Mercurial > repos > yusuf > poor_gene_coverage
comparison vcf2hgvs_table @ 0:7cdd13ff182a default tip
initial commit
author | Yusuf Ali <ali@yusuf.email> |
---|---|
date | Wed, 25 Mar 2015 15:49:28 -0600 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:7cdd13ff182a |
---|---|
1 #!/usr/bin/env perl | |
2 | |
3 BEGIN{ | |
4 my $prog_dir = `dirname $0`; | |
5 chomp $prog_dir; | |
6 push @INC, $prog_dir; # so DisjointSets.pm can be found no matter the working directory | |
7 } | |
8 | |
9 use DisjointSets; # homebrew module | |
10 use Bio::DB::Sam; # for FastA reference pulls | |
11 use Bio::SeqUtils; | |
12 use Bio::Tools::CodonTable; | |
13 use Statistics::Zed; | |
14 use Getopt::Long; | |
15 use Set::IntervalTree; | |
16 use strict; | |
17 use warnings; | |
18 use vars qw($min_prop $zed $codonTable $default_transl_table %transl_except %internal_prop %dbsnp_info %chr2variant_locs %chr2dbsnp_vcf_lines %chr2internal_vcf_lines %chr2caveats %chr2phase @snvs $fasta_index $max_args $quiet); | |
19 | |
20 if(@ARGV == 1 and $ARGV[0] eq "-v"){ | |
21 print "Version 1.0\n"; | |
22 exit; | |
23 } | |
24 | |
25 #$max_args = `getconf ARG_MAX`; # largest number of args you can send to a system command (enviroment included, see limits.h) | |
26 #chomp $max_args; | |
27 $max_args = 4096; # if not defined $max_args or $max_args < 1; # the minimum since System V | |
28 $max_args -= 50; | |
29 | |
30 # find out if a variant appears in the user provided data | |
31 sub internal_prop($$$$){ | |
32 my ($chr,$pos,$ref,$variant) = @_; | |
33 | |
34 my $key = "$chr:$pos:$ref:$variant"; | |
35 if(exists $internal_prop{$key}){ | |
36 return $internal_prop{$key}; | |
37 } | |
38 | |
39 #print STDERR "Checking if internal_prop for $key exists: "; | |
40 if(exists $chr2internal_vcf_lines{$chr}->{$pos}){ | |
41 for(@{$chr2internal_vcf_lines{$chr}->{$pos}}){ | |
42 my @fields = split /\t/, $_; | |
43 if($pos == $fields[1] and length($fields[3]) == length($ref) and $fields[4] eq $variant){ | |
44 #print STDERR "yes\n"; | |
45 if(/MAF=(\d\.\d+)/){ | |
46 $internal_prop{$key} = $1; # change from percent to proportion | |
47 return $1; | |
48 } | |
49 } | |
50 } | |
51 } | |
52 else{ | |
53 #print STDERR "no\n"; | |
54 } | |
55 | |
56 $internal_prop{$key} = "NA"; | |
57 return "NA"; | |
58 } | |
59 | |
60 # find out if a variant appears in the NCBI's dbSNP | |
61 sub dbsnp_info($$$$){ | |
62 my ($chr,$pos,$ref,$variant) = @_; | |
63 | |
64 my $key = "$chr:$pos:$ref:$variant"; | |
65 if(exists $dbsnp_info{$key}){ | |
66 return @{$dbsnp_info{$key}}; | |
67 } | |
68 | |
69 if(exists $chr2dbsnp_vcf_lines{$chr}->{$pos}){ | |
70 #print STDERR "Checking existing SNP data for $chr:$pos -> ", join("\n", @{$chr2dbsnp_vcf_lines{$chr}->{$pos}}), "\n"; | |
71 for(@{$chr2dbsnp_vcf_lines{$chr}->{$pos}}){ | |
72 my @fields = split /\t/, $_; | |
73 for my $var (split /,/, $fields[4]){ | |
74 # Allows for different reference seqs between dbSNP and input, assuming patches only | |
75 if(length($fields[3]) == length($ref) and ($var eq $variant or $ref eq $var and $variant eq $fields[3])){ | |
76 my ($freq, $subpop) = ("",""); | |
77 $freq = $1 if $fields[7] =~ /(?:\A|;)MMAF=(0\.\d+)(?:;|\Z)/; | |
78 $subpop = $1 if $fields[7] =~ /(?:\A|;)MMAF_SRC=(\S+?)(?:;|\Z)/; | |
79 $dbsnp_info{$key} = [$subpop, $freq || "NA", $fields[2]]; | |
80 return @{$dbsnp_info{$key}}; | |
81 } | |
82 } | |
83 } | |
84 } | |
85 $dbsnp_info{$key} = ["novel", "NA", "NA"]; | |
86 return @{$dbsnp_info{$key}}; | |
87 } | |
88 | |
89 sub record_snv{ | |
90 my $line = join("", @_); | |
91 push @snvs, $line; | |
92 | |
93 my @fields = split /\t/, $line; | |
94 my $prop_info_key = $fields[9]; | |
95 my ($chr,$pos,$ref,$variant) = split /:/, $prop_info_key; | |
96 $chr2variant_locs{$chr} = {} unless exists $chr2variant_locs{$chr}; | |
97 return unless $ref; # ref not defined for CNVs | |
98 # Need to grab whole range for MNPs | |
99 for(my $i = 0; $i < length($ref); $i++){ | |
100 $chr2variant_locs{$chr}->{$pos+$i} = 1; | |
101 } | |
102 } | |
103 | |
104 sub retrieve_vcf_lines($$$){ | |
105 my ($dbsnp_file, $internal_snp_file, $chr) = @_; | |
106 | |
107 my (%dbsnp_lines, %internal_snp_lines); | |
108 | |
109 if(not defined $dbsnp_file or not exists $chr2variant_locs{$chr}){ | |
110 return ({}, {}, {}, {}); # no data requested for this chromosome | |
111 } | |
112 | |
113 # build up the request | |
114 my @tabix_regions; | |
115 my @var_locs = keys %{$chr2variant_locs{$chr}}; | |
116 # sort by variant start location | |
117 for my $var_loc (sort {$a <=> $b} @var_locs){ | |
118 push @tabix_regions, $chr.":".$var_loc."-".$var_loc; | |
119 } | |
120 for(my $i = 0; $i <= $#tabix_regions; $i += $max_args){ # chunkify tabix request if too many for the system to handle | |
121 my $end = $i + $max_args > $#tabix_regions ? $#tabix_regions : $i + $max_args; | |
122 my $regions = "'".join("' '", @tabix_regions[$i..$end])."'"; | |
123 # From file is very slow for some reason | |
124 #my $regions_file = "/tmp/vcf2hgvs_$$.bed"; | |
125 #open(REQ_BED, ">$regions_file") | |
126 # or die "Cannot open $regions_file for writing: $!\n"; | |
127 #print REQ_BED join("\n", @tabix_regions), "\n"; | |
128 #close(REQ_BED); | |
129 | |
130 # retrieve the data | |
131 die "Cannot find dbSNP VCF file $dbsnp_file\n" if not -e $dbsnp_file; | |
132 | |
133 open(VCF, "tabix $dbsnp_file $regions |") | |
134 or die "Cannot run tabix on $dbsnp_file (args ".substr($regions, 0, length($regions)>100? 100 : length($regions))."): $!\n"; | |
135 while(<VCF>){ | |
136 #if(/^(\S+\t(\d+)(?:\t\S+){6})/ and grep {$_ eq $2} @var_locs){ # take only main columns to save room, if possible | |
137 if(/^(\S+\t(\d+)(?:\t\S+){6})/ and exists $chr2variant_locs{$chr}->{$2}){ # take only main columns to save room, if possible | |
138 $dbsnp_lines{$2} = [] unless exists $dbsnp_lines{$2}; | |
139 push @{$dbsnp_lines{$2}}, $1; | |
140 } | |
141 } | |
142 close(VCF); | |
143 | |
144 if($internal_snp_file){ | |
145 die "Cannot find internal VCF file $internal_snp_file\n" if not -e $internal_snp_file; | |
