, 0) HEADER_LENGTH = 3 HOM0 = 3 HOM1 = 0 MISS = 2 HET = 1 HOM0_GENO = (0, 0) HOM1_GENO = (1, 1) HET_GENO = (0, 1) MISS_GENO = (-9, -9) GENO_TO_GCODE = { HOM0_GENO: HOM0, HET_GENO: HET, HOM1_GENO: HOM1, MISS_GENO: MISS, } CHROM_REPLACE = { 'X': '23', 'Y': '24', 'XY': '25', 'MT': '26', 'M': '26', } MAP_LINE_EXCEPTION_TEXT = """ One or more lines in the *.map file has only three fields. The line was: %s If you are running rgGRR through EPMP, this is usually a sign that you are using an old version of the map file. You can correct the problem by re-running Subject QC. If you have already tried this, please contact the developers, or file a bug. """ INT_TO_GCODE = { 0: array('i', (0, 0, 0, 0)), 1: array('i', (2, 0, 0, 0)), 2: array('i', (1, 0, 0, 0)), 3: array('i', (3, 0, 0, 0)), 4: array('i', (0, 2, 0, 0)), 5: array('i', (2, 2, 0, 0)), 6: array('i', (1, 2, 0, 0)), 7: array('i', (3, 2, 0, 0)), 8: array('i', (0, 1, 0, 0)), 9: array('i', (2, 1, 0, 0)), 10: array('i', (1, 1, 0, 0)), 11: array('i', (3, 1, 0, 0)), 12: array('i', (0, 3, 0, 0)), 13: array('i', (2, 3, 0, 0)), 14: array('i', (1, 3, 0, 0)), 15: array('i', (3, 3, 0, 0)), 16: array('i', (0, 0, 2, 0)), 17: array('i', (2, 0, 2, 0)), 18: array('i', (1, 0, 2, 0)), 19: array('i', (3, 0, 2, 0)), 20: array('i', (0, 2, 2, 0)), 21: array('i', (2, 2, 2, 0)), 22: array('i', (1, 2, 2, 0)), 23: array('i', (3, 2, 2, 0)), 24: array('i', (0, 1, 2, 0)), 25: array('i', (2, 1, 2, 0)), 26: array('i', (1, 1, 2, 0)), 27: array('i', (3, 1, 2, 0)), 28: array('i', (0, 3, 2, 0)), 29: array('i', (2, 3, 2, 0)), 30: array('i', (1, 3, 2, 0)), 31: array('i', (3, 3, 2, 0)), 32: array('i', (0, 0, 1, 0)), 33: array('i', (2, 0, 1, 0)), 34: array('i', (1, 0, 1, 0)), 35: array('i', (3, 0, 1, 0)), 36: array('i', (0, 2, 1, 0)), 37: array('i', (2, 2, 1, 0)), 38: array('i', (1, 2, 1, 0)), 39: array('i', (3, 2, 1, 0)), 40: array('i', (0, 1, 1, 0)), 41: array('i', (2, 1, 1, 0)), 42: array('i', (1, 1, 1, 0)), 43: array('i', (3, 1, 1, 0)), 44: array('i', (0, 3, 1, 0)), 45: array('i', (2, 3, 1, 0)), 46: array('i', (1, 3, 1, 0)), 47: array('i', (3, 3, 1, 0)), 48: array('i', (0, 0, 3, 0)), 49: array('i', (2, 0, 3, 0)), 50: array('i', (1, 0, 3, 0)), 51: array('i', (3, 0, 3, 0)), 52: array('i', (0, 2, 3, 0)), 53: array('i', (2, 2, 3, 0)), 54: array('i', (1, 2, 3, 0)), 55: array('i', (3, 2, 3, 0)), 56: array('i', (0, 1, 3, 0)), 57: array('i', (2, 1, 3, 0)), 58: array('i', (1, 1, 3, 0)), 59: array('i', (3, 1, 3, 0)), 60: array('i', (0, 3, 3, 0)), 61: array('i', (2, 3, 3, 0)), 62: array('i', (1, 3, 3, 0)), 63: array('i', (3, 3, 3, 0)), 64: array('i', (0, 0, 0, 2)), 65: array('i', (2, 0, 0, 2)), 66: array('i', (1, 0, 0, 2)), 67: array('i', (3, 0, 0, 2)), 68: array('i', (0, 2, 0, 2)), 69: array('i', (2, 2, 0, 2)), 70: array('i', (1, 2, 0, 2)), 71: array('i', (3, 2, 0, 2)), 72: array('i', (0, 1, 0, 2)), 73: array('i', (2, 1, 0, 2)), 74: array('i', (1, 1, 0, 2)), 75: array('i', (3, 1, 0, 2)), 76: array('i', (0, 3, 0, 2)), 77: array('i', (2, 3, 0, 2)), 78: array('i', (1, 3, 0, 2)), 79: array('i', (3, 3, 0, 2)), 80: array('i', (0, 0, 2, 2)), 81: array('i', (2, 0, 2, 2)), 82: array('i', (1, 0, 2, 2)), 83: array('i', (3, 0, 2, 2)), 84: array('i', (0, 2, 2, 2)), 85: array('i', (2, 2, 2, 2)), 86: array('i', (1, 2, 2, 2)), 87: array('i', (3, 2, 2, 2)), 88: array('i', (0, 1, 2, 2)), 89: array('i', (2, 1, 2, 2)), 90: array('i', (1, 1, 2, 2)), 91: array('i', (3, 1, 2, 2)), 92: array('i', (0, 3, 2, 2)), 93: