0
|
1 /*
|
|
2 Copyright (c) 2012-2013 Genome Research Ltd.
|
|
3 Author: James Bonfield <jkb@sanger.ac.uk>
|
|
4
|
|
5 Redistribution and use in source and binary forms, with or without
|
|
6 modification, are permitted provided that the following conditions are met:
|
|
7
|
|
8 1. Redistributions of source code must retain the above copyright notice,
|
|
9 this list of conditions and the following disclaimer.
|
|
10
|
|
11 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
12 this list of conditions and the following disclaimer in the documentation
|
|
13 and/or other materials provided with the distribution.
|
|
14
|
|
15 3. Neither the names Genome Research Ltd and Wellcome Trust Sanger
|
|
16 Institute nor the names of its contributors may be used to endorse or promote
|
|
17 products derived from this software without specific prior written permission.
|
|
18
|
|
19 THIS SOFTWARE IS PROVIDED BY GENOME RESEARCH LTD AND CONTRIBUTORS "AS IS" AND
|
|
20 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
21 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
22 DISCLAIMED. IN NO EVENT SHALL GENOME RESEARCH LTD OR CONTRIBUTORS BE LIABLE
|
|
23 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
24 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
25 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
26 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
27 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
28 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
29 */
|
|
30
|
|
31 #ifdef HAVE_CONFIG_H
|
|
32 #include "io_lib_config.h"
|
|
33 #endif
|
|
34
|
|
35 #include <stdio.h>
|
|
36 #include <errno.h>
|
|
37 #include <assert.h>
|
|
38 #include <stdlib.h>
|
|
39 #include <string.h>
|
|
40 #include <zlib.h>
|
|
41 #include <sys/types.h>
|
|
42 #include <sys/stat.h>
|
|
43 #include <math.h>
|
|
44 #include <ctype.h>
|
|
45
|
|
46 #include "cram/cram.h"
|
|
47 #include "cram/os.h"
|
|
48
|
|
49 cram_stats *cram_stats_create(void) {
|
|
50 return calloc(1, sizeof(cram_stats));
|
|
51 }
|
|
52
|
|
53 void cram_stats_add(cram_stats *st, int32_t val) {
|
|
54 st->nsamp++;
|
|
55
|
|
56 //assert(val >= 0);
|
|
57
|
|
58 if (val < MAX_STAT_VAL && val >= 0) {
|
|
59 st->freqs[val]++;
|
|
60 } else {
|
|
61 khint_t k;
|
|
62 int r;
|
|
63
|
|
64 if (!st->h) {
|
|
65 st->h = kh_init(m_i2i);
|
|
66 }
|
|
67
|
|
68 k = kh_put(m_i2i, st->h, val, &r);
|
|
69 if (r == 0)
|
|
70 kh_val(st->h, k)++;
|
|
71 else if (r != -1)
|
|
72 kh_val(st->h, k) = 1;
|
|
73 else
|
|
74 ; // FIXME: handle error
|
|
75 }
|
|
76 }
|
|
77
|
|
78 void cram_stats_del(cram_stats *st, int32_t val) {
|
|
79 st->nsamp--;
|
|
80
|
|
81 //assert(val >= 0);
|
|
82
|
|
83 if (val < MAX_STAT_VAL && val >= 0) {
|
|
84 st->freqs[val]--;
|
|
85 assert(st->freqs[val] >= 0);
|
|
86 } else if (st->h) {
|
|
87 khint_t k = kh_get(m_i2i, st->h, val);
|
|
88