146 open(VCF, "tabix $internal_snp_file $regions |") | |
147 or die "Cannot run tabix on $internal_snp_file: $!\n"; | |
148 while(<VCF>){ | |
149 #if(/^(\S+\t(\d+)(?:\t\S+){6})/ and grep {$_ eq $2} @var_locs){ # take only main columns to save room, if possible | |
150 if(/^(\S+\t(\d+)(?:\t\S+){5})/ and exists $chr2variant_locs{$chr}->{$2}){ # take only main columns to save room, if possible | |
151 $internal_snp_lines{$2} = [] unless exists $internal_snp_lines{$2}; | |
152 push @{$internal_snp_lines{$2}}, $1; | |
153 } | |
154 } | |
155 close(VCF); | |
156 } | |
157 } | |
158 | |
159 #unlink $regions_file; | |
160 | |
161 return (\%dbsnp_lines, \%internal_snp_lines); | |
162 } | |
163 | |
164 sub prop_info_key{ | |
165 my($chr,$pos,$ref,$variant,$exon_edge_dist) = @_; | |
166 | |
167 $chr =~ s/^chr//; | |
168 if($chr eq "M"){ | |
169 $chr = "MT"; # NCBI uses different name for mitochondrial chromosome | |
170 $pos-- if $pos >= 3107; # also, doesn't keep the old positioning (historical) | |
171 } | |
172 return join(":", $chr,$pos,$ref,$variant, ($exon_edge_dist ? $exon_edge_dist : "")); | |
173 } | |
174 | |
175 sub prop_info($$$){ | |
176 my($snpfile,$internal_snps_file,$prop_info_key) = @_; | |
177 | |
178 my($chr,$pos,$ref,$variant) = split /:/, $prop_info_key; | |
179 | |
180 # is this the first call for this chromosome? If so, retrieve the VCF lines for it en masse | |
181 if(not exists $chr2dbsnp_vcf_lines{$chr}){ | |
182 ($chr2dbsnp_vcf_lines{$chr}, $chr2internal_vcf_lines{$chr}) = retrieve_vcf_lines($snpfile,$internal_snps_file,$chr); | |
183 } | |
184 my $internal_maf = 0; | |
185 if($internal_snps_file){ | |
186 $internal_maf = internal_prop($chr,$pos,$ref,$variant); | |
187 $internal_maf = 0 if $internal_maf eq "NA"; | |
188 } | |
189 | |
190 my @results = dbsnp_info($chr,$pos,$ref,$variant); | |
191 | |
192 # Not all entries have a proportion in dbSNP | |
193 return $internal_snps_file ? ($ref, $variant, @results, $internal_maf) : ($ref, $variant, @results); | |
194 } | |
195 | |
196 #offset a given HGVS nomenclature position (single position only) by a given number of bases | |
197 sub hgvs_plus($$){ | |
198 my ($hgvs, $offset) = @_; | |
199 if($hgvs =~ /^(\S+)(-\d+)(.*)/){ | |
200 # all negative | |
201 if($2+$offset<0){ | |
202 return $1.($2+$offset).$3; | |
203 } | |
204 # switches to positive, need to mod | |
205 else{ | |
206 return $1+($2+$offset); | |
207 } | |
208 } | |
209 elsif($hgvs =~ /^(\S+)\+(\d+)(.*)/){ | |
210 # all positive | |
211 if($2+$offset>0){ | |
212 return $1."+".($2+$offset).$3; | |
213 } | |
214 # switches to negative, need to mod | |
215 else{ | |
216 return $1+($2+$offset); | |
217 } | |
218 } | |
219 elsif($hgvs =~ /^(-?\d+)(.*)/){ | |
220 # special case if offset spans -/+ since there is no position 0 | |
221 if($1 < 0 and $1+$offset >= 0){ | |
222 $offset++; | |
223 } | |
224 elsif($1 > 0 and $1+$offset <= 0){ | |
225 $offset--; | |
226 } | |
227 return ($1+$offset).$2; | |
228 } | |
229 else{ | |
230 die "Cannot convert $hgvs to a new offset ($offset), only single base position nomenclature is currently supported\n"; | |
231 } | |
232 } | |
233 | |
234 # offset a given position by a given number of bases, | |
235 # taking into account that if the new offset crosses the threshold in the last argument, | |
236 # HGVS boundary nomenclature has to be introduced | |
237 sub hgvs_plus_exon($$$){ | |
238 my ($pos, $offset, $boundary) = @_; | |
239 | |
240 # special case if offset spans -/+ since there is no position 0 | |
241 if($pos =~ /^(-?\d+)(.*)/){ | |
242 if($1 < 0 and $1+$offset >= 0){ | |
243 $offset++; | |
244 } | |
245 elsif($1 > 0 and $1+$offset <= 0){ | |
246 $offset--; | |
247 } | |
248 } | |
249 my $new_pos = $pos + $offset; | |
250 if($new_pos > $boundary and $pos <= $boundary){ | |
251 # just moved into an intron 3' | |
252 $new_pos = $boundary."+".($new_pos-$boundary); | |
253 } | |
254 elsif($new_pos < $boundary and $pos >= $boundary){ | |
255 # just moved into an intron 5' | |
256 $new_pos = $boundary.($new_pos-$boundary); | |
257 } | |
258 return $new_pos; | |
259 } | |
260 | |
261 # given a nucleotide position, calculates the AA there (assumes coding region) | |
262 sub getCodonFromSeq($$$$){ | |
263 my ($chr_ref, $location, $frame_offset, $strand) = @_; | |
264 | |
265 my $codon; | |
266 if($strand eq "+"){ | |
267 $codon = substr($$chr_ref, $location-1-$frame_offset, 3); | |
268 } | |
269 else{ | |
270 $codon = substr($$chr_ref, $location-3+$frame_offset, 3); | |
271 $codon = reverse($codon); | |
272 $codon =~ tr/ACGTacgt/TGCAtgca/; | |
273 } | |
274 return $codon; | |
275 } | |
276 | |
277 sub getCodonFromSeqIndex($$$$){ | |
278 my ($chr, $location, $frame_offset, $strand) = @_; | |
279 | |
280 my $codon; | |
281 if($strand eq "+"){ | |
282 $codon = $fasta_index->fetch($chr.":".($location-$frame_offset)."-".($location-$frame_offset+2)); | |
283 } | |
284 else{ | |
285 $codon = $fasta_index->fetch($chr.":".($location-2+$frame_offset)."-".($location+$frame_offset)); | |
286 $codon = reverse($codon); | |
287 $codon =~ tr/ACGTacgt/TGCAtgca/; | |
288 } | |
289 return $codon; | |
290 } | |
291 | |
292 sub getAAFromSeq($$$$$){ | |
293 return $_[4]->translate(getCodonFromSeq($_[0], $_[1], $_[2], $_[3])); | |
294 } | |
295 | |
296 sub getAAFromSeqIndex($$$$$){ | |
297 # convert codon to AA | |
298 if(exists $transl_except{"$_[0]:$_[1]"}){ | |
299 return $transl_except{"$_[0]:$_[1]"}; | |
300 } | |
301 else{ | |
302 return $_[4]->translate(getCodonFromSeqIndex($_[0], $_[1], $_[2], $_[3])); | |
303 } | |
304 } | |
305 | |
306 sub hgvs_protein{ | |
307 my ($chr, $location, $ref, $variant, $cdna_pos, $strand, $transl_table) = @_; | |
308 | |
309 if(substr($ref,0,1) eq substr($variant,0,1)){ | |
310 substr($ref,0,1) = ""; | |
311 substr($variant,0,1) = ""; | |
312 $location++; | |
313 if($strand eq "-"){ | |
314 $cdna_pos--; | |
315 } | |
316 else{ | |
317 $cdna_pos++; | |
318 } | |
319 } | |
320 | |
321 if($cdna_pos !~ /^\d+/){ | |
