Mercurial > repos > yufei-luo > s_mart
view SMART/DiffExpAnal/DESeqTools/pairwiseSERE.R @ 31:0ab839023fe4
Uploaded
author | m-zytnicki |
---|---|
date | Tue, 30 Apr 2013 14:33:21 -0400 |
parents | 94ab73e8a190 |
children |
line wrap: on
line source
# pairwiseSERE # compute pairwise SERE statistics # input : counts # output : matrix of SERE values # created october 19th, 2012 # Marie-Agnes Dillies pairwiseSERE <- function( counts ){ sere <- matrix( NA, ncol=ncol(counts), nrow=ncol(counts) ) for (i in 1:ncol(counts)){ for (j in 1:ncol(counts)){ sere[i,j] <- sigfun_Pearson( counts[,c(i,j)] ) } } colnames(sere) <- rownames(sere) <- colnames(counts) return( formatC(sere, format="f", digits=2) ) } sigfun_Pearson <- function(observed) { #calculate lambda and expected values laneTotals<- colSums(observed); total <- sum(laneTotals) fullObserved <- observed[rowSums(observed)>0,]; fullLambda <- rowSums(fullObserved)/total; fullLhat <- fullLambda > 0; fullExpected<- outer(fullLambda, laneTotals); #keep values fullKeep <- which(fullExpected > 0); #calculate degrees of freedom (nrow*(ncol -1) >> number of parameters - calculated (just lamda is calculated >> thats why minus 1) #calculate pearson and deviance for all values oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/ fullExpected[fullKeep] # pearson chisq test dfFull <- length(fullKeep) - sum(fullLhat!=0); return(c(sqrt(sum(oeFull)/dfFull))); }