array('i', (2, 3, 2, 2)), 94: array('i', (1, 3, 2, 2)), 95: array('i', (3, 3, 2, 2)), 96: array('i', (0, 0, 1, 2)), 97: array('i', (2, 0, 1, 2)), 98: array('i', (1, 0, 1, 2)), 99: array('i', (3, 0, 1, 2)), 100: array('i', (0, 2, 1, 2)), 101: array('i', (2, 2, 1, 2)), 102: array('i', (1, 2, 1, 2)), 103: array('i', (3, 2, 1, 2)), 104: array('i', (0, 1, 1, 2)), 105: array('i', (2, 1, 1, 2)), 106: array('i', (1, 1, 1, 2)), 107: array('i', (3, 1, 1, 2)), 108: array('i', (0, 3, 1, 2)), 109: array('i', (2, 3, 1, 2)), 110: array('i', (1, 3, 1, 2)), 111: array('i', (3, 3, 1, 2)), 112: array('i', (0, 0, 3, 2)), 113: array('i', (2, 0, 3, 2)), 114: array('i', (1, 0, 3, 2)), 115: array('i', (3, 0, 3, 2)), 116: array('i', (0, 2, 3, 2)), 117: array('i', (2, 2, 3, 2)), 118: array('i', (1, 2, 3, 2)), 119: array('i', (3, 2, 3, 2)), 120: array('i', (0, 1, 3, 2)), 121: array('i', (2, 1, 3, 2)), 122: array('i', (1, 1, 3, 2)), 123: array('i', (3, 1, 3, 2)), 124: array('i', (0, 3, 3, 2)), 125: array('i', (2, 3, 3, 2)), 126: array('i', (1, 3, 3, 2)), 127: array('i', (3, 3, 3, 2)), 128: array('i', (0, 0, 0, 1)), 129: array('i', (2, 0, 0, 1)), 130: array('i', (1, 0, 0, 1)), 131: array('i', (3, 0, 0, 1)), 132: array('i', (0, 2, 0, 1)), 133: array('i', (2, 2, 0, 1)), 134: array('i', (1, 2, 0, 1)), 135: array('i', (3, 2, 0, 1)), 136: array('i', (0, 1, 0, 1)), 137: array('i', (2, 1, 0, 1)), 138: array('i', (1, 1, 0, 1)), 139: array('i', (3, 1, 0, 1)), 140: array('i', (0, 3, 0, 1)), 141: array('i', (2, 3, 0, 1)), 142: array('i', (1, 3, 0, 1)), 143: array('i', (3, 3, 0, 1)), 144: array('i', (0, 0, 2, 1)), 145: array('i', (2, 0, 2, 1)), 146: array('i', (1, 0, 2, 1)), 147: array('i', (3, 0, 2, 1)), 148: array('i', (0, 2, 2, 1)), 149: array('i', (2, 2, 2, 1)), 150: array('i', (1, 2, 2, 1)), 151: array('i', (3, 2, 2, 1)), 152: array('i', (0, 1, 2, 1)), 153: array('i', (2, 1, 2, 1)), 154: array('i', (1, 1, 2, 1)), 155: array('i', (3, 1, 2, 1)), 156: array('i', (0, 3, 2, 1)), 157: array('i', (2, 3, 2, 1)), 158: array('i', (1, 3, 2, 1)), 159: array('i', (3, 3, 2, 1)), 160: array('i', (0, 0, 1, 1)), 161: array('i', (2, 0, 1, 1)), 162: array('i', (1, 0, 1, 1)), 163: array('i', (3, 0, 1, 1)), 164: array('i', (0, 2, 1, 1)), 165: array('i', (2, 2, 1, 1)), 166: array('i', (1, 2, 1, 1)), 167: array('i', (3, 2, 1, 1)), 168: array('i', (0, 1, 1, 1)), 169: array('i', (2, 1, 1, 1)), 170: array('i', (1, 1, 1, 1)), 171: array('i', (3, 1, 1, 1)), 172: array('i', (0, 3, 1, 1)), 173: array('i', (2, 3, 1, 1)), 174: array('i', (1, 3, 1, 1)), 175: array('i', (3, 3, 1, 1)), 176: array('i', (0, 0, 3, 1)), 177: array('i', (2, 0, 3, 1)), 178: array('i', (1, 0, 3, 1)), 179: array('i', (3, 0, 3, 1)), 180: array('i', (0, 2, 3, 1)), 181: array('i', (2, 2, 3, 1)), 182: array('i', (1, 2, 3, 1)), 183: array('i', (3, 2, 3, 1)), 184: array('i', (0, 1, 3, 1)), 185: array('i', (2, 1, 3, 1)), 186: array('i', (1, 1, 3, 1)), 187: array('i', (3, 1, 3, 1)), 188: array('i', (0, 3, 3, 1)), 189: array('i', (2, 3, 3, 1)), 190: array('i', (1, 3, 3, 1)), 191: array('i', (3, 3, 3, 1)), 192: array('i', (0, 0, 0, 3)), 193: array('i', (2, 0, 0, 3)), 194: array('i', (1, 0, 0, 3)), 195: array('i', (3, 0, 0, 3)), 196: array('i', (0, 2, 0, 3)), 197: array('i', (2, 2, 0, 3)), 198: array('i', (1, 2, 0, 3)), 199: array('i', (3, 2, 0, 3)), 200: array('i', (0, 1, 0, 3)), 201: array('i', (2, 1, 0, 3)), 202: array('i', (1, 1, 0, 3)), 203: array('i', (3, 1, 0, 3)), 204: array('i', (0, 3, 0, 3)), 205: array('i', (2, 3, 0, 3)), 206: array('i', (1, 3, 0, 3)), 207: array('i', (3, 3, 0, 3)), 208: array('i', (0, 0, 2, 3)), 209: array('i', (2, 0, 2, 3)), 210: array('i', (1, 0, 2, 3)), 211: array('i', (3, 0, 2, 3)), 212: array('i', (0, 2, 2, 3)), 213: array('i', (2, 2, 2, 3)), 214: array('i', (1, 2, 2, 3)), 215: array('i', (3, 2, 2, 3)), 216: array('i', (0, 1, 2, 3)), 217: array('i', (2, 1, 2, 3)), 218: array('i', (1, 1, 2, 3)), 219: array('i', (3, 1, 2, 3)), 220: array('i', (0, 3, 2, 3)), 221: array('i', (2, 3, 2, 3)), 222: array('i', (1, 3, 2, 3)), 223: array('i', (3, 3, 2, 3)), 224: array('i', (0, 0, 1, 3)), 225: array('i', (2, 0, 1, 3)), 226: array('i', (1, 0, 1, 3)), 227: array('i', (3, 0, 1, 3)), 228: array('i', (0, 2, 1, 3)), 229: array('i', (2, 2, 1, 3)), 230: array('i', (1, 2, 1, 3)), 231: array('i', (3, 2, 1, 3)), 232: array('i', (0, 1, 1, 3)), 233: array('i', (2, 1, 1, 3)), 234: array('i', (1, 1, 1, 3)), 235: array('i', (3, 1, 1, 3)), 236: array('i', (0, 3, 1, 3)), 237: array('i', (2, 3, 1, 3)), 238: array('i', (1, 3, 1, 3)), 239: array('i', (3, 3, 1, 3)), 240: array('i', (0, 0, 3, 3)), 241: array('i', (2, 0, 3, 3)), 242: array('i', (1, 0, 3, 3)), 243: array('i', (3, 0, 3, 3)), 244: array('i', (0, 2, 3, 3)), 245: array('i', (2, 2, 3, 3)), 246: array('i', (1, 2, 3, 3)), 247: array('i', (3, 2, 3, 3)), 248: array('i', (0, 1, 3, 3)), 249: array('i', (2, 1, 3, 3)), 250: array('i', (1, 1, 3, 3)), 251: array('i', (3, 1, 3, 3)), 252: array('i', (0, 3, 3, 3)), 253: array('i', (2, 3, 3, 3)), 254: array('i', (1, 3, 3, 3)), 255: array('i', (3, 3, 3, 3)), } GCODE_TO_INT = dict([(tuple(v),k) for (k,v) in INT_TO_GCODE.items()]) ### Exceptions class DuplicateMarkerInMapFile(Exception): pass class MapLineTooShort(Exception): pass class ThirdAllele(Exception): pass class PedError(Exception): pass class BadMagic(Exception): """ Raised when one of the MAGIC bytes in a bed file does not match """ pass class BedError(Exception): """ Raised when parsing a bed file runs into problems """ pass class UnknownGenocode(Exception): """ Raised when we get a 2-bit genotype that is undecipherable (is it possible?) """ pass class UnknownGeno(Exception): pass ### Utility functions def timenow(): """return current time as a string """ return time.strftime('%d/%m/%Y %H:%M:%S', time.localtime(time.time())) def ceiling(n, k): ''' Return the least multiple of k which is greater than n ''' m = n % k if m == 0: return n else: return n + k - m def nbytes(n): ''' Return the number of bytes required for n subjects ''' return 2*ceiling(n, 4)/8 ### Primary module functionality class LPed: """ The uber-class for processing the Linkage-format *.ped/*.map files """ def __init__(self, base): self.base = base self._ped = Ped('%s.ped' % (self.base)) self._map = Map('%s.map' % (self.base)) self._markers = {} self._ordered_markers = [] self._marker_allele_lookup = {} self._autosomal_indices = set() self._subjects = {} self._ordered_subjects = [] self._genotypes = [] def parse(self): """ """ if VERBOSE: print 'plinkbinJZ: Analysis started: %s' % (timenow()) self._map.parse() self._markers = self._map._markers self._ordered_markers = self._map._ordered_markers self._autosomal_indices = self._map._autosomal_indices self._ped.parse(self._ordered_markers) self._subjects = self._ped._subjects self._ordered_subjects = self._ped._ordered_subjects self._genotypes = self._ped._genotypes self._marker_allele_lookup = self._ped._marker_allele_lookup ### Adjust