322 die "Aborting: got illegal cDNA position ($cdna_pos) for protein HGVS conversion of position ", | |
323 "$location, ref $ref, variant $variant. Please correct the program code.\n"; | |
324 } | |
325 # Get the correct frame for the protein translation, to know what codons are affected | |
326 my $aapos = int(($cdna_pos-1)/3)+1; | |
327 | |
328 # does it destroy the start codon? | |
329 if($cdna_pos < 4){ # assumes animal codon usage | |
330 return "p.0?"; # indicates start codon missing, unsure of effect | |
331 } | |
332 | |
333 my $table = $transl_table ne $default_transl_table ? # non standard translation table requested | |
334 Bio::Tools::CodonTable->new(-id=>$transl_table) : $codonTable; | |
335 | |
336 my $frame_offset = ($cdna_pos-1)%3; | |
337 my $origAA = getAAFromSeqIndex($chr, $location, $frame_offset, $strand, $table); | |
338 # take 100000 bp on either side for translation context of variant seq | |
339 my $five_prime_buffer = $location < 10000 ? $location-1 : 10000; | |
340 my $mutSeq = $fasta_index->fetch($chr.":".($location-$five_prime_buffer)."-".($location+10000)); | |
341 | |
342 # substitute all of the immediately adjacent variants in phase with this one to get the correct local effect | |
343 substr($mutSeq, $five_prime_buffer, length($ref)) = $variant; | |
344 | |
345 # does it cause a frameshift? | |
346 my $length_diff = length($variant)-length($ref); | |
347 if($length_diff%3){ # insertion or deletion not a multiple of three | |
348 my $fs_codon = getCodonFromSeq(\$mutSeq, $five_prime_buffer+1, $frame_offset, $strand); | |
349 my $ext = 0; | |
350 my $newAA; | |
351 do{ | |
352 $ext++; | |
353 # The "NA"s below make it so that we don't pick up any translation exceptions from the original reference annotation | |
354 if($strand eq "+"){ | |
355 $newAA = getAAFromSeq(\$mutSeq, $five_prime_buffer+1+$ext*3, $frame_offset, $strand, $table); | |
356 } | |
357 else{ | |
358 $newAA = getAAFromSeq(\$mutSeq, $five_prime_buffer+1-$ext*3, $frame_offset, $strand, $table); | |
359 } | |
360 } while($newAA ne "*"); | |
361 | |
362 return "p.".$origAA.$aapos.$table->translate($fs_codon)."fs*$ext"; | |
363 } | |
364 | |
365 # does it cause a stop codon to be lost? | |
366 if($origAA eq "*"){ | |
367 my $stopChangeCodon = getCodonFromSeq(\$mutSeq, $five_prime_buffer+1, $frame_offset, $strand); | |
368 # still a stop after the mutation (ignore translation exceptions) | |
369 if($table->is_ter_codon($stopChangeCodon)){ | |
370 return "p.*$aapos="; | |
371 } | |
372 # calculate the new stop, assuming there aren't mutations downstream in candidate stop codons | |
373 my $ext = 0; | |
374 my $newCodon; | |
375 do{ | |
376 if($strand eq "+"){ | |
377 $newCodon = getCodonFromSeq(\$mutSeq, $five_prime_buffer+1+(++$ext*3), $frame_offset, $strand); | |
378 } | |
379 else{ | |
380 $newCodon = getCodonFromSeq(\$mutSeq, $five_prime_buffer+1-(++$ext*3), $frame_offset, $strand); | |
381 } | |
382 } while(not $table->is_ter_codon($newCodon)); | |
383 | |
384 return "p.*".$aapos.$table->translate($stopChangeCodon)."ext*".$ext; | |
385 } | |
386 | |
387 # if we get this far, it's a "regular" AA level change | |
388 my $origAAs = ""; | |
389 for(my $i = 0; $i < length($ref)+$frame_offset; $i+=3){ | |
390 my $oldAA = getAAFromSeqIndex($chr, $location+$i, $frame_offset, $strand, $table); | |
391 if($strand eq "+"){ | |
392 $origAAs .= $oldAA; | |
393 } | |
394 else{ | |
395 $origAAs = $oldAA . $origAAs; | |
396 } | |
397 } | |
398 my $newAAs = ""; | |
399 for(my $i = 0; $i < length($variant)+$frame_offset; $i+=3){ | |
400 # NA means we don't take translation exceptions from the original | |
401 my $newAA = getAAFromSeq(\$mutSeq, $five_prime_buffer+1+$i, $frame_offset, $strand, $table); | |
402 if($strand eq "+"){ | |
403 $newAAs .= $newAA; | |
404 } | |
405 else{ | |
406 $newAAs = $newAA . $newAAs; | |
407 } | |
408 } | |
409 | |
410 # silent | |
411 if($origAAs eq $newAAs){ | |
412 return "p.".$origAAs.$aapos."="; | |
413 } | |
414 | |
415 # minimize the difference if there are leading or trailing AAs the same | |
416 my $delLength = length($ref); | |
417 while(substr($newAAs, 0, 1) eq substr($origAAs, 0, 1)){ | |
418 $newAAs = substr($newAAs, 1); | |
419 $origAAs = substr($origAAs, 1); | |
420 $location+=3; | |
421 $delLength-=3; | |
422 $aapos++; | |
423 } | |
424 while(substr($newAAs, -1) eq substr($origAAs, -1)){ | |
425 $newAAs = substr($newAAs, 0, length($newAAs)-1); | |
426 $origAAs = substr($origAAs, 0, length($origAAs)-1); | |
427 } | |
428 | |
429 # insertion | |
430 if(length($origAAs) == 0){ | |
431 my $insAAs = getAAFromSeqIndex($chr,$location-3,$frame_offset,$strand,$table).($aapos-1)."_". | |
432 getAAFromSeqIndex($chr,$location,$frame_offset,$strand,$table); | |
433 return "p.".$insAAs.$aapos."ins".$newAAs; | |
434 } | |
435 # deletion | |
436 elsif(length($newAAs) == 0){ | |
437 my $delAAs; | |
438 if(length($origAAs) == 1){ | |
439 $delAAs = getAAFromSeqIndex($chr,$location,$frame_offset,$strand,$table).$aapos; # single AA deletion | |
440 } | |
441 else{ # deleting a stretch | |
442 if($strand eq "+"){ | |
443 my $endPoint = $location+$delLength-1; | |
444 $delAAs = getAAFromSeqIndex($chr,$location,$frame_offset,$strand,$table).$aapos."_". | |
445 getAAFromSeqIndex($chr,$endPoint,$frame_offset,$strand,$table).($aapos+int(($delLength-1)/3)); | |
446 } | |
447 else{ | |
448 my $endPoint = $location-$delLength+1; | |
449 $delAAs = getAAFromSeqIndex($chr,$endPoint,$frame_offset,$strand,$table).($aapos-int(($delLength-1)/3))."_". | |
450 getAAFromSeqIndex($chr,$location,$frame_offset,$strand,$table).$aapos; | |
451 } | |
452 } | |
453 return "p.".$delAAs."del"; | |
454 } | |
455 else{ | |
456 # substitution | |
457 if(length($origAAs) == 1 and length($newAAs) == 1){ | |
458 return "p.".$origAAs.$aapos.$newAAs; | |
459 } | |
460 # indel | |
461 elsif(length($origAAs) != 1){ | |
462 # convert ref stretch into range syntax | |
463 if($strand eq "+"){ | |
464 $origAAs = substr($origAAs, 0, 1).$aapos."_".substr($origAAs, -1).($aapos+length($origAAs)-1); | |
465 } | |
466 else{ | |