|
|
89 if (k != kh_end(st->h)) {
|
|
90 if (--kh_val(st->h, k) == 0)
|
|
91 kh_del(m_i2i, st->h, k);
|
|
92 } else {
|
|
93 fprintf(stderr, "Failed to remove val %d from cram_stats\n", val);
|
|
94 st->nsamp++;
|
|
95 }
|
|
96 } else {
|
|
97 fprintf(stderr, "Failed to remove val %d from cram_stats\n", val);
|
|
98 st->nsamp++;
|
|
99 }
|
|
100 }
|
|
101
|
|
102 void cram_stats_dump(cram_stats *st) {
|
|
103 int i;
|
|
104 fprintf(stderr, "cram_stats:\n");
|
|
105 for (i = 0; i < MAX_STAT_VAL; i++) {
|
|
106 if (!st->freqs[i])
|
|
107 continue;
|
|
108 fprintf(stderr, "\t%d\t%d\n", i, st->freqs[i]);
|
|
109 }
|
|
110 if (st->h) {
|
|
111 khint_t k;
|
|
112 for (k = kh_begin(st->h); k != kh_end(st->h); k++) {
|
|
113 if (!kh_exist(st->h, k))
|
|
114 continue;
|
|
115
|
|
116 fprintf(stderr, "\t%d\t%d\n", kh_key(st->h, k), kh_val(st->h, k));
|
|
117 }
|
|
118 }
|
|
119 }
|
|
120
|
|
121 #if 1
|
|
122 /* Returns the number of bits set in val; it the highest bit used */
|
|
123 static int nbits(int v) {
|
|
124 static const int MultiplyDeBruijnBitPosition[32] = {
|
|
125 1, 10, 2, 11, 14, 22, 3, 30, 12, 15, 17, 19, 23, 26, 4, 31,
|
|
126 9, 13, 21, 29, 16, 18, 25, 8, 20, 28, 24, 7, 27, 6, 5, 32
|
|
127 };
|
|
128
|
|
129 v |= v >> 1; // first up to set all bits 1 after the first 1 */
|
|
130 v |= v >> 2;
|
|
131 v |= v >> 4;
|
|
132 v |= v >> 8;
|
|
133 v |= v >> 16;
|
|
134
|
|
135 // DeBruijn magic to find top bit
|
|
136 return MultiplyDeBruijnBitPosition[(uint32_t)(v * 0x07C4ACDDU) >> 27];
|
|
137 }
|
|
138 #endif
|
|
139
|
|
140 /*
|
|
141 * Computes entropy from integer frequencies for various encoding methods and
|
|
142 * picks the best encoding.
|
|
143 *
|
|
144 * FIXME: we could reuse some of the code here for the actual encoding
|
|
145 * parameters too. Eg the best 'k' for SUBEXP or the code lengths for huffman.
|
|
146 *
|
|
147 * Returns the best codec to use.
|
|
148 */
|
|
149 enum cram_encoding cram_stats_encoding(cram_fd *fd, cram_stats *st) {
|
|
150 enum cram_encoding best_encoding = E_NULL;
|
|
151 int best_size = INT_MAX, bits;
|
|
152 int nvals, i, ntot = 0, max_val = 0, min_val = INT_MAX, k;
|
|
153 int *vals = NULL, *freqs = NULL, vals_alloc = 0, *codes;
|
|
154
|
|
155 //cram_stats_dump(st);
|
|
156
|
|
157 /* Count number of unique symbols */
|
|
158 for (nvals = i = 0; i < MAX_STAT_VAL; i++) {
|
|
159 if (!st->freqs[i])
|
|
160 continue;
|
|
161 if (nvals >= vals_alloc) {
|
|
162 vals_alloc = vals_alloc ? vals_alloc*2 : 1024;
|
|
163 vals = realloc(vals, vals_alloc * sizeof(int));
|
|
164 freqs = realloc(freqs, vals_alloc * sizeof(int));
|
|
165 if (!vals || !freqs) {
|
|
166 if (vals) free(vals);
|
|
167 if (freqs) free(freqs);
|
|
168 return E_HUFFMAN; // Cannot do much else atm
|
|
169 }
|
|
170 }
|
|
171 vals[nvals] = i;
|
|
172 freqs[nvals] = st->freqs[i];
|
|
173 ntot += freqs[nvals];
|
|
