comparison smart_toolShed/SMART/Java/Python/GetDifferentialExpression.py @ 0:e0f8dcca02ed

Uploaded S-MART tool. A toolbox manages RNA-Seq and ChIP-Seq data.
author yufei-luo
date Thu, 17 Jan 2013 10:52:14 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e0f8dcca02ed
1 #! /usr/bin/env python
2 #
3 # Copyright INRA-URGI 2009-2010
4 #
5 # This software is governed by the CeCILL license under French law and
6 # abiding by the rules of distribution of free software. You can use,
7 # modify and/ or redistribute the software under the terms of the CeCILL
8 # license as circulated by CEA, CNRS and INRIA at the following URL
9 # "http://www.cecill.info".
10 #
11 # As a counterpart to the access to the source code and rights to copy,
12 # modify and redistribute granted by the license, users are provided only
13 # with a limited warranty and the software's author, the holder of the
14 # economic rights, and the successive licensors have only limited
15 # liability.
16 #
17 # In this respect, the user's attention is drawn to the risks associated
18 # with loading, using, modifying and/or developing or reproducing the
19 # software by the user in light of its specific status of free software,
20 # that may mean that it is complicated to manipulate, and that also
21 # therefore means that it is reserved for developers and experienced
22 # professionals having in-depth computer knowledge. Users are therefore
23 # encouraged to load and test the software's suitability as regards their
24 # requirements in conditions enabling the security of their systems and/or
25 # data to be ensured and, more generally, to use and operate it in the
26 # same conditions as regards security.
27 #
28 # The fact that you are presently reading this means that you have had
29 # knowledge of the CeCILL license and that you accept its terms.
30 #
31 """Get the differential expression between 2 conditions (2 files), on regions defined by a third file"""
32
33 import os, re
34 from optparse import OptionParser
35 from SMART.Java.Python.structure.TranscriptContainer import TranscriptContainer
36 from commons.core.writer.Gff3Writer import Gff3Writer
37 from SMART.Java.Python.misc.Progress import Progress
38 from SMART.Java.Python.misc.RPlotter import RPlotter
39 from SMART.Java.Python.misc import Utils
40 from SMART.Java.Python.mySql.MySqlConnection import MySqlConnection
41 from SMART.Java.Python.structure.Transcript import Transcript
42
43 class GetDifferentialExpression(object):
44
45 def __init__(self, verbosity = 1):
46 self.verbosity = verbosity
47 self.mySqlConnection = MySqlConnection(verbosity)
48 self.inputs = (0, 1)
49 self.transcriptContainers = [None, None]
50 self.transcriptContainerRef = None
51 self.outputFileName = None
52 self.writer = None
53 self.tables = [None, None]
54 self.nbElements = [0, 0]
55
56 self.regionsToValues = {}
57 self.regionsToNames = {}
58 self.valuesToPvalues = {}
59
60 self.oriented = True
61 self.simpleNormalization = False
62 self.simpleNormalizationParameters = None
63 self.adjustedNormalization = False
64 self.fixedSizeFactor = None
65 self.normalizationSize = None
66 self.normalizationFactors = [1, 1]
67 self.fdr = None
68 self.fdrPvalue = None
69
70 self.plot = False
71 self.plotter = None
72 self.plotterName = None
73 self.points = {}
74
75
76 def setInputFile(self, i, fileName, fileFormat):
77 self.transcriptContainers[i] = TranscriptContainer(fileName, fileFormat, self.verbosity)
78 self.transcriptContainers[i].mySqlConnection = self.mySqlConnection
79
80
81 def setReferenceFile(self, fileName, fileFormat):
82 self.transcriptContainerRef = TranscriptContainer(fileName, fileFormat, self.verbosity)
83 self.transcriptContainerRef.mySqlConnection = self.mySqlConnection
84
85
86 def setOutputFile(self, fileName):
87 self.outputFileName = fileName
88 self.writer = Gff3Writer(fileName, self.verbosity)
89
90
91 def setOriented(self, boolean):
92 self.oriented = boolean
93
94
95 def setSimpleNormalization(self, boolean):
