comparison my_VDM_tool.r @ 0:67769f496e2c draft

Uploaded
author xuef
date Thu, 05 Nov 2020 13:48:08 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:67769f496e2c
1 #!/usr/bin/env Rscript
2
3 # rm(list=ls())
4
5 library("getopt")
6
7 #input from trailing line arguments
8 args <- commandArgs(trailingOnly = TRUE)
9 #read the options from input commandArgs
10 option_specification = matrix(c(
11 'inf','i01',1,'character',
12 'itype','i02',2,'character',
13 'thrup','i03',2,'double',
14 'thrlow','i04',2,'double',
15 'allr','i05',2,'character',
16 'complex','i06',2,'logical',
17 'lsp','i07',2,'double',
18 'pcol','i08',2,'character',
19 'lcol','i09',2,'character',
20
21 'xstand','i10',2,'logical',
22 'bsize','i11',2,'integer',
23 'bnorm','i12',2,'logical',
24 'exclthr','i13',2,'double',
25 'exclcol','i14',2,'character',
26
27 'parn','o1',2,'character',
28 'outn','o2',2,'character',
29 'pdfn','o3',2,'character'
30 ), byrow=TRUE, ncol=4)
31
32 #parse options
33 options = getopt(option_specification)
34
35 # #FOR DEBUGGING
36 # options<-NULL
37 # ###INPUT FILE
38 # setwd("D:/Dropbox/_galaxy/")
39 # options$inf<-"nor22.vcf"
40 # ###BASE OPTIONS
41 # #interval type
42 # options$itype<-"C.elegans"
43 # #user interval type
44 # options$userif<-NULL
45 # #quality filter
46 # options$qual<-200
47 # #for scaling 0-1 = upper threshold for what is considered homozygous
48 # options$thrup<-1
49 # #for scaling 0-1 = lower threshold for what is considered homozygous
50 # options$thrlow<-0
51 # #type of allelic ratio (AB/ratio)+---------------------------------------------------------
52 # options$allr<-"AB"
53 # #include complex variants
54 # options$complex<-FALSE
55 # ###ADDITIONAL VARIANT EXCLUSION OPTIONS
56 # #files with variants to exclude
57 # options$exclf<-NULL
58 # options$exclf<-c("nor22chunk1.txt","nor22chunk5.txt")
59 # #for variants to exclude, bottom threshold for which to be used, i.e. 0=ALL, 1=HOM only, 0.8=near HOM)
60 # options$exclthr<-0
61 # #additional colour option for pre-subtraction line
62 # options$exclcol<-"green"
63 # ###PLOT OPTIONS
64 # #loess span
65 # options$lsp<-0.4
66 # #point colour
67 # options$pcol<-"black"
68 # #loess plot colour
69 # options$lcol<-"red"
70 # #standardize x-axis interval (e.g. 1Mb interval)
71 # options$xstand<-TRUE
72 # #bin size for barplot
73 # options$bsize<-1000000
74 # #normalization for barplot
75 # options$bnorm<-FALSE
76 # ###OUTPUT OPTIONS
77 # #custom files names (may not work for Galaxy)
78 # options$outn<-paste(gsub("vcf","",options$inf),"_output_q",options$qual,"-",paste(options$exclf,sep="",collapse=""),".txt",sep="")
79 # options$parn<-paste(gsub("vcf","",options$inf),"_parsed_q",options$qual,"-",paste(options$exclf,sep="",collapse=""),".txt",sep="")
80 # options$pdfn<-paste(gsub("vcf","",options$inf),"_plot_q",options$qual,"-",paste(options$exclf,sep="",collapse=""),".pdf",sep="")
81 # #fixed file names (will work in Galaxy)
82 # # options$outn<-"vcf_output.txt"
83 # # options$parn<-"vcf_parsedinput.txt"
84 # # options$pdfn<-"vdm_mapping_plot.pdf"
85
86
87 'inf','i01',1,'character',
88 'itype','i02',2,'character',
89 'qual','i03',2,'double',