174 if (max_val < i) max_val = i;
|
|
175 if (min_val > i) min_val = i;
|
|
176 nvals++;
|
|
177 }
|
|
178 if (st->h) {
|
|
179 khint_t k;
|
|
180 int i;
|
|
181
|
|
182 for (k = kh_begin(st->h); k != kh_end(st->h); k++) {
|
|
183 if (!kh_exist(st->h, k))
|
|
184 continue;
|
|
185
|
|
186 if (nvals >= vals_alloc) {
|
|
187 vals_alloc = vals_alloc ? vals_alloc*2 : 1024;
|
|
188 vals = realloc(vals, vals_alloc * sizeof(int));
|
|
189 freqs = realloc(freqs, vals_alloc * sizeof(int));
|
|
190 if (!vals || !freqs)
|
|
191 return E_HUFFMAN; // Cannot do much else atm
|
|
192 }
|
|
193 i = kh_key(st->h, k);
|
|
194 vals[nvals]=i;
|
|
195 freqs[nvals] = kh_val(st->h, k);
|
|
196 ntot += freqs[nvals];
|
|
197 if (max_val < i) max_val = i;
|
|
198 if (min_val > i) min_val = i;
|
|
199 nvals++;
|
|
200 }
|
|
201 }
|
|
202
|
|
203 st->nvals = nvals;
|
|
204 assert(ntot == st->nsamp);
|
|
205
|
|
206 if (nvals <= 1) {
|
|
207 free(vals);
|
|
208 free(freqs);
|
|
209 return E_HUFFMAN;
|
|
210 }
|
|
211
|
|
212 if (fd->verbose > 1)
|
|
213 fprintf(stderr, "Range = %d..%d, nvals=%d, ntot=%d\n",
|
|
214 min_val, max_val, nvals, ntot);
|
|
215
|
|
216 /* Theoretical entropy */
|
|
217 // if (fd->verbose > 1) {
|
|
218 // double dbits = 0;
|
|
219 // for (i = 0; i < nvals; i++) {
|
|
220 // dbits += freqs[i] * log((double)freqs[i]/ntot);
|
|
221 // }
|
|
222 // dbits /= -log(2);
|
|
223 // if (fd->verbose > 1)
|
|
224 // fprintf(stderr, "Entropy = %f\n", dbits);
|
|
225 // }
|
|
226
|
|
227 if (nvals > 1 && ntot > 256) {
|
|
228 #if 0
|
|
229 /*
|
|
230 * CRUDE huffman estimator. Round to closest and round up from 0
|
|
231 * to 1 bit.
|
|
232 *
|
|
233 * With and without ITF8 incase we have a few discrete values but with
|
|
234 * large magnitude.
|
|
235 *
|
|
236 * Note rans0/arith0 and Z_HUFFMAN_ONLY vs internal huffman can be
|
|
237 * compared in this way, but order-1 (eg rans1) or maybe LZ77 modes
|
|
238 * may detect the correlation of high bytes to low bytes in multi-
|
|
239 * byte values. So this predictor breaks down.
|
|
240 */
|
|
241 double dbits = 0; // entropy + ~huffman
|
|
242 double dbitsH = 0;
|
|
243 double dbitsE = 0; // external entropy + ~huffman
|
|
244 double dbitsEH = 0;
|
|
245 int F[256] = {0}, n = 0;
|
|
246 double e = 0; // accumulated error bits
|
|
247 for (i = 0; i < nvals; i++) {
|
|
248 double x; int X;
|
|
249 unsigned int v = vals[i];
|
|
250
|
|
251 //Better encoding would cope with sign.
|
|
252 //v = ABS(vals[i])*2+(vals[i]<0);
|
|
253
|
|
254 if (!(v & ~0x7f)) {
|
|
255 F[v] += freqs[i], n+=freqs[i];
|
|
256 } else if (!(v & ~0x3fff)) {
|
|
257 F[(v>>8) |0x80] += freqs[i];
|
|
258 F[ v &0xff] += freqs[i], n+=2*freqs[i];
|
|
259 } else if (!(v & ~0x1fffff)) {
|
|
260 F[(v>>16)|0xc0] += freqs[i];
|
|
261 F[(v>>8 )&0xff] += freqs[i];
|
|
262 F[ v &0xff] += freqs[i], n+=3*freqs[i];
|
|
263 } else if (!(v & ~0x0fffffff)) {