467 $origAAs = substr($origAAs, 0, 1).($aapos-length($origAAs)+1)."_".substr($origAAs, -1).$aapos; | |
468 } | |
469 } | |
470 return "p.".$origAAs."delins".$newAAs; | |
471 } | |
472 return ("NA", ""); | |
473 } | |
474 | |
475 sub z2p{ | |
476 if(not defined $zed){ | |
477 $zed = new Statistics::Zed; | |
478 } | |
479 my $p = $zed->z2p(value => $_[0]); | |
480 return $p < 0.0000000001 ? 0 : $p; | |
481 } | |
482 sub gq2p{ | |
483 return $_[0] > 200 ? 0 : 10**($_[0]/-10); | |
484 } | |
485 | |
486 my ($multi_phased, $min_depth, $flanking_bases, $dbsnp, $internal_snp, $genename_bed_file, $dir_1000G, $dir_esp6500, $min_pvalue, $mappability_file, $reference_file, $samtools_phasing_file, $exons_file, $input_file, $output_file, $cnv_file, $dgv_file, $which_chr, $enrichment_regions_file, $rare_variant_prop); | |
487 $multi_phased = 0; | |
488 $min_depth = 2; | |
489 $flanking_bases = 30; | |
490 $min_pvalue = 0.01; | |
491 $min_prop = 0.14; | |
492 $rare_variant_prop = 0.05; | |
493 $input_file = "-"; # STDIN by default | |
494 $output_file = "-"; # STDOUT by default | |
495 $default_transl_table = "1"; # assumes NCBI 'Standard' table, unless it is an argument to the script... | |
496 &GetOptions("d=i" => \$min_depth, | |
497 "f=i" => \$flanking_bases, | |
498 "s=s" => \$dbsnp, | |
499 "t=s" => \$dir_1000G, | |
500 "n=s" => \$dir_esp6500, | |
501 "u=s" => \$internal_snp, | |
502 "q" => \$quiet, | |
503 "p=f" => \$min_pvalue, | |
504 "h=f" => \$min_prop, | |
505 "m=s" => \$mappability_file, | |
506 "r=s" => \$reference_file, | |
507 "z=s" => \$samtools_phasing_file, | |
508 "e=s" => \$exons_file, | |
509 "i=s" => \$input_file, | |
510 "c=s" => \$cnv_file, | |
511 "g=s" => \$dgv_file, | |
512 "b=s" => \$genename_bed_file, | |
513 "w=s" => \$which_chr, | |
514 "o=s" => \$output_file, | |
515 "a=i" => \$default_transl_table, | |
516 "v=f" => \$rare_variant_prop, | |
517 "x=s" => \$enrichment_regions_file); # if enrichment regions are specified, variants without a transcript model but in these ranges will be reported | |
518 | |
519 if(($input_file ne "/dev/null" and not defined $reference_file) or | |
520 not defined $exons_file or | |
521 (defined $cnv_file and not defined $dgv_file)){ | |
522 die "Usage: $0 [-v(ersion)] [-q(uiet)] [-w(hich) contig_to_report (default is all)] [-d(epth of variant reads req'd) #] [-v(ariant max freq to count as rare)] [-f(lanking exon bases to report) #] [-p(robability of random genotype, maximum to report) 0.#]\n", | |
523 " [-h(et proportion of variant reads, minimum to report) 0.#] [-c(opy number) variants_file.bed -g(enomic structural) variants_control_db.txt.gz] [-z file_containing_samtools_phase_output.txt]\n", | |
524 " [-t(housand) genomes_integrated_vcfs_gz_dir] [-n ESP6500_dir] [-u(ser) specified_population.vcf.gz] [-m(appability) crg_file.bed]\n", | |
525 " [-x enrichment_regions_file.bed] [-a(mino) acid translation table number from NCBI]\n", | |
526 " [-i(nput) genotypes.vcf <-r(eference) sequence_file.fasta>] [-o(utput) hgvs_file.tsv] [-s(np) database_from_ncbi.vcf.gz]\n", | |
527 " <-b(ed) file of named gene regions.bed> <-e(xons) file.gtf>\n\n", | |
528 "Input gz files must be indexed with Tabix.\nDefault input is STDIN, default output is STDOUT. Note: if -c is specified, polyploidies are are assume to be proximal. Other defaults: -d 2, -v 0.05, -f 30, -p 0.01, -h 0.14 -a 1\nReference sequence is not strictly necessary if only CNV are being annotated.\n"; | |
529 } | |
530 | |
531 print STDERR "Considering $flanking_bases flanking bases for variants as well\n" unless $quiet; | |
532 | |
533 $codonTable = new Bio::Tools::CodonTable(id => $default_transl_table); | |
534 | |
535 my %enrichment_regions; | |
536 # Note, we assume the regions are non-overlapping | |
537 if(defined $enrichment_regions_file){ | |
538 print STDERR "Loading enrichment regions...\n" unless $quiet; | |
539 open(BED, $enrichment_regions_file) | |
540 or die "Cannot open $enrichment_regions_file for reading: $!\n"; | |
541 while(<BED>){ | |
542 chomp; | |
543 my @F = split /\t/, $_; | |
544 $enrichment_regions{$F[0]} = [] if not exists $enrichment_regions{$F[0]}; | |
545 push @{$enrichment_regions{$F[0]}}, [$F[1], $F[2]]; | |
546 } | |
547 close(BED); | |
548 } | |
549 for my $chr (keys %enrichment_regions){ # sort by start | |
550 $enrichment_regions{$chr} = [sort {$a->[0] <=> $b->[0]} @{$enrichment_regions{$chr}}]; | |
551 } | |
552 | |
553 if(defined $reference_file){ | |
554 print STDERR "Scanning reference FastA info\n" unless $quiet; | |
555 if(not -e $reference_file){ | |
556 die "Reference FastA file ($reference_file) does not exist.\n"; | |
557 } | |
558 if(not -e $reference_file.".fai" and not -w dirname($reference_file)){ | |
559 die "Reference FastA file ($reference_file) is not indexed, and the directory is not writable.\n"; | |
560 } | |
561 $fasta_index = Bio::DB::Sam::Fai->load($reference_file); | |
562 } | |
563 | |
564 my %chr2mappability; | |
565 if(defined $mappability_file){ | |
566 print STDERR "Reading in mappability data\n" unless $quiet; | |
567 my ($nmer) = $mappability_file =~ /(\d+).*?$/; | |
568 die "Cannot determine nmer from nmer file name $mappability_file, aborting\n" unless $nmer; | |
569 open(MAP, $mappability_file) | |
570 or die "Cannot open mappability data file $mappability_file for reading: $!\n"; | |
571 <MAP>; # header | |
572 while(<MAP>){ | |
573 next if /^#/; | |
574 chomp; | |
575 my @F = split /\t/, $_; | |
576 my $x = int(1/$F[3]+0.5); | |
577 $chr2mappability{$F[0]} = Set::IntervalTree->new() if not exists $chr2mappability{$F[0]}; | |
578 $chr2mappability{$F[0]}->insert("non-unique mapping region (x$x)", $F[1], $F[2]+$nmer-1); | |
579 } | |
580 close(MAP); | |
581 } | |
582 | |
583 # Is phasing data provided? | |
584 if(defined $samtools_phasing_file){ | |
585 print STDERR "Reading in phasing data\n" unless $quiet; | |
586 open(PHASE, $samtools_phasing_file) | |
587 or die "Cannot open phasing data file $samtools_phasing_file for reading: $!\n"; | |
588 my $phase_range; | |
