view ezBAMQC/src/ezBAMQC/sam.h @ 9:6610eedd9fae

Uploaded
author cshl-bsr
date Wed, 30 Mar 2016 12:11:46 -0400
parents dfa3745e5fd8
children
line wrap: on
line source

/*  sam.h -- SAM and BAM file I/O and manipulation.

    Copyright (C) 2008, 2009, 2013-2014 Genome Research Ltd.
    Copyright (C) 2010, 2012, 2013 Broad Institute.

    Author: Heng Li <lh3@sanger.ac.uk>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.  */

#ifndef HTSLIB_SAM_H
#define HTSLIB_SAM_H

#include <stdint.h>
#include "hts.h"

/**********************
 *** SAM/BAM header ***
 **********************/

/*! @typedef
 @abstract Structure for the alignment header.
 @field n_targets   number of reference sequences
 @field l_text      length of the plain text in the header
 @field target_len  lengths of the reference sequences
 @field target_name names of the reference sequences
 @field text        plain text
 @field sdict       header dictionary
 */

typedef struct {
    int32_t n_targets, ignore_sam_err;
    uint32_t l_text;
    uint32_t *target_len;
    int8_t *cigar_tab;
    char **target_name;
    char *text;
    void *sdict;
} bam_hdr_t;

/****************************
 *** CIGAR related macros ***
 ****************************/

#define BAM_CMATCH      0
#define BAM_CINS        1
#define BAM_CDEL        2
#define BAM_CREF_SKIP   3
#define BAM_CSOFT_CLIP  4
#define BAM_CHARD_CLIP  5
#define BAM_CPAD        6
#define BAM_CEQUAL      7
#define BAM_CDIFF       8
#define BAM_CBACK       9

#define BAM_CIGAR_STR   "MIDNSHP=XB"
#define BAM_CIGAR_SHIFT 4
#define BAM_CIGAR_MASK  0xf
#define BAM_CIGAR_TYPE  0x3C1A7

#define bam_cigar_op(c) ((c)&BAM_CIGAR_MASK)
#define bam_cigar_oplen(c) ((c)>>BAM_CIGAR_SHIFT)
#define bam_cigar_opchr(c) (BAM_CIGAR_STR[bam_cigar_op(c)])
#define bam_cigar_gen(l, o) ((l)<<BAM_CIGAR_SHIFT|(o))

/* bam_cigar_type returns a bit flag with:
 *   bit 1 set if the cigar operation consumes the query
 *   bit 2 set if the cigar operation consumes the reference
 *
 * For reference, the unobfuscated truth table for this function is:
 * BAM_CIGAR_TYPE  QUERY  REFERENCE
 * --------------------------------
 * BAM_CMATCH      1      1
 * BAM_CINS        1      0
 * BAM_CDEL        0      1
 * BAM_CREF_SKIP   0      1
 * BAM_CSOFT_CLIP  1      0
 * BAM_CHARD_CLIP  0      0
 * BAM_CPAD        0      0
 * BAM_CEQUAL      1      1
 * BAM_CDIFF       1      1
 * BAM_CBACK       0      0
 * --------------------------------
 */
#define bam_cigar_type(o) (BAM_CIGAR_TYPE>>((o)<<1)&3) // bit 1: consume query; bit 2: consume reference

/*! @abstract the read is paired in sequencing, no matter whether it is mapped in a pair */
#define BAM_FPAIRED        1
/*! @abstract the read is mapped in a proper pair */
#define BAM_FPROPER_PAIR   2
/*! @abstract the read itself is unmapped; conflictive with BAM_FPROPER_PAIR */
#define BAM_FUNMAP         4
/*! @abstract the mate is unmapped */
#define BAM_FMUNMAP        8
/*! @abstract the read is mapped to the reverse strand */
#define BAM_FREVERSE      16
/*! @abstract the mate is mapped to the reverse strand */
#define BAM_FMREVERSE     32
/*! @abstract this is read1 */
#define BAM_FREAD1        64
/*! @abstract this is read2 */
#define BAM_FREAD2       128
/*! @abstract not primary alignment */
#define BAM_FSECONDARY   256
/*! @abstract QC failure */
#define BAM_FQCFAIL      512
/*! @abstract optical or PCR duplicate */
#define BAM_FDUP        1024
/*! @abstract supplementary alignment */
#define BAM_FSUPPLEMENTARY 2048

