0
|
1 /* The MIT License
|
|
2
|
|
3 Copyright (C) 2010, 2013 Genome Research Ltd.
|
|
4 Copyright (C) 2011 Attractive Chaos <attractor@live.co.uk>
|
|
5
|
|
6 Permission is hereby granted, free of charge, to any person obtaining
|
|
7 a copy of this software and associated documentation files (the
|
|
8 "Software"), to deal in the Software without restriction, including
|
|
9 without limitation the rights to use, copy, modify, merge, publish,
|
|
10 distribute, sublicense, and/or sell copies of the Software, and to
|
|
11 permit persons to whom the Software is furnished to do so, subject to
|
|
12 the following conditions:
|
|
13
|
|
14 The above copyright notice and this permission notice shall be
|
|
15 included in all copies or substantial portions of the Software.
|
|
16
|
|
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
21 BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
22 ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
23 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
24 SOFTWARE.
|
|
25 */
|
|
26
|
|
27 #include <math.h>
|
|
28 #include <stdlib.h>
|
|
29 #include "htslib/kfunc.h"
|
|
30
|
|
31 /* Log gamma function
|
|
32 * \log{\Gamma(z)}
|
|
33 * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245
|
|
34 */
|
|
35 double kf_lgamma(double z)
|
|
36 {
|
|
37 double x = 0;
|
|
38 x += 0.1659470187408462e-06 / (z+7);
|
|
39 x += 0.9934937113930748e-05 / (z+6);
|
|
40 x -= 0.1385710331296526 / (z+5);
|
|
41 x += 12.50734324009056 / (z+4);
|
|
42 x -= 176.6150291498386 / (z+3);
|
|
43 x += 771.3234287757674 / (z+2);
|
|
44 x -= 1259.139216722289 / (z+1);
|
|
45 x += 676.5203681218835 / z;
|
|
46 x += 0.9999999999995183;
|
|
47 return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5);
|
|
48 }
|
|
49
|
|
50 /* complementary error function
|
|
51 * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt
|
|
52 * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66
|
|
53 */
|
|
54 double kf_erfc(double x)
|
|
55 {
|
|
56 const double p0 = 220.2068679123761;
|
|
57 const double p1 = 221.2135961699311;
|
|
58 const double p2 = 112.0792914978709;
|
|
59 const double p3 = 33.912866078383;
|
|
60 const double p4 = 6.37396220353165;
|
|
61 const double p5 = .7003830644436881;
|
|
62 const double p6 = .03526249659989109;
|
|
63 const double q0 = 440.4137358247522;
|
|
64 const double q1 = 793.8265125199484;
|
|
65 const double q2 = 637.3336333788311;
|
|
66 const double q3 = 296.5642487796737;
|
|
67 const double q4 = 86.78073220294608;
|
|
68 const double q5 = 16.06417757920695;
|
|
69 const double q6 = 1.755667163182642;
|
|
70 const double q7 = .08838834764831844;
|
|
71 double expntl, z, p;
|
|
72 z = fabs(x) * M_SQRT2;
|
|
73 if (z > 37.) return x > 0.? 0. : 2.;
|
|
74 expntl = exp(z * z * - .5);
|
|
75 if (z < 10. / M_SQRT2) // for small z
|
|
76 p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0)
|
|
77 / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0);
|
|
78 else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65)))));
|
|
79 return x > 0.? 2. * p : 2. * (1. - p);
|
|
80 }
|
|
81
|
|
82 /* The following computes regularized incomplete gamma functions.
|
|
83 * Formulas are taken from Wiki, with additional input from Numerical
|
|
84 * Recipes in C (for modified Lentz's algorithm) and AS245
|
|
85 * (http://lib.stat.cmu.edu/apstat/245).
|
|
86 *
|
|
87 * A good online calculator is available at:
|
|
88 *
|
|
89 * http://www.danielsoper.com/statcalc/calc23.aspx
|
|
90 *
|
|
91 * It calculates upper incomplete gamma function, which equals
|
|
92 * kf_gammaq(s,z)*tgamma(s).