self._markers based on the allele information ### we got from parsing the ped file for m, name in enumerate(self._ordered_markers): a1, a2 = self._marker_allele_lookup[m][HET] self._markers[name][-2] = a1 self._markers[name][-1] = a2 if VERBOSE: print 'plinkbinJZ: Analysis finished: %s' % (timenow()) def getSubjectInfo(self, fid, oiid): """ """ return self._subject_info[(fid, oiid)] def getSubjectInfoByLine(self, line): """ """ return self._subject_info[self._ordered_subjects[line]] def getGenotypesByIndices(self, s, mlist, format): """ needed for grr if lped - deprecated but.. """ mlist = dict(zip(mlist,[True,]*len(mlist))) # hash quicker than 'in' ? raw_array = array('i', [row[s] for m,row in enumerate(self._genotypes) if mlist.get(m,None)]) if format == 'raw': return raw_array elif format == 'ref': result = array('i', [0]*len(mlist)) for m, gcode in enumerate(raw_array): if gcode == HOM0: nref = 3 elif gcode == HET: nref = 2 elif gcode == HOM1: nref = 1 else: nref = 0 result[m] = nref return result else: result = [] for m, gcode in enumerate(raw_array): result.append(self._marker_allele_lookup[m][gcode]) return result def writebed(self, base): """ """ dst_name = '%s.fam' % (base) print 'Writing pedigree information to [ %s ]' % (dst_name) dst = open(dst_name, 'w') for skey in self._ordered_subjects: (fid, iid, did, mid, sex, phe, sid, d_sid, m_sid) = self._subjects[skey] dst.write('%s %s %s %s %s %s\n' % (fid, iid, did, mid, sex, phe)) dst.close() dst_name = '%s.bim' % (base) print 'Writing map (extended format) information to [ %s ]' % (dst_name) dst = open(dst_name, 'w') for m, marker in enumerate(self._ordered_markers): chrom, name, genpos, abspos, a1, a2 = self._markers[marker] dst.write('%s\t%s\t%s\t%s\t%s\t%s\n' % (chrom, name, genpos, abspos, a1, a2)) dst.close() bed_name = '%s.bed' % (base) print 'Writing genotype bitfile to [ %s ]' % (bed_name) print 'Using (default) SNP-major mode' bed = open(bed_name, 'w') ### Write the 3 header bytes bed.write(struct.pack('B', int(''.join(reversed(MAGIC_BYTE1)), 2))) bed.write(struct.pack('B', int(''.join(reversed(MAGIC_BYTE2)), 2))) bed.write(struct.pack('B', int(''.join(reversed(FORMAT_SNP_MAJOR_BYTE)), 2))) ### Calculate how many "pad bits" we should add after the last subject nsubjects = len(self._ordered_subjects) nmarkers = len(self._ordered_markers) total_bytes = nbytes(nsubjects) nbits = nsubjects * 2 pad_nibbles = ((total_bytes * 8) - nbits)/2 pad = array('i', [0]*pad_nibbles) ### And now write genotypes to the file for m in xrange(nmarkers): geno = self._genotypes[m] geno.extend(pad) bytes = len(geno)/4 for b in range(bytes): idx = b*4 gcode = tuple(geno[idx:idx+4]) try: byte = struct.pack('B', GCODE_TO_INT[gcode]) except KeyError: print m, b, gcode raise bed.write(byte) bed.close() def autosomal_indices(self): """ Return the indices of markers in this ped/map that are autosomal. This is used by rgGRR so that it can select a random set of markers from the autosomes (sex chroms screw up the plot) """ return self._autosomal_indices class Ped: def __init__(self, path): self.path = path self._subjects = {} self._ordered_subjects = [] self._genotypes = [] self._marker_allele_lookup = {} def lineCount(self,infile): """ count the number of lines in a file - efficiently using wget """ return int(commands.getoutput('wc -l %s' % (infile)).split()[0]) def parse(self, markers): """ Parse a given file -- this needs to be memory-efficient so that large