/*************************
 *** Alignment records ***
 *************************/

/*! @typedef
 @abstract Structure for core alignment information.
 @field  tid     chromosome ID, defined by bam_hdr_t
 @field  pos     0-based leftmost coordinate
 @field  bin     bin calculated by bam_reg2bin()
 @field  qual    mapping quality
 @field  l_qname length of the query name
 @field  flag    bitwise flag
 @field  n_cigar number of CIGAR operations
 @field  l_qseq  length of the query sequence (read)
 @field  mtid    chromosome ID of next read in template, defined by bam_hdr_t
 @field  mpos    0-based leftmost coordinate of next read in template
 */
typedef struct {
    int32_t tid;
    int32_t pos;
    uint32_t bin:16, qual:8, l_qname:8;
    uint32_t flag:16, n_cigar:16;
    int32_t l_qseq;
    int32_t mtid;
    int32_t mpos;
    int32_t isize;
} bam1_core_t;

/*! @typedef
 @abstract Structure for one alignment.
 @field  core       core information about the alignment
 @field  l_data     current length of bam1_t::data
 @field  m_data     maximum length of bam1_t::data
 @field  data       all variable-length data, concatenated; structure: qname-cigar-seq-qual-aux

 @discussion Notes:

 1. qname is zero tailing and core.l_qname includes the tailing '\0'.
 2. l_qseq is calculated from the total length of an alignment block
 on reading or from CIGAR.
 3. cigar data is encoded 4 bytes per CIGAR operation.
 4. seq is nybble-encoded according to bam_nt16_table.
 */
typedef struct {
    bam1_core_t core;
    int l_data, m_data;
    uint8_t *data;
#ifndef BAM_NO_ID
    uint64_t id;
#endif
} bam1_t;

/*! @function
 @abstract  Get whether the query is on the reverse strand
 @param  b  pointer to an alignment
 @return    boolean true if query is on the reverse strand
 */
#define bam_is_rev(b) (((b)->core.flag&BAM_FREVERSE) != 0)
/*! @function
 @abstract  Get whether the query's mate is on the reverse strand
 @param  b  pointer to an alignment
 @return    boolean true if query's mate on the reverse strand
 */
#define bam_is_mrev(b) (((b)->core.flag&BAM_FMREVERSE) != 0)
/*! @function
 @abstract  Get the name of the query
 @param  b  pointer to an alignment
 @return    pointer to the name string, null terminated
 */
#define bam_get_qname(b) ((char*)(b)->data)
/*! @function
 @abstract  Get the CIGAR array
 @param  b  pointer to an alignment
 @return    pointer to the CIGAR array

 @discussion In the CIGAR array, each element is a 32-bit integer. The
 lower 4 bits gives a CIGAR operation and the higher 28 bits keep the
 length of a CIGAR.
 */
#define bam_get_cigar(b) ((uint32_t*)((b)->data + (b)->core.l_qname))
/*! @function
 @abstract  Get query sequence
 @param  b  pointer to an alignment
 @return    pointer to sequence

 @discussion Each base is encoded in 4 bits: 1 for A, 2 for C, 4 for G,
 8 for T and 15 for N. Two bases are packed in one byte with the base
 at the higher 4 bits having smaller coordinate on the read. It is
 recommended to use bam_seqi() macro to get the base.
 */
#define bam_get_seq(b)   ((b)->data + ((b)->core.n_cigar<<2) + (b)->core.l_qname)
/*! @function
 @abstract  Get query quality
 @param  b  pointer to an alignment
 @return    pointer to quality string
 */
#define bam_get_qual(b)  ((b)->data + ((b)->core.n_cigar<<2) + (b)->core.l_qname + (((b)->core.l_qseq + 1)>>1))
/*! @function
 @abstract  Get auxiliary data
 @param  b  pointer to an alignment
 @return    pointer to the concatenated auxiliary data
 */
#define bam_get_aux(b)   ((b)->data + ((b)->core.n_cigar<<2) + (b)->core.l_qname + (((b)->core.l_qseq + 1)>>1) + (b)->core.l_qseq)
/*! @function
 @abstract  Get length of auxiliary data
 @param  b  pointer to an alignment
 @return    length of the concatenated auxiliary data
 */
#define bam_get_l_aux(b) ((b)->l_data - ((b)->core.n_cigar<<2) - (b)->core.l_qname - (b)->core.l_qseq - (((b)->core.l_qseq + 1)>>1))
/*! @function
 @abstract  Get a base on read
 @param  s  Query sequence returned by bam_get_seq()
 @param  i  The i-th position, 0-based
 @return    4-bit integer representing the base.
 */
#define bam_seqi(s, i) ((s)[(i)>>1] >> ((~(i)&1)<<2) & 0xf)