90 'thrup','i04',2,'double',
91 'thrlow','i05',2,'double',
92 'allr','i06',2,'character',
93 'complex','i07',2,'logical',
94 'lsp','i08',2,'double',
95 'pcol','i09',2,'character',
96 'lcol','i10',2,'character',
97
98 'xstand','i11',2,'logical',
99 'bsize','i12',2,'integer',
100 'bnorm','i13',2,'logical',
101 'exclthr','i14',2,'double',
102 'exclcol','i15',2,'character',
103
104 'parn','o1',2,'character',
105 'outn','o2',2,'character',
106 'pdfn','o3',2,'character'
107
108
109 myfunction<-function(inf,itype,thrup,thrlow,allr,complex,lsp,pcol,lcol,xstand,bsize,bnorm,exclthr,exclcol,parn,outn,pdfn){
110
111 #PARAMETERS
112 # filename<-options$inf
113 # interval_type<-options$itype
114 # user_interval_file<-options$userif
115 # read_qual<-options$qual
116 # threshold_upper<-options$thrup
117 # threshold_lower<-options$thrlow
118 # allele_ratio<-options$allr
119 # incl_complex<-options$complex
120 # loess_span<-options$lsp
121 # plot_color<-options$pcol
122 # loess_color<-options$lcol
123 # #transparency for selected colour (to see plot points underneath)
124 # xaxis_standard<-options$xstand
125 # bin_size<-options$bsize
126 # bfreq_norm<-options$bnorm
127 # exclusion_list<-options$exclf
128 # excl_threshold<-options$exclthr
129 # excl_loess_color<-options$exclcol
130 # vcfoutput_filename<-options$outn
131 # vcfparsed_filename<-options$parn
132 # pdf_filename<-options$pdfn
133
134 # plot_color<-rgb(c(col2rgb(plot_color)[1]),c(col2rgb(plot_color)[2]),c(col2rgb(plot)[3]),max=255,alpha=150)
135 # loess_color<-rgb(c(col2rgb(loess_color)[1]),c(col2rgb(loess_color)[2]),c(col2rgb(loess_color)[3]),max=255,alpha=150)
136 # excl_loess_color<-rgb(c(col2rgb(excl_loess_color)[1]),c(col2rgb(excl_loess_color)[2]),c(col2rgb(excl_loess_color)[3]),max=255,alpha=150)
137
138 inf,itype,thrup,thrlow,allr,complex,lsp,pcol,lcol,xstand,bsize,bnorm,exclthr,exclcol,parn,outn,pdfn
139
140 filename<-inf
141 interval_type<-itype
142 # user_interval_file<-userif
143 read_qual<-as.numeric(qual)
144 threshold_upper<-as.numeric(thrup)
145 threshold_lower<-as.numeric(thrlow)
146 allele_ratio<-allr
147 incl_complex<-complex
148 loess_span<-as.numeric(lsp)
149 plot_color<-pcol
150 loess_color<-lcol
151 xaxis_standard<-xstand
152 bin_size<-as.numeric(bsize)
153 bfreq_norm<-bnorm
154 # exclusion_list<-exclf
155 excl_threshold<-as.numeric(exclthr)
156 excl_loess_color<-exclcol
157 vcfoutput_filename<-outn
158 vcfparsed_filename<-parn
159 pdf_filename<-pdfn
160
161 #transparency for selected colour (to see plot points underneath)
162 plot_color<-rgb(c(col2rgb(plot_color)[1]),c(col2rgb(plot_color)[2]),c(col2rgb(plot)[3]),max=255,alpha=150)
163 loess_color<-rgb(c(col2rgb(loess_color)[1]),c(col2rgb(loess_color)[2]),c(col2rgb(loess_color)[3]),max=255,alpha=150)
164 excl_loess_color<-rgb(c(col2rgb(excl_loess_color)[1]),c(col2rgb(excl_loess_color)[2]),c(col2rgb(excl_loess_color)[3]),max=255,alpha=150)
165
166 ###FIXED PARAMETERS
167 #linkage scatter plot yaxis max value=1
168 sp_yaxis<-1
169 #chromosome intervals in Mb rather than custom
170 interval_unit<-1000000
171
172
173 ######################
174 ###READ IN VCF FILE
175 #extract column names
176 vcf_readin<-readLines(filename)
