Mercurial > repos > xuebing > sharplabtool
view tools/sr_mapping/lastz_wrapper.py @ 1:cdcb0ce84a1b
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:45:15 -0500 |
parents | 9071e359b9a3 |
children |
line wrap: on
line source
#!/usr/bin/env python """ Runs Lastz Written for Lastz v. 1.01.88. usage: lastz_wrapper.py [options] --ref_name: The reference name to change all output matches to --ref_source: Whether the reference is cached or from the history --source_select: Whether to used pre-set or cached reference file --input1: The name of the reference file if using history or reference base name if using cached --input2: The reads file to align --ref_sequences: The number of sequences in the reference file if using one from history --pre_set_options: Which of the pre set options to use, if using pre-sets --strand: Which strand of the read to search, if specifying all parameters --seed: Seeding settings, if specifying all parameters --gfextend: Whether to perform gap-free extension of seed hits to HSPs (high scoring segment pairs), if specifying all parameters --chain: Whether to perform chaining of HSPs, if specifying all parameters --transition: Number of transitions to allow in each seed hit, if specifying all parameters --O: Gap opening penalty, if specifying all parameters --E: Gap extension penalty, if specifying all parameters --X: X-drop threshold, if specifying all parameters --Y: Y-drop threshold, if specifying all parameters --K: Threshold for HSPs, if specifying all parameters --L: Threshold for gapped alignments, if specifying all parameters --entropy: Whether to involve entropy when filtering HSPs, if specifying all parameters --identity_min: Minimum identity (don't report matches under this identity) --identity_max: Maximum identity (don't report matches above this identity) --coverage: The minimum coverage value (don't report matches covering less than this) --unmask: Whether to convert lowercase bases to uppercase --out_format: The format of the output file (sam, diffs, or tabular (general)) --output: The name of the output file --lastzSeqsFileDir: Directory of local lastz_seqs.loc file """ import optparse, os, subprocess, shutil, sys, tempfile, threading, time from Queue import Queue from galaxy import eggs import pkg_resources pkg_resources.require( 'bx-python' ) from bx.seq.twobit import * from bx.seq.fasta import FastaReader from galaxy.util.bunch import Bunch STOP_SIGNAL = object() WORKERS = 4 SLOTS = 128 def stop_err( msg ): sys.stderr.write( "%s" % msg ) sys.exit() def stop_queues( lastz, combine_data ): # This method should only be called if an error has been encountered. # Send STOP_SIGNAL to all worker threads for t in lastz.threads: lastz.put( STOP_SIGNAL, True ) combine_data.put( STOP_SIGNAL, True ) class BaseQueue( object ): def __init__( self, num_threads, slots=-1 ): # Initialize the queue and worker threads self.queue = Queue( slots ) self.threads = [] for i in range( num_threads ): worker = threading.Thread( target=self.run_next ) worker.start() self.threads.append( worker ) def run_next( self ): # Run the next job, waiting until one is available if necessary while True: job = self.queue.get() if job is STOP_SIGNAL: return self.shutdown() self.run_job( job ) time.sleep( 1 ) def run_job( self, job ): stop_err( 'Not Implemented' ) def put( self, job, block=False ): # Add a job to the queue self.queue.put( job, block ) def shutdown( self ): return class LastzJobQueue( BaseQueue ): """ A queue that runs commands in parallel. Blocking is done so the queue will not consume much memory. """ def run_job( self, job ): # Execute the job's command proc = subprocess.Popen( args=job.command, shell=True, stderr=subprocess.PIPE, ) proc.wait() stderr = proc.stderr.read() proc.wait() if stderr: stop_queues( self, job.combine_data_queue ) stop_err( stderr ) job.combine_data_queue.put( job ) class CombineDataQueue( BaseQueue ): """ A queue that concatenates files in serial. Blocking is not done since this queue is not expected to grow larger than the command queue. """ def __init__( self, output_filename, num_threads=1 ): BaseQueue.