files can be parsed (~1 million markers on ~5000 subjects?). It should also be fast, if possible. """ ### Find out how many lines are in the file so we can ... nsubjects = self.lineCount(self.path) ### ... Pre-allocate the genotype arrays nmarkers = len(markers) _marker_alleles = [['0', '0'] for _ in xrange(nmarkers)] self._genotypes = [array('i', [-1]*nsubjects) for _ in xrange(nmarkers)] if self.path.endswith('.gz'): pfile = gzip.open(self.path, 'r') else: pfile = open(self.path, 'r') for s, line in enumerate(pfile): line = line.strip() if not line: continue fid, iid, did, mid, sex, phe, genos = line.split(None, 6) sid = iid.split('.')[0] d_sid = did.split('.')[0] m_sid = mid.split('.')[0] skey = (fid, iid) self._subjects[skey] = (fid, iid, did, mid, sex, phe, sid, d_sid, m_sid) self._ordered_subjects.append(skey) genotypes = genos.split() for m, marker in enumerate(markers): idx = m*2 a1, a2 = genotypes[idx:idx+2] # Alleles for subject s, marker m s1, s2 = seen = _marker_alleles[m] # Alleles seen for marker m ### FIXME: I think this can still be faster, and simpler to read # Two pieces of logic intertwined here: first, we need to code # this genotype as HOM0, HOM1, HET or MISS. Second, we need to # keep an ongoing record of the genotypes seen for this marker if a1 == a2: if a1 in MISSING_ALLELES: geno = MISS_GENO else: if s1 == '0': seen[0] = a1 elif s1 == a1 or s2 == a2: pass elif s2 == '0': seen[1] = a1 else: raise ThirdAllele('a1=a2=%s, seen=%s?' % (a1, str(seen))) if a1 == seen[0]: geno = HOM0_GENO elif a1 == seen[1]: geno = HOM1_GENO else: raise PedError('Cannot assign geno for a1=a2=%s from seen=%s' % (a1, str(seen))) elif a1 in MISSING_ALLELES or a2 in MISSING_ALLELES: geno = MISS_GENO else: geno = HET_GENO if s1 == '0': seen[0] = a1 seen[1] = a2 elif s2 == '0': if s1 == a1: seen[1] = a2 elif s1 == a2: seen[1] = a1 else: raise ThirdAllele('a1=%s, a2=%s, seen=%s?' % (a1, a2, str(seen))) else: if sorted(seen) != sorted((a1, a2)): raise ThirdAllele('a1=%s, a2=%s, seen=%s?' % (a1, a2, str(seen))) gcode = GENO_TO_GCODE.get(geno, None) if gcode is None: raise UnknownGeno(str(geno)) self._genotypes[m][s] = gcode # Build the _marker_allele_lookup table for m, alleles in enumerate(_marker_alleles): if len(alleles) == 2: a1, a2 = alleles elif len(alleles) == 1: a1 = alleles[0] a2 = '0' else: print 'All alleles blank for %s: %s' % (m, str(alleles)) raise self._marker_allele_lookup[m] = { HOM0: (a2, a2), HOM1: (a1, a1), HET : (a1, a2), MISS: ('0','0'), } if VERBOSE: print '%s(%s) individuals read from [ %s ]' % (len(self._subjects), nsubjects, self.path) class Map: def __init__(self, path=None): self.path = path self._markers = {} self._ordered_markers = [] self._autosomal_indices = set() def __len__(self): return len(self._markers) def parse(self): """ Parse a Linkage-format map file """ if self.path.endswith('.gz'): fh = gzip.open(self.path, 'r') else: fh = open(self.path, 'r') for i, line in enumerate(fh): line = line.strip() if not line: continue fields = line.split() if len(fields) < 4: raise MapLineTooShort(MAP_LINE_EXCEPTION_TEXT % (str(line), len(fields))) else: chrom, name, genpos, abspos = fields if name in self._markers: raise DuplicateMarkerInMapFile('Marker %s was found twice in map file %s' % (name, self.path)) abspos = int(abspos) if abspos < 0: continue if chrom in AUTOSOMES: self._autosomal_indices.add(i) chrom = CHROM_REPLACE.get(chrom, chrom) self._markers[name] = [chrom, name, genpos, abspos, None, None] self._ordered_markers.append(name) fh.close() if