177 #find header line, i.e. last line to begin with #
178 for(l in 1:length(vcf_readin)){
179 vcf_readinl<-vcf_readin[l]
180 if(substr(vcf_readinl,1,1)=="#"){next}
181 else if(substr(vcf_readinl,1,1)!="#"){rowline<-l-1;break}
182 }
183 vcf_header<-vcf_readin[rowline]
184 #e.g. CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\trgSM"
185 vcf_header<-gsub("#","",vcf_header)
186 vcf_colnames<-unlist(strsplit(vcf_header,"\t"))
187
188 #extract data (hashed vcf header skipped with read.table)
189 vcf_rtable<-read.table(filename,sep="\t",stringsAsFactors=FALSE)
190 names(vcf_rtable)<-vcf_colnames
191
192 ######################
193 ###PREPARE DATA
194
195 vcfinfo_dat<-NULL
196 vcfinfo_pdat<-NULL
197 multiallele_counter<-0
198 diviserror_counter<-0
199 for(i in c(1:nrow(vcf_rtable))){
200 vcf_line<-vcf_rtable[i,]
201 #to speed up runtime- quality filter here
202 if(vcf_line$QUAL>=read_qual){
203 #remove chrom or chr prefix from chromosome value
204 if(grepl("chrom",vcf_line$CHROM,ignore.case=TRUE)==TRUE){
205 vcf_line$CHROM<-gsub("chrom","",vcf_line$CHROM,ignore.case=TRUE)
206 }else if(grepl("chr",vcf_line$CHROM,ignore.case=TRUE)==TRUE){
207 vcf_line$CHROM<-gsub("chr","",vcf_line$CHROM,ignore.case=TRUE)
208 }
209 #PARSE INFO
210 vcfinfo_split<-strsplit(vcf_line$INFO,split=";")
211 vcfinfo_coln<-gsub("=.*","",unlist(vcfinfo_split))
212 vcfinfo_cold<-gsub(".*=","",unlist(vcfinfo_split))
213 vcfinfo_ldat<-data.frame(t(vcfinfo_cold),stringsAsFactors=FALSE)
214 names(vcfinfo_ldat)<-vcfinfo_coln
215
216 #skip if commas in values to avoid returning errors
217 if(grepl(",",vcfinfo_ldat$AO)==TRUE){
218 multiallele_counter<-multiallele_counter+1
219 next
220 }
221 #skip divide by zero errors (under "ratio" setting for ratio calculation)
222 if(as.numeric(vcfinfo_ldat$AO)+as.numeric(vcfinfo_ldat$RO)=="0"){
223 diviserror_counter<-diviserror_counter+1
224 next
225 }
226
227 #specific accounting for nonstandard categories
228 #LOF columns only present for loss-of-function variants + assign NA values to all other variants
229 if(("LOF" %in% names(vcfinfo_ldat))==TRUE){
230 LOF<-vcfinfo_ldat$LOF
231 vcfinfo_ldat<-vcfinfo_ldat[,!names(vcfinfo_ldat) %in% "LOF"]
232 vcfinfo_ldat<-cbind(vcfinfo_ldat,LOF)
233 }else{
234 LOF<-"NA"
235 vcfinfo_ldat<-cbind(vcfinfo_ldat,LOF)
236 }
237 #NMD columns only present for nonsense-mediated-decay variants + assign NA values to all other variants
238 if(("NMD" %in% names(vcfinfo_ldat))==TRUE){
239 NMD<-vcfinfo_ldat$NMD
240 vcfinfo_ldat<-vcfinfo_ldat[,!names(vcfinfo_ldat) %in% "NMD"]
241 vcfinfo_ldat<-cbind(vcfinfo_ldat,NMD)
242 }else{
243 NMD<-"NA"
244 vcfinfo_ldat<-cbind(vcfinfo_ldat,NMD)
245 }
246
247 #general accounting for nonstandard categories
248
249
250 #PARSE ANNOTATION
251 ann_rparsed<-unlist(strsplit(vcfinfo_ldat$ANN[1],split="\\|"))[1:20]
252 ann_rparsed[ann_rparsed==""]<-"novalue"
253 ann_parsed<-data.frame(t(ann_rparsed),stringsAsFactors=FALSE)
254 names(ann_parsed)<-paste("ANN",c(1:dim(ann_parsed)[2]),sep="")
255 #remove duplicate redundant INFO column (fully parsed)
256 vcf_line<-vcf_line[,names(vcf_line)!="INFO"]
257
258 #dataset keeping unparsed annotation (full)