589 while(<PHASE>){ | |
590 if(/^PS/){ | |
591 chomp; | |
592 my @F = split /\t/, $_; | |
593 $phase_range = "$F[2]-$F[3]"; | |
594 } | |
595 if(/^M[12]/){ | |
596 chomp; | |
597 my @F = split /\t/, $_; | |
598 #ignore strange cases where haplotype reference has no cases (weird samtools call) | |
599 next if $F[9] == 0 or $F[7] == 0; | |
600 my $chr = $F[1]; | |
601 next if defined $which_chr and not $chr eq $which_chr; | |
602 my $pos = $F[3]; | |
603 #print STDERR "Recording phase for $chr:$pos:$F[4] , $chr:$pos:$F[5] as A-$chr:$phase_range and B-$chr:$phase_range\n" if $pos == 12907379; | |
604 if(($F[10]+$F[8])/($F[9]+$F[7]) >= $min_prop){ # error meets reporting threshold | |
605 $chr2caveats{"$chr:$pos"} .= "; " if exists $chr2caveats{"$chr:$pos"}; | |
606 $chr2caveats{"$chr:$pos"} .= "inconsistent haplotype phasing"; | |
607 } | |
608 else{ # appears to be a genuine phasing | |
609 $chr2phase{"$chr:$pos:$F[4]"} = "A-$chr:$phase_range"; # grouping for haplotype | |
610 $chr2phase{"$chr:$pos:$F[5]"} = "B-$chr:$phase_range"; # grouping for haplotype | |
611 } | |
612 } | |
613 } | |
614 close(PHASE); | |
615 } | |
616 | |
617 # Check the VCF file to see if contains phase data | |
618 open(VCFIN, $input_file) | |
619 or die "Cannot open $input_file for reading: $!\n"; | |
620 my $phase_chr = ""; | |
621 my @phase_dataA; | |
622 my @phase_dataB; | |
623 while(<VCFIN>){ | |
624 if(/^\s*(?:#|$)/){ # blank or hash comment | |
625 next; | |
626 } | |
627 my @F = split /\t/, $_; | |
628 next if exists $chr2caveats{"$F[0]:$F[1]"} and $chr2caveats{"$F[0]:$F[1]"} =~ /inconsistent haplotype phasing/; | |
629 # | indicates phased | |
630 if($F[8] =~ m(^(\d+)\|(\d+):)){ | |
631 next if $1 eq $2; # not useful to us (actually would mess up phase combining later on), but is provided sometimes | |
632 # start of a phasing block | |
633 if($phase_chr eq ""){ | |
634 $phase_chr = $F[0]; | |
635 } | |
636 my @vars = split /,/, $F[4]; | |
637 if($1 > @vars){ | |
638 die "Invalid VCF file (line #$.): First haplotype listed as $1, but only ", scalar(@vars), " variants were provided (", join(",", @vars), "\n"; | |
639 } | |
640 if($2 > @vars){ | |
641 die "Invalid VCF file (line #$.): Second haplotype listed as $1, but only ", scalar(@vars), " variants were provided (", join(",", @vars), "\n"; | |
642 } | |
643 unshift @vars, $F[3]; | |
644 push @phase_dataA, [$F[1], $vars[$1]]; | |
645 push @phase_dataB, [$F[1], $vars[$2]]; | |
646 } | |
647 # non phased het call, ends any phasing block there might be | |
648 elsif($F[8] =~ m(^0/1)){ | |
649 # Did we just finish a phased block? If so, output it. | |
650 if(@phase_dataA > 1){ | |
651 my $phase_def = "G-$phase_chr:".$phase_dataA[0]->[0]."-".$phase_dataA[$#phase_dataA]->[0]; | |
652 for my $d (@phase_dataA){ | |
653 my ($p, $v) = @$d; | |
654 if(exists $chr2phase{"$phase_chr:$p:$v"}){ | |
655 $chr2phase{"$phase_chr:$p:$v"} .= ",$phase_def"; | |
656 $multi_phased ||= 1; | |
657 } | |
658 else{ | |
659 $chr2phase{"$phase_chr:$p:$v"} = $phase_def; | |
660 } | |
661 } | |
662 $phase_def = "H-$phase_chr:".$phase_dataB[0]->[0]."-".$phase_dataB[$#phase_dataB]->[0]; | |
663 for my $d (@phase_dataB){ | |
664 my ($p, $v) = @$d; | |
665 if(exists $chr2phase{"$phase_chr:$p:$v"}){ | |
666 $chr2phase{"$phase_chr:$p:$v"} = ",$phase_def"; | |
667 $multi_phased ||= 1; | |
668 } | |
669 else{ | |
670 $chr2phase{"$phase_chr:$p:$v"} = $phase_def; | |
671 } | |
672 } | |
673 } | |
674 if($phase_chr ne ""){ | |
675 $phase_chr = ""; | |
676 @phase_dataA = (); | |
677 @phase_dataB = (); | |
678 } | |
679 } | |
680 } | |
681 | |
682 print STDERR "Reading in feature GTF data..." unless $quiet; | |
683 my %feature_range; # chr => transcript_id => [[genomic_exon_start,genomic_exon_end,cdna_start_pos],...] | |
684 my %feature_intervaltree; # chr => transcript_id => [[genomic_exon_start,genomic_exon_end,cdna_start_pos],...] | |
685 my %feature_strand; # transcript_id => +|- | |
686 my $feature_count = 0; | |
687 my %feature_min; | |
688 my %feature_max; | |
689 my %feature_cds_min; | |
690 my %feature_cds_max; | |
691 my %feature_contig; | |
692 my %feature_length; | |
693 my %feature_type; | |
694 my %feature_transl_table; # note alternate translation table usage | |
695 my %chr_read; | |
696 open(GTF, $exons_file) | |
697 or die "Cannot open $exons_file for reading: $!\n"; | |
698 while(<GTF>){ | |
699 next if /^\s*#/; | |
700 my @fields = split /\t/, $_; | |
701 next if defined $which_chr and $fields[0] ne $which_chr and "chr$fields[0]" ne $which_chr and $fields[0] ne "chr$which_chr"; | |
702 | |
703 if($fields[2] eq "exon" or $fields[2] eq "CDS"){ | |
704 next unless $fields[$#fields] =~ /transcript_id \"(.*?)\"/o; | |
705 my $parent = $1; | |
706 if(not $quiet and not exists $chr_read{$fields[0]}){ | |
707 print STDERR " $fields[0]"; | |
708 $chr_read{$fields[0]} = 1; | |
709 } | |
710 if(not exists $feature_strand{$parent}){ | |
711 $feature_strand{$parent} = $fields[6]; | |
712 $feature_contig{$parent} = $fields[0]; | |
713 if($fields[$#fields] =~ /transcript_type \"(.*?)\"/){ | |
714 $feature_type{$parent} = $1; | |
715 } | |
716 else{ | |
717 $feature_type{$parent} = "NA"; | |
718 } | |
719 } | |
720 if($fields[2] eq "CDS"){ | |
721 #print STDERR "CDS value for $parent is $fields[2]..$fields[3]\n"; | |
722 if(not exists $feature_cds_min{$parent} or $fields[3] < $feature_cds_min{$parent}){ | |
723 $feature_cds_min{$parent} = $fields[3]; | |
724 } | |
725 if(not exists $feature_cds_max{$parent} or $fields[4] > $feature_cds_max{$parent}){ | |
726 $feature_cds_max{$parent} = $fields[4]; | |
727 } | |
728 if($fields[$#fields] =~ /transl_table \"(\d+)\"/){ | |
729 $feature_transl_table{$parent} = $1; #assume one translation table per CDS, which should be reasonable | |
730 } | |
731 while($fields[$#fields] =~ /transl_except \"pos:(\S+?),aa:(\S+?)\"/g){ | |
732 my $pos = $1; | |
733 my $new_aa = $2; # needs to change from three letter code to 1 | |
734 if($new_aa =~ /^ter/i){ # can be funny so have special case (allows TERM, etc.) | |
735 $new_aa = "*"; | |