|
|
264 F[(v>>24)|0xe0] += freqs[i];
|
|
265 F[(v>>16)&0xff] += freqs[i];
|
|
266 F[(v>>8 )&0xff] += freqs[i];
|
|
267 F[ v &0xff] += freqs[i], n+=4*freqs[i];
|
|
268 } else {
|
|
269 F[(v>>28)|0xf0] += freqs[i];
|
|
270 F[(v>>20)&0xff] += freqs[i];
|
|
271 F[(v>>12)&0xff] += freqs[i];
|
|
272 F[(v>>4 )&0xff] += freqs[i];
|
|
273 F[ v &0x0f] += freqs[i], n+=5*freqs[i];
|
|
274 }
|
|
275
|
|
276 x = -log((double)freqs[i]/ntot)/.69314718055994530941;
|
|
277 X = x+0.5;
|
|
278 if ((int)(x+((double)e/freqs[i])+.5)>X) {
|
|
279 X++;
|
|
280 } else if ((int)(x+((double)e/freqs[i])+.5)<X) {
|
|
281 X--;
|
|
282 }
|
|
283 e-=freqs[i]*(X-x);
|
|
284 X += (X==0);
|
|
285
|
|
286 //fprintf(stderr, "Val %d = %d x %d (ent %f, %d) e %f\n", i, v, freqs[i], x, X, e);
|
|
287
|
|
288 dbits += freqs[i] * x;
|
|
289 dbitsH += freqs[i] * X;
|
|
290 }
|
|
291
|
|
292 for (i = 0; i < 256; i++) {
|
|
293 if (F[i]) {
|
|
294 double x = -log((double)F[i]/n)/.69314718055994530941;
|
|
295 int X = x+0.5;
|
|
296 X += (X==0);
|
|
297 dbitsE += F[i] * x;
|
|
298 dbitsEH += F[i] * X;
|
|
299
|
|
300 //fprintf(stderr, "Val %d = %d x %d (e %f, %d)\n", i, i, F[i], x, X);
|
|
301 }
|
|
302 }
|
|
303
|
|
304 //fprintf(stderr, "CORE Entropy = %f, %f\n", dbits/8, dbitsH/8);
|
|
305 //fprintf(stderr, "Ext. Entropy = %f, %f\n", dbitsE/8, dbitsEH/8);
|
|
306
|
|
307 if (dbitsE < 1000 || dbitsE / dbits > 1.1) {
|
|
308 //fprintf(stderr, "=> %d < 200 ? E_HUFFMAN : E_BETA\n", nvals);
|
|
309 free(vals); free(freqs);
|
|
310 return nvals < 200 ? E_HUFFMAN : E_BETA;
|
|
311 }
|
|
312 #endif
|
|
313 free(vals); free(freqs);
|
|
314 return E_EXTERNAL;
|
|
315 }
|
|
316
|
|
317 /*
|
|
318 * Avoid complex stats for now, just do heuristic of HUFFMAN for small
|
|
319 * alphabets and BETA for anything large.
|
|
320 */
|
|
321 free(vals); free(freqs);
|
|
322 return nvals < 200 ? E_HUFFMAN : E_BETA;
|
|
323 //return E_HUFFMAN;
|
|
324 //return E_EXTERNAL;
|
|
325
|
|
326
|
|
327 /* We only support huffman now anyway... */
|
|
328 //free(vals); free(freqs); return E_HUFFMAN;
|
|
329
|
|
330 /* Beta */
|
|
331 bits = nbits(max_val - min_val) * ntot;
|
|
332 if (fd->verbose > 1)
|
|
333 fprintf(stderr, "BETA = %d\n", bits);
|
|
334 if (best_size > bits)
|
|
335 best_size = bits, best_encoding = E_BETA;
|
|
336
|
|
337 #if 0
|
|
338 /* Unary */
|
|
339 if (min_val >= 0) {
|
|
340 for (bits = i = 0; i < nvals; i++)
|
|
341 bits += freqs[i]*(vals[i]+1);
|
|
342 if (fd->verbose > 1)
|
|
343 fprintf(stderr, "UNARY = %d\n", bits);
|
|
344 if (best_size > bits)
|
|
345 best_size = bits, best_encoding = E_NULL; //E_UNARY;
|
|
346 }
|
|
347
|
|
348 /* Gamma */
|
|
349 for (bits = i = 0; i < nvals; i++)
|
|
350 bits += ((nbits(vals[i]-min_val+1)-1) + nbits(vals[i]-min_val+1)) * freqs[i];
|
|
351 if (fd->verbose > 1)
|
|
352 fprintf(stderr, "GAMMA = %d\n", bits);
|
|
353 if (best_size > bits)