259 vcfinfo_pldat<-cbind(vcf_line,vcfinfo_ldat)
260 vcfinfo_pdat<-rbind(vcfinfo_pdat,vcfinfo_pldat)
261
262 #dataset keeping parsed annotation (partial parsed-for relevant)
263 vcfinfo_ldat<-vcfinfo_ldat[,names(vcfinfo_ldat)!="ANN"]
264 #append copy of original data to parsed data
265 vcfinfo_lldat<-cbind(vcf_line,vcfinfo_ldat,ann_parsed)
266 vcfinfo_dat<-rbind(vcfinfo_dat,vcfinfo_lldat)
267 }
268 }
269 print(paste("rows with multiple alleles skipped: ",multiallele_counter,sep=""))
270 # print(paste("rows with AO+RO=0 (not multiple alleles) skipped: ",diviserror_counter,sep=""))
271
272 #ENSURE CORRECT DATATYPES
273 #convert dataframe columns of factor type to character type
274 vcfinfo_dat<-data.frame(lapply(vcfinfo_dat,as.character),stringsAsFactors=FALSE)
275 #convert to numeric if column is numeric and not string
276 for(n in c(1:dim(vcfinfo_dat)[2])){
277 #suppress warnings when columns with strings encountered (not converted)
278 suppressWarnings(
279 colnum_index<-!is.na(as.numeric(vcfinfo_dat[,n]))
280 )
281 if(all(colnum_index)==TRUE){
282 vcfinfo_dat[,n]<-as.numeric(vcfinfo_dat[,n])
283 }
284 }
285
286 ######################
287 #RATIO CALCULATION
288 #ratio calculation from AO and RO
289 RATIO<-c(vcfinfo_dat$AO/(vcfinfo_dat$AO+vcfinfo_dat$RO))
290 #add adj_AB for AB=0->AO=1 conversion
291 adj_AB<-replace(vcfinfo_dat$AB,vcfinfo_dat$AB==0,1)
292 vcfinfo_dat<-cbind(vcfinfo_dat,RATIO,adj_AB)
293 vcfinfo_dat<-vcfinfo_dat[with(vcfinfo_dat,order(CHROM,POS)),]
294
295 #EXCLUDE COMPLEX VARIANTS
296 if(incl_complex==FALSE){
297 vcfinfo_dat<-subset(vcfinfo_dat,CIGAR=="1X")
298 }
299
300 ######################
301 #SUBTRACT VARIANTS FROM EXCLUSION LIST
302 if(length(exclusion_list)>0){
303 #keep copy of pre-subtraction data for later plotting
304 vcfinfo_origdat<-vcfinfo_dat
305
306 #identifiers for exclusion list based on CHROM/POS/REF/ALT
307 index1<-paste(vcfinfo_dat$CHROM,vcfinfo_dat$POS,sep="_")
308 index2<-paste(vcfinfo_dat$CHROM,vcfinfo_dat$POS,vcfinfo_dat$REF,sep="_")
309 index3<-paste(vcfinfo_dat$CHROM,vcfinfo_dat$POS,vcfinfo_dat$REF,vcfinfo_dat$ALT,sep="_")
310 vcfinfo_dat<-cbind(vcfinfo_dat,index1,index2,index3)
311
312 print(paste("before: ",nrow(vcfinfo_dat),sep=""))
313 #loop and subtract through exclusion lists (if multiple files)
314 for(exclusion_ind in exclusion_list){
315 exclin<-read.table(exclusion_ind,header=TRUE)
316
317 #THRESHOLD FILTER ON EXCLUSION LIST VARIANTS
318 if(allele_ratio=="AB"){
319 exclin<-subset(exclin,adj_AB>=excl_threshold)
320 }
321 if(allele_ratio=="ratio"){
322 exclin<-subset(exclin,ratio>=excl_threshold)
323 }
324
325 #identifiers for vcf data based on CHROM/POS/REF/ALT
326 index1<-paste(exclin$CHROM,exclin$POS,sep="_")
327 index2<-paste(exclin$CHROM,exclin$POS,exclin$REF,sep="_")
328 index3<-paste(exclin$CHROM,exclin$POS,exclin$REF,exclin$ALT,sep="_")
329 exclin<-cbind(exclin,index1,index2,index3)
330 #exclude based on CHROM+POS+REF+ALT
331 vcfinfo_dat<-subset(vcfinfo_dat,!(index3 %in% exclin$index3))
332 }
333 print(paste("after: ",nrow(vcfinfo_dat),sep=""))
334 }
335
336 ######################
337 #WRITE TO OUTPUT