VERBOSE: print '%s (of %s) markers to be included from [ %s ]' % (len(self._ordered_markers), i, self.path) class BPed: """ The uber-class for processing Plink's Binary Ped file format *.bed/*.bim/*.fam """ def __init__(self, base): self.base = base self._bed = Bed('%s.bed' % (self.base)) self._bim = Bim('%s.bim' % (self.base)) self._fam = Fam('%s.fam' % (self.base)) self._markers = {} self._ordered_markers = [] self._marker_allele_lookup = {} self._autosomal_indices = set() self._subjects = {} self._ordered_subjects = [] self._genotypes = [] def parse(self, quick=False): """ """ self._quick = quick self._bim.parse() self._markers = self._bim._markers self._ordered_markers = self._bim._ordered_markers self._marker_allele_lookup = self._bim._marker_allele_lookup self._autosomal_indices = self._bim._autosomal_indices self._fam.parse() self._subjects = self._fam._subjects self._ordered_subjects = self._fam._ordered_subjects self._bed.parse(self._ordered_subjects, self._ordered_markers, quick=quick) self._bedf = self._bed._fh self._genotypes = self._bed._genotypes self.nsubjects = len(self._ordered_subjects) self.nmarkers = len(self._ordered_markers) self._bytes_per_marker = nbytes(self.nsubjects) def writeped(self, path=None): """ """ path = self.path = path or self.path map_name = self.path.replace('.bed', '.map') print 'Writing map file [ %s ]' % (map_name) dst = open(map_name, 'w') for m in self._ordered_markers: chrom, snp, genpos, abspos, a1, a2 = self._markers[m] dst.write('%s\t%s\t%s\t%s\n' % (chrom, snp, genpos, abspos)) dst.close() ped_name = self.path.replace('.bed', '.ped') print 'Writing ped file [ %s ]' % (ped_name) ped = open(ped_name, 'w') firstyikes = False for s, skey in enumerate(self._ordered_subjects): idx = s*2 (fid, iid, did, mid, sex, phe, oiid, odid, omid) = self._subjects[skey] ped.write('%s %s %s %s %s %s' % (fid, iid, odid, omid, sex, phe)) genotypes_for_subject = self.getGenotypesForSubject(s) for m, snp in enumerate(self._ordered_markers): #a1, a2 = self.getGenotypeByIndices(s, m) a1,a2 = genotypes_for_subject[m] ped.write(' %s %s' % (a1, a2)) ped.write('\n') ped.close() def getGenotype(self, subject, marker): """ Retrieve a genotype for a particular subject/marker pair """ m = self._ordered_markers.index(marker) s = self._ordered_subjects.index(subject) return self.getGenotypeByIndices(s, m) def getGenotypesForSubject(self, s, raw=False): """ Returns list of genotypes for all m markers for subject s. If raw==True, then an array of raw integer gcodes is returned instead """ if self._quick: nmarkers = len(self._markers) raw_array = array('i', [0]*nmarkers) seek_nibble = s % 4 for m in xrange(nmarkers): seek_byte = m * self._bytes_per_marker + s/4 + HEADER_LENGTH self._bedf.seek(seek_byte) geno = struct.unpack('B', self._bedf.read(1))[0] quartet = INT_TO_GCODE[geno] gcode = quartet[seek_nibble] raw_array[m] = gcode else: raw_array = array('i', [row[s] for row in self._genotypes]) if raw: return raw_array else: result = [] for m, gcode in enumerate(raw_array): result.append(self._marker_allele_lookup[m][gcode]) return result def getGenotypeByIndices(self, s, m): """ """ if self._quick: # Determine which byte we need to seek to, and # which nibble within the byte we need seek_byte = m * self._bytes_per_marker + s/4 + HEADER_LENGTH seek_nibble = s % 4 self._bedf.seek(seek_byte) geno = struct.unpack('B', self._bedf.read(1))[0] quartet = INT_TO_GCODE[geno] gcode = quartet[seek_nibble] else: # Otherwise, just grab the genotypes from the # list of arrays genos_for_marker = self._genotypes[m] gcode = genos_for_marker[s] return self._marker_allele_lookup[m][gcode] def getGenotypesByIndices(self, s, mlist, format): """ """ if self._quick: raw_array = array('i', [0]*len(mlist)) seek_nibble = s % 4 for i,m in enumerate(mlist): seek_byte = m * self._bytes_per_marker + s/4 + HEADER_LENGTH self._bedf.seek(seek_byte) geno = struct.unpack('B', self._bedf.read(1))[0] quartet = INT_TO_GCODE[geno] gcode = quartet[seek_nibble] raw_array[i] = gcode mlist = set(mlist) else: mlist = set(mlist) raw_array = array('i', [row[s] for m,row in enumerate(self._genotypes) if m in mlist]) if format == 'raw': return raw_array elif format == 'ref': result = array('i', [0]*len(mlist)) for m, gcode in enumerate(raw_array): if gcode == HOM0: nref = 3 elif gcode == HET: nref = 2 elif gcode == HOM1: nref = 1 else: nref = 0 result[m] = nref return result else: result = [] for m, gcode in enumerate(raw_array): result.append(self._marker_allele_lookup[m][gcode]) return result def getSubject(self, s): """ """ skey = self._ordered_subjects[s] return self._subjects[skey] def autosomal_indices(self): """ Return the indices of markers in this ped/map that are autosomal. This is used by rgGRR so that it can select a random set of markers from the autosomes (sex chroms screw up the plot) """ return self._autosomal_indices class Bed: def __init__(self, path): self.path = path self._genotypes = [] self._fh = None def parse(self, subjects, markers, quick=False): """ Parse the bed file, indicated either by the path parameter, or as the self.path indicated in __init__. If quick is True, then just parse the bim and fam, then genotypes will be looked up dynamically by indices """ self._quick = quick ordered_markers = markers ordered_subjects = subjects nsubjects = len(ordered_subjects) nmarkers = len(ordered_markers) bed = open(self.path, 'rb') self._fh = bed byte1 = bed.read(1) byte2 = bed.read(1) byte3 = bed.read(1) format_flag = struct.unpack('B', byte3)[0] h1 = tuple(INT_TO_GCODE[struct.unpack('B', byte1)[0]]) h2 = tuple(INT_TO_GCODE[struct.unpack('B', byte2)[0]]) h3 = tuple(INT_TO_GCODE[format_flag]) if h1 != MAGIC1 or h2 != MAGIC2: raise BadMagic('One or both MAGIC bytes is wrong: %s==%s or %s==%s' % (h1, MAGIC1, h2, MAGIC2)) if format_flag: print 'Detected that binary PED file is v1.00 SNP-major mode (%s, "%s")\n' % (format_flag, h3) else: raise 'BAD_FORMAT_FLAG? (%s, "%s")\n' % (format_flag, h3) print 'Parsing binary ped file for %s markers and %s subjects' % (nmarkers, nsubjects) ### If quick mode was specified, we're done ... self._quick = quick if quick: return ### ... Otherwise, parse genotypes into an array, and append that ### array to self._genotypes ngcodes = ceiling(nsubjects, 4) bytes_per_marker = nbytes(nsubjects) for m in xrange(nmarkers): genotype_array = array('i', [-1]*(ngcodes)) for byte in xrange(bytes_per_marker): intval = struct.unpack('B', bed.read(1))[0] idx = byte*4 genotype_array[idx:idx+4] = INT_TO_GCODE[intval] self._genotypes.append(genotype_array) class Bim: def __init__(self, path): """ """ self.path = path self._markers = {} self._ordered_markers = [] self._marker_allele_lookup = {} self._autosomal_indices = set() def parse(self): """ """ print 'Reading map (extended format) from [ %s ]' % (self.path) bim = open(self.path, 