|
|
354 best_size = bits, best_encoding = E_GAMMA;
|
|
355
|
|
356 /* Subexponential */
|
|
357 for (k = 0; k < 10; k++) {
|
|
358 for (bits = i = 0; i < nvals; i++) {
|
|
359 if (vals[i]-min_val < (1<<k))
|
|
360 bits += (1 + k)*freqs[i];
|
|
361 else
|
|
362 bits += (nbits(vals[i]-min_val)*2-k)*freqs[i];
|
|
363 }
|
|
364
|
|
365 if (fd->verbose > 1)
|
|
366 fprintf(stderr, "SUBEXP%d = %d\n", k, bits);
|
|
367 if (best_size > bits)
|
|
368 best_size = bits, best_encoding = E_SUBEXP;
|
|
369 }
|
|
370 #endif
|
|
371
|
|
372 /* byte array len */
|
|
373
|
|
374 /* byte array stop */
|
|
375
|
|
376 /* External? Guesswork! */
|
|
377
|
|
378 /* Huffman */
|
|
379 // qsort(freqs, nvals, sizeof(freqs[0]), sort_freqs);
|
|
380 // for (i = 0; i < nvals; i++) {
|
|
381 // fprintf(stderr, "%d = %d\n", i, freqs[i]);
|
|
382 // vals[i] = 0;
|
|
383 // }
|
|
384
|
|
385 /* Grow freqs to 2*freqs, to store sums */
|
|
386 /* Vals holds link data */
|
|
387 freqs = realloc(freqs, 2*nvals*sizeof(*freqs));
|
|
388 codes = calloc(2*nvals, sizeof(*codes));
|
|
389 if (!freqs || !codes)
|
|
390 return E_HUFFMAN; // Cannot do much else atm
|
|
391
|
|
392 /* Inefficient, use pointers to form chain so we can insert and maintain
|
|
393 * a sorted list? This is currently O(nvals^2) complexity.
|
|
394 */
|
|
395 for (;;) {
|
|
396 int low1 = INT_MAX, low2 = INT_MAX;
|
|
397 int ind1 = 0, ind2 = 0;
|
|
398 for (i = 0; i < nvals; i++) {
|
|
399 if (freqs[i] < 0)
|
|
400 continue;
|
|
401 if (low1 > freqs[i])
|
|
402 low2 = low1, ind2 = ind1, low1 = freqs[i], ind1 = i;
|
|
403 else if (low2 > freqs[i])
|
|
404 low2 = freqs[i], ind2 = i;
|
|
405 }
|
|
406 if (low2 == INT_MAX)
|
|
407 break;
|
|
408
|
|
409 //fprintf(stderr, "Merge ind %d (%d), %d (%d) = %d+%d, => %d=%d\n",
|
|
410 // ind1, vals[ind1], ind2, vals[ind2], low1, low2,
|
|
411 // nvals, low1+low2);
|
|
412
|
|
413 freqs[nvals] = low1 + low2;
|
|
414 codes[ind1] = nvals;
|
|
415 codes[ind2] = nvals;
|
|
416 freqs[ind1] *= -1;
|
|
417 freqs[ind2] *= -1;
|
|
418 nvals++;
|
|
419 }
|
|
420 nvals = nvals/2+1;
|
|
421
|
|
422 for (i = 0; i < nvals; i++) {
|
|
423 int code_len = 0;
|
|
424 for (k = codes[i]; k; k = codes[k])
|
|
425 code_len++;
|
|
426 codes[i] = code_len;
|
|
427 freqs[i] *= -1;
|
|
428 //fprintf(stderr, "%d / %d => %d\n", vals[i], freqs[i], codes[i]);
|
|
429 }
|
|
430
|
|
431 for (bits = i = 0; i < nvals; i++) {
|
|
432 bits += freqs[i] * codes[i];
|
|
433 }
|
|
434 if (fd->verbose > 1)
|
|
435 fprintf(stderr, "HUFFMAN = %d\n", bits);
|
|
436 if (best_size >= bits)
|
|
437 best_size = bits, best_encoding = E_HUFFMAN;
|
|
438 free(codes);
|
|
439
|
|
440 free(vals);
|
|
441 free(freqs);
|
|
442
|
|
443 return best_encoding;
|
|
444 }
|
|
445
|
|
446 void cram_stats_free(cram_stats *st) {
|
|
447 if (st->h)
|
|
448 kh_destroy(m_i2i, st->h);
|
|
449 free(st);
|
|
450 }
|