|
|
93 */
|
|
94
|
|
95 #define KF_GAMMA_EPS 1e-14
|
|
96 #define KF_TINY 1e-290
|
|
97
|
|
98 // regularized lower incomplete gamma function, by series expansion
|
|
99 static double _kf_gammap(double s, double z)
|
|
100 {
|
|
101 double sum, x;
|
|
102 int k;
|
|
103 for (k = 1, sum = x = 1.; k < 100; ++k) {
|
|
104 sum += (x *= z / (s + k));
|
|
105 if (x / sum < KF_GAMMA_EPS) break;
|
|
106 }
|
|
107 return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum));
|
|
108 }
|
|
109 // regularized upper incomplete gamma function, by continued fraction
|
|
110 static double _kf_gammaq(double s, double z)
|
|
111 {
|
|
112 int j;
|
|
113 double C, D, f;
|
|
114 f = 1. + z - s; C = f; D = 0.;
|
|
115 // Modified Lentz's algorithm for computing continued fraction
|
|
116 // See Numerical Recipes in C, 2nd edition, section 5.2
|
|
117 for (j = 1; j < 100; ++j) {
|
|
118 double a = j * (s - j), b = (j<<1) + 1 + z - s, d;
|
|
119 D = b + a * D;
|
|
120 if (D < KF_TINY) D = KF_TINY;
|
|
121 C = b + a / C;
|
|
122 if (C < KF_TINY) C = KF_TINY;
|
|
123 D = 1. / D;
|
|
124 d = C * D;
|
|
125 f *= d;
|
|
126 if (fabs(d - 1.) < KF_GAMMA_EPS) break;
|
|
127 }
|
|
128 return exp(s * log(z) - z - kf_lgamma(s) - log(f));
|
|
129 }
|
|
130
|
|
131 double kf_gammap(double s, double z)
|
|
132 {
|
|
133 return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z);
|
|
134 }
|
|
135
|
|
136 double kf_gammaq(double s, double z)
|
|
137 {
|
|
138 return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z);
|
|
139 }
|
|
140
|
|
141 /* Regularized incomplete beta function. The method is taken from
|
|
142 * Numerical Recipe in C, 2nd edition, section 6.4. The following web
|
|
143 * page calculates the incomplete beta function, which equals
|
|
144 * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b):
|
|
145 *
|
|
146 * http://www.danielsoper.com/statcalc/calc36.aspx
|
|
147 */
|
|
148 static double kf_betai_aux(double a, double b, double x)
|
|
149 {
|
|
150 double C, D, f;
|
|
151 int j;
|
|
152 if (x == 0.) return 0.;
|
|
153 if (x == 1.) return 1.;
|
|
154 f = 1.; C = f; D = 0.;
|
|
155 // Modified Lentz's algorithm for computing continued fraction
|
|
156 for (j = 1; j < 200; ++j) {
|
|
157 double aa, d;
|
|
158 int m = j>>1;
|
|
159 aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1))
|
|
160 : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m));
|
|
161 D = 1. + aa * D;
|
|
162 if (D < KF_TINY) D = KF_TINY;
|
|
163 C = 1. + aa / C;
|
|
164 if (C < KF_TINY) C = KF_TINY;
|
|
165 D = 1. / D;
|
|
166 d = C * D;
|
|
167 f *= d;
|
|
168 if (fabs(d - 1.) < KF_GAMMA_EPS) break;
|
|
169 }
|
|
170 return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f;
|
|
171 }
|
|
172 double kf_betai(double a, double b, double x)
|
|
173 {
|
|
174 return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x);
|
|
175 }
|
|
176
|
|
177 #ifdef KF_MAIN
|
|
178 #include <stdio.h>
|
|
179 int main(int argc, char *argv[])
|
|
180 {
|
|
181 double x = 5.5, y = 3;
|
|
182 double a, b;
|
|
183 printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x));
|
|
184 printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y));
|
|
185 a = 2; b = 2; x = 0.5;
|
|
186 printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b)));