338 #select relevant columns 2 variant type; 4 gene; !5 wormbase ID; 8 type change; 10 nucleotide change; 11 amino acid change; 16 warning message
339 vcfinfo_simp<-subset(vcfinfo_dat,select=c("CHROM","POS","QUAL","DP","REF","ALT","AB","AO","RO","RATIO","adj_AB","ANN2","ANN4","ANN8","ANN10","ANN11","ANN16"))
340 names(vcfinfo_simp)<-c("CHROM","POS","QUAL","DP","REF","ALT","AB","AO","RO","RATIO","adj_AB","VARTYPE","GENE","TYPE","NTCHANGE","PRCHANGE","WARNINGS")
341 vcfsimp_dat<-vcfinfo_simp[with(vcfinfo_simp,order(CHROM,POS)),]
342
343 #write table with quality filtered variants for VDM plotting and relevant columns
344 try(
345 write.table(vcfsimp_dat,vcfoutput_filename,sep="\t",quote=FALSE,row.names=FALSE)
346 ,silent=TRUE)
347 #write table with all unfiltered variants and all columns including parsed INFO
348 try(
349 write.table(vcfinfo_pdat,vcfparsed_filename,sep="\t",quote=FALSE,row.names=FALSE)
350 ,silent=TRUE)
351
352
353 ######################
354 ###CHROMOSOME (INTERVAL) ARRANGEMENT
355 #define chromosome and chromosome size in Mb
356 if(interval_type == 'C.elegans'){
357 chrom_n<-c('I','II','III','IV','V','X')
358 chrom_mb<-c(16,16,14,18,21,18)
359 interval_frame<-data.frame(chrom_n,chrom_mb)
360 } else if(interval_type == 'Zebrafish'){
361 chrom_n<-c('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22','23','24','25')
362 chrom_mb<-c(61,61,64,63,76,60,78,57,59,47,47,51,55,54,48,59,54,50,51,56,45,43,47,44,39)
363 interval_frame<-data.frame(chrom_n,chrom_mb)
364 } else if(interval_type == 'Brachypodium'){
365 chrom_n<-c('1','2','3','4','5')
366 chrom_mb<-c(75,60,60,50,30)
367 interval_frame<-data.frame(chrom_n,chrom_mb)
368 } else if(interval_type == 'Arabidopsis'){
369 chrom_n<-c('1','2','3','4','5')
370 chrom_mb<-c(31, 20,24,19,27 )
371 interval_frame<-data.frame(chrom_n,chrom_mb)
372 } else{
373 #user interval file- no headers, with chromosome in column 1 (format CHR# or CHROM#) and size in Mb (rounded up) in column 2
374 user_interval_type<-read.table(user_interval_file)
375 if(grepl("chrom",user_interval_type[1,1],ignore.case=TRUE)==TRUE){
376 user_interval_type[,1]<-gsub("chrom","",user_interval_type[,1],ignore.case=TRUE)
377 }else if(grep("chr",user_interval_type[1,1],ignore.case=TRUE)==TRUE){
378 user_interval_type[,1]<-gsub("chr","",user_interval_type[,1],ignore.case=TRUE)
379 }
380 chrom_n<-user_interval_type[,1]
381 chrom_mb<-user_interval_type[,2]
382 interval_frame<-data.frame(chrom_n,chrom_mb)
383 }
384 names(interval_frame)<-c("CHROM","INTERVAL")
385
386
387 ######################
388 ###PLOTTING
389 #VDM SCATTER PLOT
390 #save to pdf
391 pdf(file=pdf_filename,width=9,height=8)
392 #par(mfrow=c(2,3))
393 for(chromind in interval_frame$CHROM){
394 #subset by data by chromosome for plotting
395 intervalind<-interval_frame$INTERVAL[interval_frame$CHROM==chromind]
396 chr_dat<-subset(vcfsimp_dat,CHROM==chromind,silent=TRUE)
397
398 #same subsetting by chromosome for pre-subtraction data
399 if(length(exclusion_list)>0){
400 chr_origdat<-subset(vcfinfo_origdat,CHROM==chromind,silent=TRUE)
401 }
402
403 #define x-axis upper limit
404 if(xaxis_standard==TRUE){
405 #for standardized x-axis (max x-axis chromosome length)
406 scupper_xaxis<-max(interval_frame$INTERVAL)