96 self.simpleNormalization = boolean
97
98
99 def setSimpleNormalizationParameters(self, parameters):
100 if parameters != None:
101 self.simpleNormalization = True
102 self.simpleNormalizationParameters = [0, 0]
103 for i, splittedParameter in enumerate(parameters.split(",")):
104 self.simpleNormalizationParameters[i] = int(splittedParameter)
105
106
107 def setAdjustedNormalization(self, boolean):
108 self.adjustedNormalization = boolean
109
110
111 def setFixedSizeNormalization(self, value):
112 self.fixedSizeFactor = value
113
114
115 def setFdr(self, fdr):
116 self.fdr = fdr
117
118
119 def setPlot(self, boolean):
120 self.plot = boolean
121
122
123 def setPlotterName(self, plotterName):
124 self.plotterName = plotterName
125
126 def setPlotter(self):
127 self.plot = True
128 self.plotter = RPlotter(self.plotterName, self.verbosity)
129 self.plotter.setPoints(True)
130 self.plotter.setLog("xy")
131 self.points = {}
132
133
134 def readInput(self, i):
135 self.transcriptContainers[i].storeIntoDatabase()
136 self.tables[i] = self.transcriptContainers[i].getTables()
137 progress = Progress(len(self.tables[i].keys()), "Adding indices", self.verbosity)
138 for chromosome in self.tables[i]:
139 if self.oriented:
140 self.tables[i][chromosome].createIndex("iStartEndDir_%s_%d" % (chromosome, i), ("start", "end", "direction"))
141 else:
142 self.tables[i][chromosome].createIndex("iStartEnd_%s_%d" % (chromosome, i), ("start", "end"))
143 progress.inc()
144 progress.done()
145
146 progress = Progress(self.transcriptContainers[i].getNbTranscripts(), "Reading sample %d" % (i +1), self.verbosity)
147 for chromosome in self.tables[i]:
148 for transcript in self.tables[i][chromosome].getIterator():
149 self.nbElements[i] += 1 if "nbElements" not in transcript.getTagNames() else transcript.getTagValue("nbElements")
150 progress.inc()
151 progress.done()
152 if self.verbosity > 0:
153 print "%d elements in sample %d" % (self.nbElements[i], i+1)
154
155
156 def computeSimpleNormalizationFactors(self):
157 nbElements = self.nbElements
158 if self.simpleNormalizationParameters != None:
159 print "Using provided normalization parameters: %s" % (", ".join([str(parameter) for parameter in self.simpleNormalizationParameters]))
160 nbElements = self.simpleNormalizationParameters
161 avgNbElements = int(float(sum(nbElements)) / len(nbElements))
162 for i in self.inputs:
163 self.normalizationFactors[i] = float(avgNbElements) / nbElements[i]
164 self.nbElements[i] *= self.normalizationFactors[i]
165 if self.verbosity > 1:
166 print "Normalizing to average # reads: %d" % (avgNbElements)
167 if self.simpleNormalizationParameters != None:
168 print "# reads: %s" % (", ".join([str(nbElement) for nbElement in self.nbElements]))
169
170 def __del__(self):
171 self.mySqlConnection.deleteDatabase()
172
173 def regionToString(self, transcript):
174 return "%s:%d-%d(%s)" % (transcript.getChromosome(), transcript.getStart(), transcript.getEnd(), "+" if transcript.getDirection() == 1 else "-")
175
176 def stringToRegion(self, region):
177 m = re.search(r"^(\S+):(\d+)-(\d+)\((\S)\)$", region)
178 if m == None:
179 raise Exception("Internal format error: cannot parse region '%s'" % (region))
180 transcript = Transcript()
181 transcript.setChromosome(m.group(1))
182 transcript.setStart(int(m.group(2)))
183 transcript.setEnd(int(m.group(3)))
184 transcript.setDirection(m.group(4))
185 return transcript
186
187 def computeMinimumSize(self):
188 self.normalizationSize = 1000000000
189 progress = Progress(self.transcriptContainerRef.getNbTranscripts(), "Getting minimum reference size", self.verbosity)
190 for transcriptRef in self.transcriptContainerRef.getIterator():
191 self.normalizationSize = min(self.normalizationSize, transcriptRef.getEnd() - transcriptRef.getStart())
192 progress.inc()
193 progress.done()
194 if self.verbosity > 1:
195 print "Minimum reference size: %d" % (self.normalizationSize+1)
196
197 def useFixedSizeNormalization(self, start, end, starts):
198 currentNb = 0