|
|
187 return 0;
|
|
188 }
|
|
189 #endif
|
|
190
|
|
191
|
|
192 // log\binom{n}{k}
|
|
193 static double lbinom(int n, int k)
|
|
194 {
|
|
195 if (k == 0 || n == k) return 0;
|
|
196 return lgamma(n+1) - lgamma(k+1) - lgamma(n-k+1);
|
|
197 }
|
|
198
|
|
199 // n11 n12 | n1_
|
|
200 // n21 n22 | n2_
|
|
201 //-----------+----
|
|
202 // n_1 n_2 | n
|
|
203
|
|
204 // hypergeometric distribution
|
|
205 static double hypergeo(int n11, int n1_, int n_1, int n)
|
|
206 {
|
|
207 return exp(lbinom(n1_, n11) + lbinom(n-n1_, n_1-n11) - lbinom(n, n_1));
|
|
208 }
|
|
209
|
|
210 typedef struct {
|
|
211 int n11, n1_, n_1, n;
|
|
212 double p;
|
|
213 } hgacc_t;
|
|
214
|
|
215 // incremental version of hypergenometric distribution
|
|
216 static double hypergeo_acc(int n11, int n1_, int n_1, int n, hgacc_t *aux)
|
|
217 {
|
|
218 if (n1_ || n_1 || n) {
|
|
219 aux->n11 = n11; aux->n1_ = n1_; aux->n_1 = n_1; aux->n = n;
|
|
220 } else { // then only n11 changed; the rest fixed
|
|
221 if (n11%11 && n11 + aux->n - aux->n1_ - aux->n_1) {
|
|
222 if (n11 == aux->n11 + 1) { // incremental
|
|
223 aux->p *= (double)(aux->n1_ - aux->n11) / n11
|
|
224 * (aux->n_1 - aux->n11) / (n11 + aux->n - aux->n1_ - aux->n_1);
|
|
225 aux->n11 = n11;
|
|
226 return aux->p;
|
|
227 }
|
|
228 if (n11 == aux->n11 - 1) { // incremental
|
|
229 aux->p *= (double)aux->n11 / (aux->n1_ - n11)
|
|
230 * (aux->n11 + aux->n - aux->n1_ - aux->n_1) / (aux->n_1 - n11);
|
|
231 aux->n11 = n11;
|
|
232 return aux->p;
|
|
233 }
|
|
234 }
|
|
235 aux->n11 = n11;
|
|
236 }
|
|
237 aux->p = hypergeo(aux->n11, aux->n1_, aux->n_1, aux->n);
|
|
238 return aux->p;
|
|
239 }
|
|
240
|
|
241 double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two)
|
|
242 {
|
|
243 int i, j, max, min;
|
|
244 double p, q, left, right;
|
|
245 hgacc_t aux;
|
|
246 int n1_, n_1, n;
|
|
247
|
|
248 n1_ = n11 + n12; n_1 = n11 + n21; n = n11 + n12 + n21 + n22; // calculate n1_, n_1 and n
|
|
249 max = (n_1 < n1_) ? n_1 : n1_; // max n11, for right tail
|
|
250 min = n1_ + n_1 - n; // not sure why n11-n22 is used instead of min(n_1,n1_)
|
|
251 if (min < 0) min = 0; // min n11, for left tail
|
|
252 *two = *_left = *_right = 1.;
|
|
253 if (min == max) return 1.; // no need to do test
|
|
254 q = hypergeo_acc(n11, n1_, n_1, n, &aux); // the probability of the current table
|
|
255 // left tail
|
|
256 p = hypergeo_acc(min, 0, 0, 0, &aux);
|
|
257 for (left = 0., i = min + 1; p < 0.99999999 * q && i<=max; ++i) // loop until underflow
|
|
258 left += p, p = hypergeo_acc(i, 0, 0, 0, &aux);
|
|
259 --i;
|
|
260 if (p < 1.00000001 * q) left += p;
|
|
261 else --i;
|
|
262 // right tail
|
|
263 p = hypergeo_acc(max, 0, 0, 0, &aux);
|
|
264 for (right = 0., j = max - 1; p < 0.99999999 * q && j>=0; --j) // loop until underflow
|
|
265 right += p, p = hypergeo_acc(j, 0, 0, 0, &aux);
|
|
266 ++j;
|
|
267 if (p < 1.00000001 * q) right += p;
|
|
268 else ++j;
|
|
269 // two-tail
|
|
270 *two = left + right;
|
|
271 if (*two > 1.) *two = 1.;
|
|
272 // adjust left and right
|
|
273 if (abs(i - n11) < abs(j - n11)) right = 1. - left + q;
|
|
274 else left = 1.0 - right + q;
|
|
275 *_left = left; *_right = right;
|
|
276 return q;
|
|
277 }
|
|
278
|
|
279
|
|
280
|