736 } | |
737 elsif(length($new_aa) == 3){ | |
738 $new_aa = Bio::SeqUtils->new()->seq3in($new_aa); | |
739 } | |
740 if($pos =~ /^(\d+)\.\.(\d+)/){ | |
741 for my $p ($1..$2){ | |
742 $transl_except{"$fields[0]:$p"} = $new_aa; | |
743 } | |
744 } | |
745 else{ | |
746 $transl_except{"$fields[0]:$pos"} = $new_aa; | |
747 } | |
748 } | |
749 next; | |
750 } | |
751 if(not exists $feature_min{$parent} or $fields[3] < $feature_min{$parent}){ | |
752 $feature_min{$parent} = $fields[3]; | |
753 } | |
754 if(not exists $feature_max{$parent} or $fields[4] > $feature_max{$parent}){ | |
755 $feature_max{$parent} = $fields[4]; | |
756 } | |
757 | |
758 $feature_count++; | |
759 if(not exists $feature_range{$fields[0]}){ | |
760 $feature_range{$fields[0]} = {}; # Chr => {parentID => [start,stop]} | |
761 $feature_intervaltree{$fields[0]} = Set::IntervalTree->new(); | |
762 } | |
763 if(not exists $feature_range{$fields[0]}->{$parent}){ | |
764 $feature_range{$fields[0]}->{$parent} = []; | |
765 } | |
766 push @{$feature_range{$fields[0]}->{$parent}}, [$fields[3],$fields[4]]; | |
767 $feature_intervaltree{$fields[0]}->insert($parent, $fields[3], $fields[4]+1); # ranges need to have positive length for module to work properly | |
768 $feature_length{$parent} += $fields[4]-$fields[3]+1; | |
769 } | |
770 } | |
771 close(GTF); | |
772 print STDERR "\nFound $feature_count exons on ", scalar(keys %feature_range), " contigs in the GTF file\n" unless $quiet; | |
773 | |
774 for my $contig (keys %feature_range){ | |
775 for my $parent (keys %{$feature_range{$contig}}){ | |
776 # sort by subrange start | |
777 my @feature_ranges = sort {$a->[0] <=> $b->[0]} @{$feature_range{$contig}->{$parent}}; | |
778 $feature_range{$contig}->{$parent} = \@feature_ranges; | |
779 $feature_range{"chr".$contig}->{$parent} = \@feature_ranges if not $contig =~ /^chr/; | |
780 $feature_range{$1}->{$parent} = \@feature_ranges if $contig =~ /^chr(\S+)/; | |
781 } | |
782 } | |
783 | |
784 # Calculate the cDNA position of the leftmost (reference strand) base for each exon | |
785 for my $contig (keys %feature_range){ | |
786 for my $parent (keys %{$feature_range{$contig}}){ | |
787 my @feature_ranges = @{$feature_range{$contig}->{$parent}}; | |
788 if($feature_strand{$parent} eq "-"){ | |
789 # set up utr offset for correct CDS coordinates | |
790 my $feature_offset = 0; | |
791 for(my $i = $#feature_ranges; $i >= 0; $i--){ | |
792 last if not $feature_cds_max{$parent}; | |
793 # exon is completely 5' of the start | |
794 if($feature_ranges[$i]->[0] > $feature_cds_max{$parent}){ | |
795 $feature_offset -= $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1; | |
796 } | |
797 # exon with the cds start | |
798 elsif($feature_ranges[$i]->[1] >= $feature_cds_max{$parent} and | |
799 $feature_ranges[$i]->[0] <= $feature_cds_max{$parent}){ | |
800 $feature_offset += $feature_cds_max{$parent} - $feature_ranges[$i]->[1]; | |
801 last; | |
802 } | |
803 else{ | |
804 die "The CDS for $parent (on negative strand) ends downstream ", | |
805 "($feature_cds_max{$parent}) of the an exon", | |
806 " (", $feature_ranges[$i]->[0], "), which is illogical. Please revise the GFF file provided.\n"; | |
807 } | |
808 } | |
809 for(my $i = $#feature_ranges; $i >= 0; $i--){ | |
810 $feature_offset += $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1; | |
811 $feature_ranges[$i]->[2] = $feature_offset-1; | |
812 } | |
813 } | |
814 else{ # positive strand | |
815 # set up utr offset for correct CDS coordinates | |
816 my $feature_offset = 0; | |
817 for(my $i = 0; $i <= $#feature_ranges; $i++){ | |
818 last if not $feature_cds_min{$parent}; | |
819 # All 5' utr exon | |
820 if($feature_ranges[$i]->[1] < $feature_cds_min{$parent}){ | |
821 $feature_offset -= $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1; | |
822 } | |
823 # exon with the cds start | |
824 elsif($feature_ranges[$i]->[1] >= $feature_cds_min{$parent} and | |
825 $feature_ranges[$i]->[0] <= $feature_cds_min{$parent}){ | |
826 $feature_offset -= $feature_cds_min{$parent} - $feature_ranges[$i]->[0]; | |
827 last; | |
828 } | |
829 else{ | |
830 die "The CDS for $parent starts upstream ($feature_cds_min{$parent}) of the first exon", | |
831 " (", $feature_ranges[$i]->[0], "), which is illogical. Please revise the GFF file provided.\n"; | |
832 } | |
833 } | |
834 # assign cDNA coords for each exon to the third array element | |
835 for(my $i = 0; $i <= $#feature_ranges; $i++){ | |
836 $feature_ranges[$i]->[2] = $feature_offset; | |
837 $feature_offset += $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1; | |
838 } | |
839 } | |
840 } | |
841 } | |
842 | |
843 print STDERR "Reading in gene name definitions...\n" unless $quiet; | |
844 die "Data file $genename_bed_file does not exist, aborting.\n" if not -e $genename_bed_file; | |
845 my %gene_ids; | |
846 open(TAB, $genename_bed_file) | |
847 or die "Cannot open gene name BED file $genename_bed_file for reading: $!\n"; | |
848 while(<TAB>){ | |
849 chomp; | |
850 # format should be "chr start stop gene_name ..." | |
851 my @fields = split /\t/, $_; | |
852 next if $#fields < 3; | |
853 my $c = $fields[0]; | |
854 if(not exists $gene_ids{$c}){ | |
855 $gene_ids{$c} = Set::IntervalTree->new(); | |
856 } | |
857 $gene_ids{$c}->insert($fields[3], $fields[1], $fields[2]); | |
858 } | |
859 | |
860 # Print output header | |
861 open(OUT, ">$output_file") | |
862 or die "Cannot open $output_file for writing: $!\n"; | |
863 | |
864 print OUT join("\t", "Feature type", "Transcript length", "Selected transcript", "Transcript HGVS", "Strand", "Chr", "DNA From", "DNA To", "Zygosity", "P-value", "Variant Reads", "Total Reads", | |
865 "Ref base", "Obs base", "Pop. freq. source", "Pop. freq.", "Variant DB ID"), "\t", | |
866 ($internal_snp ? "Internal pop. freq.\t" : ""), | |
867 join("\t", "Protein HGVS", "Closest exon junction (AA coding variants)", "Gene Name", "Caveats", "Phase", "Num rare variants in gene (MAF <= $rare_variant_prop)", "Num rare coding and splice site variants in gene (MAF <= $rare_variant_prop)"),"\n"; | |