199 sum = 0
200 if not starts:
201 return 0
202 for i in range(start - self.normalizationSize, end + 1 + self.normalizationSize):
203 if i not in starts:
204 starts[i] = 0
205 for i, s in starts.iteritems():
206 if i < start:
207 starts[start] += s
208 starts[i] = 0
209 for i in range(start - self.normalizationSize, end + 1):
210 currentNb += starts[i+self.normalizationSize] - starts[i]
211 sum += currentNb
212 return (float(sum) / self.normalizationSize) * (self.fixedSizeFactor / (end - start + 1))
213
214 def retrieveCounts(self, transcriptRef, i):
215 if transcriptRef.getChromosome() not in self.tables[i]:
216 return (0, 0)
217 cumulatedCount = 0
218 cumulatedNormalizedCount = 0
219 for exon in transcriptRef.getExons():
220 count = 0
221 starts = {}
222 command = "SELECT start, tags FROM '%s' WHERE start >= %d AND end <= %d" % (self.tables[i][exon.getChromosome()].getName(), exon.getStart(), exon.getEnd())
223 if self.oriented:
224 command += " AND direction = %d" % (exon.getDirection())
225 query = self.mySqlConnection.executeQuery(command)
226 for line in query.getIterator():
227 nb = 1
228 tags = line[1].split(";")
229 for tag in tags:
230 key, value = tag.split("=")
231 if key == "nbElements":
232 nb = int(float(value))
233 count += nb
234 starts[int(line[0])] = nb
235 normalizedCount = count if self.fixedSizeFactor == None else self.useFixedSizeNormalization(exon.getStart(), exon.getEnd(), starts)
236 cumulatedCount += count
237 cumulatedNormalizedCount += normalizedCount
238 return (cumulatedCount, cumulatedNormalizedCount)
239
240 def getAllCounts(self):
241 progress = Progress(self.transcriptContainerRef.getNbTranscripts(), "Getting counts", self.verbosity)
242 for cpt, transcriptRef in enumerate(self.transcriptContainerRef.getIterator()):
243 if "ID" in transcriptRef.getTagNames():
244 self.regionsToNames[self.regionToString(transcriptRef)] = transcriptRef.getTagValue("ID")
245 elif transcriptRef.getName() != None:
246 self.regionsToNames[self.regionToString(transcriptRef)] = transcriptRef.getName()
247 else:
248 self.regionsToNames[self.regionToString(transcriptRef)] = "region_%d" % (cpt)
249 values = [None, None]
250 normalizedValues = [None, None]
251 for i in self.inputs:
252 values[i], normalizedValues[i] = self.retrieveCounts(transcriptRef, i)
253 normalizedValues[i] = int(self.normalizationFactors[i] * normalizedValues[i])
254 if sum(values) != 0:
255 self.regionsToValues[self.regionToString(transcriptRef)] = (normalizedValues[0], normalizedValues[1], values[0], values[1])
256 progress.inc()
257 progress.done()
258
259 def computeAdjustedNormalizationFactors(self):
260 nbElements = len(self.regionsToValues.keys())
261 avgValues = []
262 progress = Progress(nbElements, "Normalization step 1", self.verbosity)
263 for values in self.regionsToValues.values():
264 correctedValues = [values[i] * self.normalizationFactors[i] for i in self.inputs]
265 avgValues.append(float(sum(correctedValues)) / len(correctedValues))
266 progress.inc()
267 progress.done()
268
269 sortedAvgValues = sorted(avgValues)
270 minAvgValues = sortedAvgValues[nbElements / 4]
271 maxAvgValues = sortedAvgValues[nbElements * 3 / 4]
272 sums = [0, 0]
273 progress = Progress(nbElements, "Normalization step 2", self.verbosity)
274 for values in self.regionsToValues.values():
275 correctedValues = [values[i] * self.normalizationFactors[i] for i in self.inputs]
276 avgValue = float(sum(correctedValues)) / len(correctedValues)
277 if minAvgValues <= avgValue and avgValue <= maxAvgValues:
278 for i in self.inputs:
279 sums[i] += values[i]
280 progress.inc()
281 progress.done()
282
283 avgSums = float(sum(sums)) / len(sums)
284 for i in self.inputs:
285 if self.verbosity > 1:
286 print "Normalizing sample %d: %s to" % ((i+1), self.nbElements[i]),
287 self.normalizationFactors[i] *= float(avgSums) / sums[i]
288 self.nbElements[i] *= self.normalizationFactors[i]
289 if self.verbosity > 1:
290 print "%s" % (int(self.nbElements[i]))
291
292 def getMinimumReferenceSize(self):