407 scupper_xval<-scupper_xaxis*interval_unit
408 } else if(xaxis_standard==FALSE){
409 scupper_xaxis<-intervalind
410 scupper_xval<-intervalind*interval_unit
411 }
412
413 if(allele_ratio=="AB"){
414 plot(chr_dat$POS,chr_dat$adj_AB,cex=0.60,xlim=c(0,scupper_xval),ylim=c(0,sp_yaxis),main=paste("Chr",chromind," Variant Discovery Mapping",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Ratio of Variant Reads/Total Reads [AB]',pch=10, col=plot_color,xaxt='n')
415 try(lines(loess.smooth(chr_dat$POS,chr_dat$adj_AB,span=loess_span),lwd=5,col=loess_color))
416 #plot loess curve for data without subtraction of exclusion variants
417 if(length(exclusion_list)>0){
418 try(lines(loess.smooth(chr_origdat$POS,chr_origdat$adj_AB,span=loess_span),lwd=5,col=excl_loess_color))
419 }
420
421 axis(1,at=seq(0,scupper_xval,by=interval_unit),labels=c(0:scupper_xaxis))
422 abline(h=seq(0,sp_yaxis,by=0.1),v=c(1:scupper_xaxis)*interval_unit,col="gray")
423 } else if(allele_ratio=="ratio"){
424 plot(chr_dat$POS,chr_dat$RATIO,cex=0.60,xlim=c(0,scupper_xval),ylim=c(0,sp_yaxis),main=paste("Chr",chromind," Variant Discovery Mapping",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Ratio of Variant Reads/Total Reads [ratio]',pch=10, col=plot,xaxt='n')
425 try(lines(loess.smooth(chr_dat$POS,chr_dat$RATIO,span=loess_span),lwd=5,col=loess_color))
426 #plot loess curve for data without subtraction of exclusion variants
427 if(length(exclusion_list)>0){
428 try(lines(loess.smooth(chr_origdat$POS,chr_origdat$adj_AB,span=loess_span),lwd=5,col=excl_loess_color))
429 }
430 axis(1,at=seq(0,scupper_xval,by=interval_unit),labels=c(0:scupper_xaxis))
431 abline(h=seq(0,sp_yaxis,by=0.1),v=c(1:scupper_xaxis)*interval_unit,col="gray")
432 }
433 }
434
435 ######################
436 #graph barplots
437 location_index<-NULL
438 meanSNP_dat<-NULL
439 # prepare table of counts and calculations
440 for(chromind in interval_frame$CHROM){
441 #for standardized x-axis
442 if(xaxis_standard==TRUE){
443 intervalind<-max(interval_frame$INTERVAL)*1000000/bin_size
444 } else if(xaxis_standard==FALSE){
445 intervalind<-interval_frame$INTERVAL[interval_frame$CHROM==chromind]*1000000/bin_size
446 }
447 #start intervals with **1 and end with **0
448 interval_begin<-c(((0:(intervalind-1))*bin_size)+1)
449 interval_end<-c((1:intervalind)*bin_size)
450
451 #define x-axis upper limit
452 if(xaxis_standard==TRUE){
453 upper_xaxis<-max(interval_frame$INTERVAL)
454 } else if(xaxis_standard==FALSE){
455 upper_xaxis<-interval_frame$INTERVAL[interval_frame$CHROM==chromind]
456 }
457 #prepare columns
458 snp_counter<-0
459 purealt_counter<-0
460 pureref_counter<-0
461 het_counter<-0
462 chr_mean<-0
463 normed_freq<-0
464 ratio<-0
465
466 interval_index<-data.frame(chromind,interval_begin,interval_end,snp_counter,purealt_counter,pureref_counter,het_counter,chr_mean,normed_freq)
467 chr_dat<-subset(vcfinfo_dat,CHROM==chromind)
468 #ratio calculation
469 ratio<-chr_dat$AO/(chr_dat$AO+chr_dat$RO)
470
471 #if counter based on adj_AB or ratio
472 if(allele_ratio=="ratio"){
473 chr_purealtdat<-subset(chr_dat,ratio>=threshold_upper)#;chr_purealtdat