868 | |
869 # If there is CNV data, load it. | |
870 # BED columns should be chr start stop caveats ploidy . ignored ignored r,g,b | |
871 # The dot means the strand doesn't matter. | |
872 # where the first five fields are required, others optional | |
873 # where r,g,b is overloaded with father,mother ploidies and "b" is integer representing affected status logical AND (father bit mask 1, mother bit mask 2) | |
874 if(defined $cnv_file){ | |
875 print STDERR "Reading in CNV data...\n" unless $quiet; | |
876 open(CNV, $cnv_file) | |
877 or die "Cannot open $cnv_file for reading: $!\n"; | |
878 while(<CNV>){ | |
879 chomp; | |
880 my @F = split /\t/, $_, -1; | |
881 if(@F < 5){ | |
882 print STDERR "Skipping unparseable line ($cnv_file #$.): $_\n"; | |
883 next; | |
884 } | |
885 my $ploidy = $F[4]; | |
886 my $cnv_chr = $F[0]; | |
887 next if defined $which_chr and $cnv_chr ne $which_chr and "chr$cnv_chr" ne $which_chr and $cnv_chr ne "chr$which_chr"; | |
888 my $cnv_start = $F[1]; | |
889 my $cnv_end = $F[2]; | |
890 my $p_value = "NA"; | |
891 if($F[3] =~ s/p-value=(\S+?)(?:;|$)//){ | |
892 $p_value = $1; | |
893 next if $min_pvalue < $p_value; | |
894 } | |
895 | |
896 # Report a variant line for each gene that is found in this CNV | |
897 my $target_parents = $feature_intervaltree{$cnv_chr}->fetch($cnv_start, $cnv_end+1); | |
898 | |
899 my $caveats = ""; | |
900 if(@F == 9){ | |
901 my @parents_ploidy = split /,/, $F[8]; | |
902 if($parents_ploidy[2] == 0){ # neither parent affected | |
903 if($ploidy < $parents_ploidy[0] and $ploidy < $parents_ploidy[1]){ | |
904 if($ploidy > 2){ | |
905 $caveats = "Polyploidy is less severe than in either unaffected parents"; | |
906 } | |
907 # else: no caveats, this offspring has fewer copies than normally observed, or in unaffected parents | |
908 elsif($ploidy < 2){ | |
909 if($parents_ploidy[0] == 2 and $parents_ploidy[1] == 2){ | |
910 $caveats = "De novo copy loss, unaffected parents are diploid"; | |
911 } | |
912 else{ | |
913 $caveats = "Copy loss is greater than in either unaffected parent"; | |
914 } | |
915 } | |
916 } | |
917 elsif($ploidy >= $parents_ploidy[0] and $ploidy <= $parents_ploidy[1] or | |
918 $ploidy >= $parents_ploidy[1] and $ploidy <= $parents_ploidy[0]){ | |
919 $caveats = "Aneuploidy likely inherited from an unaffected parent"; | |
920 } | |
921 elsif($ploidy > $parents_ploidy[0] and $ploidy > $parents_ploidy[1]){ | |
922 if($parents_ploidy[0] > 2){ | |
923 if($parents_ploidy[1] > 2){ | |
924 $caveats = "Lower polyploidy already exists in both unaffected parents"; | |
925 } | |
926 else{ | |
927 $caveats = "Lower polyploidy already exists in unaffected father"; | |
928 } | |
929 } | |
930 else{ | |
931 if($parents_ploidy[1] > 2){ | |
932 $caveats = "Lower polyploidy already exists in unaffected mother"; | |
933 } | |
934 # else no caveats, because both parents are "normal", yet we have polyploidy in the offspring | |
935 else{ | |
936 $caveats = "De novo polyploidy, unaffected parents are diploid"; | |
937 } | |
938 } | |
939 } | |
940 # else | |
941 else{ | |
942 die "Oops! Error in program logic...how did we get here (unaffected parents)? $_"; | |
943 } | |
944 } | |
945 elsif($parents_ploidy[2] == 1){ # father affected | |
946 if($ploidy == $parents_ploidy[1]){ # just like unaffected Mom | |
947 if($ploidy > 2){ | |
948 if($ploidy == $parents_ploidy[0]){ | |
949 $caveats = "Same polyploidy present in both affected and unaffected parents"; | |
950 } | |
951 else{ | |
952 $caveats = "Polyploidy inherited from unaffected mother"; | |
953 } | |
954 } | |
955 elsif($ploidy < 2){ | |
956 if($ploidy == $parents_ploidy[0]){ | |
957 $caveats = "Same copy loss in both affected and unaffected parents"; | |
958 } | |
959 else{ | |
960 $caveats = "Copy loss is shared with unaffected mother"; | |
961 } | |
962 } | |
963 else{ | |
964 if($ploidy == $parents_ploidy[0]){ | |
965 # Why was this even reported? parents and child have diploid status... | |
966 next; | |
967 } | |
968 $caveats = "Diploidy is shared with unaffected mother"; | |
969 } | |
970 } | |
971 elsif($ploidy > 2){ # polyploidy | |
972 if($parents_ploidy[0] == 2){ | |
973 if($parents_ploidy[1] > 2){ | |
974 $caveats = "Unaffected mother has polyploidy (".$parents_ploidy[1]."x), but affected father is diploid"; | |
975 } | |
976 elsif($parents_ploidy[1] == 2){ | |
977 $caveats = "Both unaffected mother and affected father are diploid"; | |
978 } | |
979 else{ | |
980 $caveats = "Affected father is diploid, unaffected mother has copy loss (".$parents_ploidy[1]."x)"; | |
981 } | |
982 } | |
983 elsif($parents_ploidy[0] < 2){ | |
984 $caveats = "Polyploidy found, but affected father had copy loss (".$parents_ploidy[0]."x)"; | |
985 } | |
986 elsif($ploidy < $parents_ploidy[1]){ | |
987 $caveats = "Polyploidy is less severe than in unaffected mother (".$parents_ploidy[1]."x), or affected father (".$parents_ploidy[0]."x)"; | |
988 } | |
989 # past here the ploidy is great than in the unaffected mother | |
990 elsif($parents_ploidy[1] < 2){ | |
991 $caveats = "Polyploidy is also severe in affected father (".$parents_ploidy[0]."x), but unaffected mother actually had copy loss (". $parents_ploidy[1]. "x)"; | |
992 } | |
993 elsif($parents_ploidy[1] == 2){ | |
994 $caveats = "Polyploidy is also severe in affected father (".$parents_ploidy[0]."x), and mother is diploid"; | |
995 } | |
996 elsif($ploidy < $parents_ploidy[0]){ | |
997 $caveats = "Polyploidy is less severe than in affected father (".$parents_ploidy[0]."x), but more severe than unaffected mother (". $parents_ploidy[1]. "x)"; | |
998 } | |
999 elsif($ploidy > $parents_ploidy[0]){ | |
1000 $caveats = "Polyploidy is more severe than in affected father (".$parents_ploidy[0]."x)"; | |
1001 } | |
1002 else{ | |
1003 $caveats = "Polyploidy is as severe as in affected father"; | |
1004 } | |
1005 } | |
1006 elsif($ploidy == 2){ | |
1007 # Don't report diploid status, any funny recombination should show up in large indel analysis | |