293 self.normalizationSize = 1000000000
294 progress = Progress(self.transcriptContainerRef.getNbTranscripts(), "Reference element sizes", self.verbosity)
295 for transcriptRef in self.transcriptContainerRef.getIterator():
296 self.normalizationSize = min(self.normalizationSize, transcriptRef.getEnd() - transcriptRef.getStart() + 1)
297 progress.inc()
298 progress.done()
299 if self.verbosity > 1:
300 print "Minimum reference size: %d" % (self.normalizationSize)
301
302 def computePvalues(self):
303 normalizedValues = set()
304 progress = Progress(len(self.regionsToValues.keys()), "Normalizing counts", self.verbosity)
305 for region in self.regionsToValues:
306 values = self.regionsToValues[region]
307 normalizedValues0 = int(round(values[0] * self.normalizationFactors[0]))
308 normalizedValues1 = int(round(values[1] * self.normalizationFactors[1]))
309 self.regionsToValues[region] = (normalizedValues0, normalizedValues1, self.regionsToValues[region][2], self.regionsToValues[region][3])
310 normalizedValues.add((normalizedValues0, normalizedValues1, self.nbElements[0] - normalizedValues0, self.nbElements[1] - normalizedValues1, self.regionsToValues[region][2], self.regionsToValues[region][3]))
311 progress.inc()
312 progress.done()
313
314 if self.verbosity > 1:
315 print "Computing p-values..."
316 self.valuesToPvalues = Utils.fisherExactPValueBulk(list(normalizedValues))
317 if self.verbosity > 1:
318 print "... done"
319
320 def setTagValues(self, transcript, values, pValue):
321 for tag in transcript.getTagNames():
322 transcript.deleteTag(tag)
323 transcript.removeExons()
324 transcript.setTagValue("pValue", str(pValue))
325 transcript.setTagValue("nbReadsCond1", str(values[0]))
326 transcript.setTagValue("nbReadsCond2", str(values[1]))
327 transcript.setTagValue("nbUnnormalizedReadsCond1", str(values[2]))
328 transcript.setTagValue("nbUnnormalizedReadsCond2", str(values[3]))
329 if (values[0] == values[1]) or (self.fdr != None and pValue > self.fdrPvalue):
330 transcript.setTagValue("regulation", "equal")
331 elif values[0] < values[1]:
332 transcript.setTagValue("regulation", "up")
333 else:
334 transcript.setTagValue("regulation", "down")
335 return transcript
336
337 def computeFdr(self):
338 pValues = []
339 nbRegions = len(self.regionsToValues.keys())
340 progress = Progress(nbRegions, "Computing FDR", self.verbosity)
341 for values in self.regionsToValues.values():
342 pValues.append(self.valuesToPvalues[values[0:2]])
343 progress.inc()
344 progress.done()
345
346 for i, pValue in enumerate(reversed(sorted(pValues))):
347 if pValue <= self.fdr * (nbRegions - 1 - i) / nbRegions:
348 self.fdrPvalue = pValue
349 if self.verbosity > 1:
350 print "FDR: %f, k: %i, m: %d" % (pValue, nbRegions - 1 - i, nbRegions)
351 return
352
353 def writeDifferentialExpression(self):
354 if self.plot:
355 self.setPlotter()
356
357 cpt = 1
358 progress = Progress(len(self.regionsToValues.keys()), "Writing output", self.verbosity)
359 for region, values in self.regionsToValues.iteritems():
360 transcript = self.stringToRegion(region)
361 pValue = self.valuesToPvalues[values[0:2]]
362 transcript.setName(self.regionsToNames[region])
363 transcript = self.setTagValues(transcript, values, pValue)
364 self.writer.addTranscript(transcript)
365 cpt += 1
366
367 if self.plot:
368 self.points[region] = (values[0], values[1])
369 progress.done()
370 self.writer.write()
371 self.writer.close()
372
373 if self.plot:
374 self.plotter.addLine(self.points)
375 self.plotter.plot()
376
377 def getDifferentialExpression(self):
378 for i in self.inputs:
379 self.readInput(i)
380
381 if self.simpleNormalization:
382 self.computeSimpleNormalizationFactors()
383 if self.fixedSizeFactor != None:
384 self.computeMinimumSize()
385
386 self.getAllCounts()
387
388 if self.adjustedNormalization:
389 self.computeAdjustedNormalizationFactors()
390
391 self.computePvalues()
392
393 if self.fdr != None:
394 self.computeFdr()
395
396 self.writeDifferentialExpression()
397
398