/**************************
 *** Exported functions ***
 **************************/

#ifdef __cplusplus
extern "C" {
#endif

    /***************
     *** BAM I/O ***
     ***************/

    bam_hdr_t *bam_hdr_init(void);
    bam_hdr_t *bam_hdr_read(BGZF *fp);
    int bam_hdr_write(BGZF *fp, const bam_hdr_t *h);
    void bam_hdr_destroy(bam_hdr_t *h);
    int bam_name2id(bam_hdr_t *h, const char *ref);
    bam_hdr_t* bam_hdr_dup(const bam_hdr_t *h0);

    bam1_t *bam_init1(void);
    void bam_destroy1(bam1_t *b);
    int bam_read1(BGZF *fp, bam1_t *b);
    int bam_write1(BGZF *fp, const bam1_t *b);
    bam1_t *bam_copy1(bam1_t *bdst, const bam1_t *bsrc);
    bam1_t *bam_dup1(const bam1_t *bsrc);

    int bam_cigar2qlen(int n_cigar, const uint32_t *cigar);
    int bam_cigar2rlen(int n_cigar, const uint32_t *cigar);

    /*!
      @abstract Calculate the rightmost base position of an alignment on the
      reference genome.

      @param  b  pointer to an alignment
      @return    the coordinate of the first base after the alignment, 0-based

      @discussion For a mapped read, this is just b->core.pos + bam_cigar2rlen.
      For an unmapped read (either according to its flags or if it has no cigar
      string), we return b->core.pos + 1 by convention.
    */
    int32_t bam_endpos(const bam1_t *b);

    int   bam_str2flag(const char *str);    /** returns negative value on error */
    char *bam_flag2str(int flag);   /** The string must be freed by the user */

    /*************************
     *** BAM/CRAM indexing ***
     *************************/

    // These BAM iterator functions work only on BAM files.  To work with either
    // BAM or CRAM files use the sam_index_load() & sam_itr_*() functions.
    #define bam_itr_destroy(iter) hts_itr_destroy(iter)
    #define bam_itr_queryi(idx, tid, beg, end) sam_itr_queryi(idx, tid, beg, end)
    #define bam_itr_querys(idx, hdr, region) sam_itr_querys(idx, hdr, region)
    #define bam_itr_next(htsfp, itr, r) hts_itr_next((htsfp)->fp.bgzf, (itr), (r), 0)

    // Load .csi or .bai BAM index file.
    #define bam_index_load(fn) hts_idx_load((fn), HTS_FMT_BAI)

    int bam_index_build(const char *fn, int min_shift);

    // Load BAM (.csi or .bai) or CRAM (.crai) index file.
    hts_idx_t *sam_index_load(htsFile *fp, const char *fn);

    #define sam_itr_destroy(iter) hts_itr_destroy(iter)
    hts_itr_t *sam_itr_queryi(const hts_idx_t *idx, int tid, int beg, int end);
    hts_itr_t *sam_itr_querys(const hts_idx_t *idx, bam_hdr_t *hdr, const char *region);
    #define sam_itr_next(htsfp, itr, r) hts_itr_next((htsfp)->fp.bgzf, (itr), (r), (htsfp))

    /***************
     *** SAM I/O ***
     ***************/

    #define sam_open(fn, mode) (hts_open((fn), (mode)))
    #define sam_close(fp) hts_close(fp)

    int sam_open_mode(char *mode, const char *fn, const char *format);

    typedef htsFile samFile;
    bam_hdr_t *sam_hdr_parse(int l_text, const char *text);
    bam_hdr_t *sam_hdr_read(samFile *fp);
    int sam_hdr_write(samFile *fp, const bam_hdr_t *h);

    int sam_parse1(kstring_t *s, bam_hdr_t *h, bam1_t *b);
    int sam_format1(const bam_hdr_t *h, const bam1_t *b, kstring_t *str);
    int sam_read1(samFile *fp, bam_hdr_t *h, bam1_t *b);
    int sam_write1(samFile *fp, const bam_hdr_t *h, const bam1_t *b);