474 chr_purerefdat<-subset(chr_dat,ratio<=threshold_lower)#;chr_purerefdat
475 chr_hetdat<-subset(chr_dat,ratio>threshold_lower & ratio<threshold_upper)#;chr_hetdat
476 } else if(allele_ratio=="AB"){
477 chr_purealtdat<-subset(chr_dat,adj_AB>=threshold_upper)#;chr_purealtdat
478 chr_purerefdat<-subset(chr_dat,adj_AB<=threshold_lower)#;chr_purerefdat
479 chr_hetdat<-subset(chr_dat,adj_AB>threshold_lower & adj_AB<threshold_upper)#;chr_hetdat
480 }
481 #if chromosome with data, count number of snps within each bin (positions rounded up to nearest bin), else skip to next chromosome
482 if(dim(chr_dat)[1]>0){
483 for(i in 1:dim(chr_dat)[1]){
484 chr_datind<-chr_dat[i,]
485 #round up to nearest bin-size interval
486 chr_datind_upper<-ceiling(chr_datind$POS/bin_size)*bin_size
487 interval_coln<-NULL;interval_rown<-NULL
488 #identify row and and counter column to increment
489 interval_coln<-which(names(interval_index)=="snp_counter")
490 interval_rown<-match(chr_datind_upper,interval_index$interval_end)
491 interval_index[interval_rown,interval_coln]<-c(interval_index$snp_counter[interval_rown]+1)
492 }
493 }else{
494 next
495 }
496 ##if chromosome with pure AO, count number of snps with each bin (positions rounded up to nearest bin)
497 if(dim(chr_purealtdat)[1]>0){
498 for(i in 1:dim(chr_purealtdat)[1]){
499 chr_purealtind<-chr_purealtdat[i,]
500 chr_purealtind_upper<-ceiling(chr_purealtind$POS/bin_size)*bin_size
501 interval_coln<-NULL;interval_rown<-NULL
502 interval_coln<-which(names(interval_index)=="purealt_counter")
503 interval_rown<-match(chr_purealtind_upper,interval_index$interval_end)
504 interval_index[interval_rown,interval_coln]<-c(interval_index$purealt_counter[interval_rown]+1)
505 }
506 }
507 #if chromosome with pure RO, count number of snps with each bin (positions rounded up to nearest bin)
508 if(dim(chr_purerefdat)[1]>0){
509 for(i in 1:dim(chr_purerefdat)[1]){
510 chr_purerefind<-chr_purerefdat[i,]
511 chr_purerefind_upper<-ceiling(chr_purerefind$POS/bin_size)*bin_size
512 interval_coln<-NULL;interval_rown<-NULL
513 interval_coln<-which(names(interval_index)=="pureref_counter")
514 interval_rown<-match(chr_purerefind_upper,interval_index$interval_end)
515 interval_index[interval_rown,interval_coln]<-c(interval_index$pureref_counter[interval_rown]+1)
516 }
517 }
518 #if chromosome with hets, count number of snps with each bin (positions rounded up to nearest bin)
519 if(dim(chr_hetdat)[1]>0){
520 for(i in 1:dim(chr_hetdat)[1]){
521 chr_hetind<-chr_hetdat[i,]
522 chr_hetind_upper<-ceiling(chr_hetind$POS/bin_size)*bin_size
523 interval_coln<-NULL;interval_rown<-NULL
524 interval_coln<-which(names(interval_index)=="het_counter")
525 interval_rown<-match(chr_hetind_upper,interval_index$interval_end)
526 interval_index[interval_rown,interval_coln]<-c(interval_index$het_counter[interval_rown]+1)
527 }
528 }
529 #irrespective of standardized x-axis, mean should be calculated from actual interval range of chromosome
530 chr_mean<-sum(interval_index$purealt_counter)/(interval_frame$INTERVAL[interval_frame$CHROM==chromind]*1000000/bin_size)
531 interval_index$chr_mean<-chr_mean
532 meanSNP_dat<-rbind(meanSNP_dat,data.frame(chromind,chr_mean))