399 if __name__ == "__main__":
400
401 # parse command line
402 description = "Get Differential Expression v1.0.1: Get the differential expression between 2 conditions using Fisher's exact test, on regions defined by a third file. [Category: Data Comparison]"
403
404 parser = OptionParser(description = description)
405 parser.add_option("-i", "--input1", dest="inputFileName1", action="store", type="string", help="input file 1 [compulsory] [format: file in transcript format given by -f]")
406 parser.add_option("-f", "--format1", dest="format1", action="store", type="string", help="format of file 1 [compulsory] [format: transcript file format]")
407 parser.add_option("-j", "--input2", dest="inputFileName2", action="store", type="string", help="input file 2 [compulsory] [format: file in transcript format given by -g]")
408 parser.add_option("-g", "--format2", dest="format2", action="store", type="string", help="format of file 2 [compulsory] [format: transcript file format]")
409 parser.add_option("-k", "--reference", dest="referenceFileName", action="store", type="string", help="reference file [compulsory] [format: file in transcript format given by -l]")
410 parser.add_option("-l", "--referenceFormat", dest="referenceFormat", action="store", type="string", help="format of reference file [compulsory] [format: transcript file format]")
411 parser.add_option("-o", "--output", dest="outputFileName", action="store", type="string", help="output file [format: output file in gff3 format]")
412 parser.add_option("-n", "--notOriented", dest="notOriented", action="store_true", default=False, help="if the reads are not oriented [default: False] [format: bool]")
413 parser.add_option("-s", "--simple", dest="simple", action="store_true", default=False, help="normalize using the number of reads in each condition [format: bool]")
414 parser.add_option("-S", "--simpleParameters", dest="simpleParameters", action="store", default=None, type="string", help="provide the number of reads [format: bool]")
415 parser.add_option("-a", "--adjusted", dest="adjusted", action="store_true", default=False, help="normalize using the number of reads of 'mean' regions [format: bool]")
416 parser.add_option("-x", "--fixedSizeFactor", dest="fixedSizeFactor", action="store", default=None, type="int", help="give the magnification factor for the normalization using fixed size sliding windows in reference regions (leave empty for no such normalization) [format: int]")
417 parser.add_option("-d", "--fdr", dest="fdr", action="store", default=None, type="float", help="use FDR [format: float]")
418 parser.add_option("-p", "--plot", dest="plotName", action="store", default=None, type="string", help="plot cloud plot [format: output file in PNG format]")
419 parser.add_option("-v", "--verbosity", dest="verbosity", action="store", default=1, type="int", help="trace level [format: int]")
420 (options, args) = parser.parse_args()
421
422
423
424 differentialExpression = GetDifferentialExpression(options.verbosity)
425 differentialExpression.setInputFile(0, options.inputFileName1, options.format1)
426 differentialExpression.setInputFile(1, options.inputFileName2, options.format2)
427 differentialExpression.setReferenceFile(options.referenceFileName, options.referenceFormat)
428 differentialExpression.setOutputFile(options.outputFileName)
429 if options.plotName != None :
430 differentialExpression.setPlotterName(options.plotName)
431 differentialExpression.setPlotter()
432 differentialExpression.setOriented(not options.notOriented)
433 differentialExpression.setSimpleNormalization(options.simple)
434 differentialExpression.setSimpleNormalizationParameters(options.simpleParameters)
435 differentialExpression.setAdjustedNormalization(options.adjusted)
436 differentialExpression.setFixedSizeNormalization(options.fixedSizeFactor)
437 differentialExpression.setFdr(options.fdr)
438 differentialExpression.getDifferentialExpression()
439 differentialExpression.mySqlConnection.deleteDatabase()
440
441