    /*************************************
     *** Manipulating auxiliary fields ***
     *************************************/

    uint8_t *bam_aux_get(const bam1_t *b, const char tag[2]);
    int32_t bam_aux2i(const uint8_t *s);
    double bam_aux2f(const uint8_t *s);
    char bam_aux2A(const uint8_t *s);
    char *bam_aux2Z(const uint8_t *s);

    void bam_aux_append(bam1_t *b, const char tag[2], char type, int len, uint8_t *data);
    int bam_aux_del(bam1_t *b, uint8_t *s);

#ifdef __cplusplus
}
#endif

/**************************
 *** Pileup and Mpileup ***
 **************************/

#if !defined(BAM_NO_PILEUP)

/*! @typedef
 @abstract Structure for one alignment covering the pileup position.
 @field  b          pointer to the alignment
 @field  qpos       position of the read base at the pileup site, 0-based
 @field  indel      indel length; 0 for no indel, positive for ins and negative for del
 @field  level      the level of the read in the "viewer" mode
 @field  is_del     1 iff the base on the padded read is a deletion
 @field  is_head    ???
 @field  is_tail    ???
 @field  is_refskip ???
 @field  aux        ???

 @discussion See also bam_plbuf_push() and bam_lplbuf_push(). The
 difference between the two functions is that the former does not
 set bam_pileup1_t::level, while the later does. Level helps the
 implementation of alignment viewers, but calculating this has some
 overhead.
 */
typedef struct {
    bam1_t *b;
    int32_t qpos;
    int indel, level;
    uint32_t is_del:1, is_head:1, is_tail:1, is_refskip:1, aux:28;
} bam_pileup1_t;

typedef int (*bam_plp_auto_f)(void *data, bam1_t *b);

struct __bam_plp_t;
typedef struct __bam_plp_t *bam_plp_t;

struct __bam_mplp_t;
typedef struct __bam_mplp_t *bam_mplp_t;

#ifdef __cplusplus
extern "C" {
#endif

    /**
     *  bam_plp_init() - sets an iterator over multiple
     *  @func:      see mplp_func in bam_plcmd.c in samtools for an example. Expected return
     *              status: 0 on success, -1 on end, < -1 on non-recoverable errors
     *  @data:      user data to pass to @func
     */
    bam_plp_t bam_plp_init(bam_plp_auto_f func, void *data);
    void bam_plp_destroy(bam_plp_t iter);
    int bam_plp_push(bam_plp_t iter, const bam1_t *b);
    const bam_pileup1_t *bam_plp_next(bam_plp_t iter, int *_tid, int *_pos, int *_n_plp);
    const bam_pileup1_t *bam_plp_auto(bam_plp_t iter, int *_tid, int *_pos, int *_n_plp);
    void bam_plp_set_maxcnt(bam_plp_t iter, int maxcnt);
    void bam_plp_reset(bam_plp_t iter);

    bam_mplp_t bam_mplp_init(int n, bam_plp_auto_f func, void **data);
    /**
     *  bam_mplp_init_overlaps() - if called, mpileup will detect overlapping
     *  read pairs and for each base pair set the base quality of the
     *  lower-quality base to zero, thus effectively discarding it from
     *  calling. If the two bases are identical, the quality of the other base
     *  is increased to the sum of their qualities (capped at 200), otherwise
     *  it is multiplied by 0.8.
     */
    void bam_mplp_init_overlaps(bam_mplp_t iter);
    void bam_mplp_destroy(bam_mplp_t iter);
    void bam_mplp_set_maxcnt(bam_mplp_t iter, int maxcnt);
    int bam_mplp_auto(bam_mplp_t iter, int *_tid, int *_pos, int *n_plp, const bam_pileup1_t **plp);

#ifdef __cplusplus
}
#endif

#endif // ~!defined(BAM_NO_PILEUP)

#endif