'r') for m, line in enumerate(bim): chrom, snp, gpos, apos, a1, a2 = line.strip().split() self._markers[snp] = (chrom, snp, gpos, apos, a1, a2) self._marker_allele_lookup[m] = { HOM0: (a2, a2), HOM1: (a1, a1), HET : (a1, a2), MISS: ('0','0'), } self._ordered_markers.append(snp) if chrom in AUTOSOMES: self._autosomal_indices.add(m) bim.close() print '%s markers to be included from [ %s ]' % (m+1, self.path) class Fam: def __init__(self, path): """ """ self.path = path self._subjects = {} self._ordered_subjects = [] def parse(self): """ """ print 'Reading pedigree information from [ %s ]' % (self.path) fam = open(self.path, 'r') for s, line in enumerate(fam): fid, iid, did, mid, sex, phe = line.strip().split() sid = iid.split('.')[0] d_sid = did.split('.')[0] m_sid = mid.split('.')[0] skey = (fid, iid) self._ordered_subjects.append(skey) self._subjects[skey] = (fid, iid, did, mid, sex, phe, sid, d_sid, m_sid) fam.close() print '%s individuals read from [ %s ]' % (s+1, self.path) ### Command-line functionality and testing def test(arg): ''' ''' import time if arg == 'CAMP_AFFY.ped': print 'Testing bed.parse(quick=True)' s = time.time() bed = Bed(arg.replace('.ped', '.bed')) bed.parse(quick=True) print bed.getGenotype(('400118', '10300283'), 'rs2000467') print bed.getGenotype(('400118', '10101384'), 'rs2294019') print bed.getGenotype(('400121', '10101149'), 'rs2294019') print bed.getGenotype(('400123', '10200290'), 'rs2294019') assert bed.getGenotype(('400118', '10101384'), 'rs2294019') == ('4','4') e = time.time() print 'e-s = %s\n' % (e-s) print 'Testing bed.parse' s = time.time() bed = BPed(arg) bed.parse(quick=False) e = time.time() print 'e-s = %s\n' % (e-s) print 'Testing bed.writeped' s = time.time() outname = '%s_BEDTEST' % (arg) bed.writeped(outname) e = time.time() print 'e-s = %s\n' % (e-s) del(bed) print 'Testing ped.parse' s = time.time() ped = LPed(arg) ped.parse() e = time.time() print 'e-s = %s\n' % (e-s) print 'Testing ped.writebed' s = time.time() outname = '%s_PEDTEST' % (arg) ped.writebed(outname) e = time.time() print 'e-s = %s\n' % (e-s) del(ped) def profile_bed(arg): """ """ bed = BPed(arg) bed.parse(quick=False) outname = '%s_BEDPROFILE' % (arg) bed.writeped(outname) def profile_ped(arg): """ """ ped = LPed(arg) ped.parse() outname = '%s_PEDPROFILE' % (arg) ped.writebed(outname) if __name__ == '__main__': """ Run as a command-line, this script should get one or more arguments, each one a ped file to be parsed with the PedParser (unit tests?) """ op = optparse.OptionParser() op.add_option('--profile-bed', action='store_true', default=False) op.add_option('--profile-ped', action='store_true', default=False) opts, args = op.parse_args() if opts.profile_bed: import profile import pstats profile.run('profile_bed(args[0])', 'fooprof') p = pstats.Stats('fooprof') p.sort_stats('cumulative').print_stats(10) elif opts.profile_ped: import profile import pstats profile.run('profile_ped(args[0])', 'fooprof') p = pstats.Stats('fooprof') p.sort_stats('cumulative').print_stats(10) else: for arg in args: test(arg) ### Code used to generate the INT_TO_GCODE dictionary #print '{\n ', #for i in range(256): # b = INT2BIN[i] # ints = [] # s = str(i).rjust(3) # #print b # for j in range(4): # idx = j*2 # #print i, j, idx, b[idx:idx+2], int(b[idx:idx+2], 2) # ints.append(int(b[idx:idx+2], 2)) # print '%s: array(\'i\', %s),' % (s,tuple(ints)), # if i > 0 and (i+1) % 4 == 0: # print '\n ', #print '}'