__init__( self, num_threads ) self.CHUNK_SIZE = 2**20 # 1Mb self.output_file = open( output_filename, 'wb' ) def run_job( self, job ): in_file = open( job.output, 'rb' ) while True: chunk = in_file.read( self.CHUNK_SIZE ) if not chunk: in_file.close() break self.output_file.write( chunk ) for file_name in job.cleanup: os.remove( file_name ) def shutdown( self ): self.output_file.close() return def __main__(): #Parse Command Line parser = optparse.OptionParser() parser.add_option( '', '--ref_name', dest='ref_name', help='The reference name to change all output matches to' ) parser.add_option( '', '--ref_source', dest='ref_source', help='Whether the reference is cached or from the history' ) parser.add_option( '', '--ref_sequences', dest='ref_sequences', help='Number of sequences in the reference dataset' ) parser.add_option( '', '--source_select', dest='source_select', help='Whether to used pre-set or cached reference file' ) parser.add_option( '', '--input1', dest='input1', help='The name of the reference file if using history or reference base name if using cached' ) parser.add_option( '', '--input2', dest='input2', help='The reads file to align' ) parser.add_option( '', '--pre_set_options', dest='pre_set_options', help='Which of the pre set options to use, if using pre-sets' ) parser.add_option( '', '--strand', dest='strand', help='Which strand of the read to search, if specifying all parameters' ) parser.add_option( '', '--seed', dest='seed', help='Seeding settings, if specifying all parameters' ) parser.add_option( '', '--transition', dest='transition', help='Number of transitions to allow in each seed hit, if specifying all parameters' ) parser.add_option( '', '--gfextend', dest='gfextend', help='Whether to perform gap-free extension of seed hits to HSPs (high scoring segment pairs), if specifying all parameters' ) parser.add_option( '', '--chain', dest='chain', help='Whether to perform chaining of HSPs, if specifying all parameters' ) parser.add_option( '', '--O', dest='O', help='Gap opening penalty, if specifying all parameters' ) parser.add_option( '', '--E', dest='E', help='Gap extension penalty, if specifying all parameters' ) parser.add_option( '', '--X', dest='X', help='X-drop threshold, if specifying all parameters' ) parser.add_option( '', '--Y', dest='Y', help='Y-drop threshold, if specifying all parameters' ) parser.add_option( '', '--K', dest='K', help='Threshold for HSPs, if specifying all parameters' ) parser.add_option( '', '--L', dest='L', help='Threshold for gapped alignments, if specifying all parameters' ) parser.add_option( '', '--entropy', dest='entropy', help='Whether to involve entropy when filtering HSPs, if specifying all parameters' ) parser.add_option( '', '--identity_min', dest='identity_min', help="Minimum identity (don't report matches under this identity)" ) parser.add_option( '', '--identity_max', dest='identity_max', help="Maximum identity (don't report matches above this identity)" ) parser.add_option( '', '--coverage', dest='coverage', help="The minimum coverage value (don't report matches covering less than this)" ) parser.add_option( '', '--unmask', dest='unmask', help='Whether to convert lowercase bases to uppercase' ) parser.add_option( '', '--out_format', dest='format', help='The format of the output file (sam, diffs, or tabular (general))' ) parser.add_option( '', '--output', dest='output', help='The output file' ) parser.add_option( '', '--lastzSeqsFileDir', dest='lastzSeqsFileDir', help='Directory of local lastz_seqs.loc file' ) ( options, args ) = parser.parse_args() # output version # of tool try: tmp = tempfile.NamedTemporaryFile().name tmp_stdout = open( tmp, 'wb' ) proc = subprocess.Popen( args='lastz -v', shell=True, stdout=tmp_stdout ) tmp_stdout.close() returncode = proc.wait() stdout = None for line in open( tmp_stdout.name, 'rb' ): if line.lower().find( 'version' ) >= 0: stdout = line.strip() break if stdout: sys.stdout.write( '%s\n' % stdout ) else: raise Exception except: sys.stdout.write( 'Could not determine Lastz version\n' ) if options.unmask == 'yes': unmask = '[unmask]' else: unmask = '' if options.ref_name: ref_name = '[nickname=%s]' % options.ref_name else: ref_name = '' # Prepare for commonly-used preset options if options.source_select == 'pre_set': set_options = '--%s' % options.pre_set_options # Prepare for user-specified options else: set_options = '--%s --%s --gapped --strand=%s --seed=%s --%s O=%s E=%s X=%s Y=%s K=%s L=%s --%s' % \ ( options.gfextend, options.chain, options.strand, options.seed, options.transition, options.O, options.E, options.X, options.Y, options.K, options.L, options.entropy ) # Specify input2 and add [fullnames] modifier if output format is diffs if options.format == 'diffs': input2 = '%s[fullnames]' % options.input2 else: input2 = options.input2 if options.format == 'tabular': # Change output format to general if it's tabular and add field names for tabular output format = 'general-' tabular_fields = ':score,name1,strand1,size1,start1,zstart1,end1,length1,text1,name2,strand2,size2,start2,zstart2,end2,start2+,zstart2+,end2+,length2,text2,diff,cigar,identity,coverage,gaprate,diagonal,shingle' elif options.format == 'sam': # We currently ALWAYS suppress SAM headers. format = 'sam-' tabular_fields = '' else: format = options.format tabular_fields = '' # Set up our queues lastz_job_queue = LastzJobQueue( WORKERS, slots=SLOTS ) combine_data_queue = CombineDataQueue( options.output ) if options.ref_source == 'history': # Reference is a fasta dataset from the history, so split job across # the number of sequences in the dataset ( this could be a HUGE number ) try: # Ensure there is at least 1 sequence in the dataset ( this may not be necessary ). error_msg = "The reference dataset is missing metadata, click the pencil icon in the history item and 'auto-detect' the metadata attributes." ref_sequences = int( options.ref_sequences ) if ref_sequences < 1: stop_queues( lastz_job_queue, combine_data_queue ) stop_err( error_msg ) except: stop_queues( lastz_job_queue, combine_data_queue ) stop_err( error_msg ) seqs = 0 fasta_reader = FastaReader( open( options.input1 ) ) while True: # Read the next sequence from the reference dataset seq = fasta_reader.next() if not seq: break seqs += 1 # Create a temporary file to contain the current sequence as input to lastz tmp_in_fd, tmp_in_name = tempfile.mkstemp( suffix='.in' ) tmp_in = os.fdopen( tmp_in_fd, 'wb' ) # Write the current sequence to the temporary input file tmp_in.write( '>%s\n%s\n' % ( seq.name, seq.text ) ) tmp_in.close() # Create a 2nd temporary file to contain the output from lastz execution on the current sequence tmp_out_fd, tmp_out_name = tempfile.mkstemp( suffix='.out' ) os.close( tmp_out_fd ) # Generate the command line for calling lastz on the current sequence command = 'lastz %s%s%s %s %s --ambiguousn --nolaj --identity=%s..%s --coverage=%s --format=%s%s > %s' % \ ( tmp_in_name, unmask, ref_name, input2, set_options, options.identity_min, options.identity_max, options.coverage, format, tabular_fields, tmp_out_name ) # Create a job object job = Bunch() job.command = command job.output = tmp_out_name job.cleanup = [ tmp_in_name, tmp_out_name ] job.combine_data_queue = combine_data_queue # Add another job to the lastz_job_queue. Execution # will wait at this point if the queue is full. lastz_job_queue.put( job, block=True ) # Make sure the value of sequences in the metadata is the same as the # number of sequences read from the dataset ( this may not be necessary ). if ref_sequences != seqs: stop_queues( lastz_job_queue, combine_data_queue ) stop_err( "The value of metadata.sequences (%d) differs from the number of sequences read from the reference (%d)." % ( ref_sequences, seqs ) ) else: # Reference is a locally cached 2bit file, split job across number of chroms in 2bit file tbf = TwoBitFile( open( options.input1, 'r' ) ) for chrom in tbf.keys(): # Create a temporary file to contain the output from lastz execution on the current chrom tmp_out_fd, tmp_out_name = tempfile.mkstemp( suffix='.out' ) os.close( tmp_out_fd ) command = 'lastz %s/%s%s%s %s %s --ambiguousn --nolaj --identity=%s..%s --coverage=%s --format=%s%s >> %s' % \ ( options.input1, chrom, unmask, ref_name, input2, set_options, options.identity_min, options.identity_max, options.coverage, format, tabular_fields, tmp_out_name ) # Create a job object job = Bunch() job.command = command job.output = tmp_out_name job.cleanup = [ tmp_out_name ] job.combine_data_queue = combine_data_queue # Add another job to the lastz_job_queue. Execution # will wait at this point if the queue is full. lastz_job_queue.put( job, block=True ) # Stop the lastz_job_queue for t in lastz_job_queue.threads: lastz_job_queue.put( STOP_SIGNAL, True ) # Although all jobs are submitted to the queue, we can't shut down the combine_data_queue # until we know that all jobs have been submitted to its queue. We do this by checking # whether all of the threads in the lastz_job_queue have terminated. while threading.activeCount() > 2: time.sleep( 1 ) # Now it's safe to stop the combine_data_queue combine_data_queue.put( STOP_SIGNAL ) if __name__=="__main__": __main__()