533 #normalization treatment for if SNPs are AO=0, AO=total SNPs, or AO and RO in bin
534 for(i in 1:dim(interval_index)[1]){
535 chr_intind<-interval_index[i,]
536 #hom definition based on specified upper and lower thresholds
537 if(chr_intind$purealt_counter<=threshold_lower){
538 interval_coln<-NULL
539 interval_coln<-which(names(interval_index)=="normed_freq")
540 interval_index[i,interval_coln]=0
541 } else if (chr_intind$purealt_counter==chr_intind$snp_counter){
542 interval_coln<-NULL
543 interval_coln<-which(names(interval_index)=="normed_freq")
544 interval_index[i,interval_coln]=(chr_intind$purealt_counter)^2/chr_mean
545 } else {
546 interval_coln<-NULL
547 interval_coln<-which(names(interval_index)=="normed_freq")
548 interval_index[i,interval_coln]=chr_mean*(chr_intind$purealt_counter)^2/(chr_intind$snp_counter-chr_intind$purealt_counter)
549 }
550 }
551 location_index<-rbind(location_index,interval_index)
552 }
553
554 for(chromind in interval_frame$CHROM){
555 interval_index<-location_index[location_index$chromind==chromind,]
556 #assign 0 values to avoid empty datatable error
557 if(dim(interval_index)[1]==0){
558 interval_index[1,]<-rep(0,dim(interval_index)[2])
559 }
560 }
561 #set up x_axis
562 if(xaxis_standard==TRUE){
563 #for standardized x-axis (max x-axis chromosome length)
564 bpupper_xaxis<-max(interval_frame$INTERVAL)
565 bpupper_xval<-bpupper_xaxis*interval_unit
566 } else if(xaxis_standard==FALSE){
567 bpupper_xaxis<-intervalind
568 bpupper_xval<-intervalind*interval_unit
569 }
570 #set up y_axis range for barplots
571 if(bfreq_norm==TRUE){
572 bp_yaxis<-5*ceiling(max(location_index$normed_freq)/5)
573 #assign non-0 value to yaxis to avoid error
574 if(bp_yaxis==0){
575 bp_yaxis<-10
576 }
577 # }
578 if(xaxis_standard==TRUE){
579 bplot<-barplot(interval_index$normed_freq,space=0,ylim=c(0,bp_yaxis),main=paste("Chr",chromind," Variant Only",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Normalised Frequency')
580 }else if(xaxis_standard==FALSE){
581 bplot<-barplot(interval_index$normed_freq,space=0,xlim=c(0,bpupper_xaxis),ylim=c(0,bp_yaxis),main=paste("Chr",chromind," Variant Only",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Normalised Frequency')
582 }
583 }else if(bfreq_norm==FALSE){
584 bp_yaxis<-5*ceiling(max(location_index$purealt_counter)/5)
585 #assign non-0 value to yaxis to avoid error
586 if(bp_yaxis==0){
587 bp_yaxis<-10
588 }
589 # }
590 if(xaxis_standard==TRUE){
591 bplot<-barplot(interval_index$purealt_counter,space=0,ylim=c(0,bp_yaxis),main=paste("Chr",chromind," Variant Only",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Frequency')
592 }else if(xaxis_standard==FALSE){
593 bplot<-barplot(interval_index$purealt_counter,space=0,xlim=c(0,bpupper_xaxis),ylim=c(0,bp_yaxis),main=paste("Chr",chromind," Variant Only",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Frequency')
594 }
595
596 bp_xaxis1<-as.numeric(bplot)
597 bp_xaxis2<-c(bp_xaxis1,tail(bp_xaxis1,1)+bp_xaxis1[2]-bp_xaxis1[1])
598 bp_xaxis<-bp_xaxis2-bp_xaxis1[1]
599
600 axis(1,at=bp_xaxis,labels=seq(0,bpupper_xaxis,by=c(bin_size/1000000)))
601 }
602 dev.off()
603
604