1008 next; | |
1009 } | |
1010 else{ # copies < 2 | |
1011 if($ploidy == $parents_ploidy[0]){ | |
1012 if($ploidy > $parents_ploidy[1]){ | |
1013 $caveats = "Copy loss is the same as affected father, but less than unaffected mother (". $parents_ploidy[1]. "x)"; | |
1014 } | |
1015 else{ | |
1016 $caveats = "Copy loss is as severe as in affected father"; | |
1017 } | |
1018 } | |
1019 elsif($ploidy > $parents_ploidy[0]){ | |
1020 if($ploidy > $parents_ploidy[1]){ | |
1021 if($parents_ploidy[1] == 0 and $parents_ploidy[0] == 0){ | |
1022 $caveats = "Poor mapping, or Mendelian inheritence violation is severe: no copies of region in either parent, but present in offspring"; | |
1023 } | |
1024 elsif($ploidy == 2){ | |
1025 next; # child got best of both parents, ignore from CNV standpoint (may still have SNPs of course, or translocation, etc.) | |
1026 } | |
1027 else{ | |
1028 $caveats = "Copy loss is less severe than in unaffected mother (".$parents_ploidy[1]."x), or affected father (".$parents_ploidy[0]."x)"; | |
1029 } | |
1030 } | |
1031 # else: child has less copies than unaffected mom, but more than affected Dad | |
1032 else{ | |
1033 if($parents_ploidy[1] > 2){ | |
1034 $caveats = "Copy loss was more severe in affected father (".$parents_ploidy[0]."x), but unaffected mother had polyploidy (".$parents_ploidy[1]."x)"; | |
1035 } | |
1036 elsif($parents_ploidy[1] == 2){ | |
1037 $caveats = "Copy loss was more severe in affected father (".$parents_ploidy[0]."x), but unaffected mother was diploid"; | |
1038 } | |
1039 else{ # unaffected has loss | |
1040 $caveats = "Copy loss is more severe than unaffect mother (".$parents_ploidy[1]."x), but less severe than affected father (".$parents_ploidy[0]."x)"; | |
1041 } | |
1042 } | |
1043 } | |
1044 # past here, ploidy is less than affected father | |
1045 elsif($parents_ploidy[1] > 2){ | |
1046 $caveats = "Copy loss is more severe than affected father (".$parents_ploidy[0]."x), and unaffected mother had polyploidy (".$parents_ploidy[1]."x)"; | |
1047 } | |
1048 elsif($parents_ploidy[1] == 2){ | |
1049 $caveats = "Copy loss is more severe than in affected father (".$parents_ploidy[0]."x)"; | |
1050 } | |
1051 else{ | |
1052 $caveats = "Copy loss is more severe than in both unaffect mother (".$parents_ploidy[1]."x), and affected father (".$parents_ploidy[0]."x)"; | |
1053 } | |
1054 } | |
1055 } | |
1056 elsif($parents_ploidy[2] == 2){ # mother affected | |
1057 if($ploidy == $parents_ploidy[0]){ # just like unaffected Dad | |
1058 if($ploidy > 2){ | |
1059 if($ploidy == $parents_ploidy[1]){ | |
1060 $caveats = "Same polyploidy present in both affected and unaffected parents"; | |
1061 } | |
1062 else{ | |
1063 $caveats = "Polyploidy inherited from unaffected father"; | |
1064 } | |
1065 } | |
1066 elsif($ploidy < 2){ | |
1067 if($ploidy == $parents_ploidy[1]){ | |
1068 $caveats = "Same copy loss in both affected and unaffected parents"; | |
1069 } | |
1070 else{ | |
1071 $caveats = "Copy loss is shared with unaffected father"; | |
1072 } | |
1073 } | |
1074 else{ | |
1075 if($ploidy == $parents_ploidy[1]){ | |
1076 # Why was this even reported? parents and child have diploid status... | |
1077 next; | |
1078 } | |
1079 $caveats = "Diploidy is shared with unaffected father"; | |
1080 } | |
1081 } | |
1082 elsif($ploidy > 2){ # polyploidy | |
1083 if($parents_ploidy[1] == 2){ | |
1084 if($parents_ploidy[0] > 2){ | |
1085 $caveats = "Unaffected father has polyploidy (".$parents_ploidy[0]."x), but affected mother is diploid"; | |
1086 } | |
1087 elsif($parents_ploidy[0] == 2){ | |
1088 $caveats = "Both unaffected father and affected mother are diploid"; | |
1089 } | |
1090 else{ | |
1091 $caveats = "Affected mother is diploid, unaffected father has copy loss (".$parents_ploidy[1]."x)"; | |
1092 } | |
1093 } | |
1094 elsif($parents_ploidy[1] < 2){ | |
1095 $caveats = "Polyploidy found, but affected mother had copy loss (".$parents_ploidy[1]."x)"; | |
1096 } | |
1097 elsif($ploidy < $parents_ploidy[0]){ | |
1098 $caveats = "Polyploidy is less severe than in unaffected father (".$parents_ploidy[0]."x), or affected mother (".$parents_ploidy[1]."x)"; | |
1099 } | |
1100 # past here the ploidy is great than in the unaffected father | |
1101 elsif($parents_ploidy[0] < 2){ | |
1102 $caveats = "Polyploidy is also severe in affected mother (".$parents_ploidy[1]."x), but unaffected father actually had copy loss (". $parents_ploidy[0]. "x)"; | |
1103 } | |
1104 elsif($parents_ploidy[0] == 2){ | |
1105 $caveats = "Polyploidy is also severe in affected mother (".$parents_ploidy[1]."x), and unaffected father is diploid"; | |
1106 } | |
1107 elsif($ploidy < $parents_ploidy[1]){ | |
1108 $caveats = "Polyploidy is less severe than in affected mother (".$parents_ploidy[1]."x), but more severe than unaffected father (". $parents_ploidy[0]. "x)"; | |
1109 } | |
1110 elsif($ploidy > $parents_ploidy[1]){ | |
1111 $caveats = "Polyploidy is more severe than in affected mother (".$parents_ploidy[1]."x)"; | |
1112 } | |
1113 else{ | |
1114 $caveats = "Polyploidy is as severe as in affected mother"; | |
1115 } | |
1116 } | |
1117 elsif($ploidy == 2){ | |
1118 # Don't report diploid status, any funny recombination should show up in large indel analysis | |
1119 next; | |
1120 } | |
1121 else{ # copies < 2 | |
1122 if($ploidy == $parents_ploidy[1]){ | |
1123 if($ploidy > $parents_ploidy[0]){ | |
1124 $caveats = "Copy loss is the same as affected mother, but less than unaffected father (". $parents_ploidy[0]. "x)"; | |
1125 } | |
1126 else{ | |
1127 $caveats = "Copy loss is as severe as in affected mother"; | |
1128 } | |
1129 } | |
1130 elsif($ploidy > $parents_ploidy[1]){ | |
1131 if($ploidy > $parents_ploidy[0]){ | |
1132 if($parents_ploidy[1] == 0 and $parents_ploidy[0] == 0){ | |
1133 $caveats = "Poor mapping, or Mendelian inheritence violation is severe: no copies of region in either parent, but present in offspring"; | |
1134 } | |
1135 elsif($ploidy == 2){ | |
1136 next; # child got best of both parents, ignore from CNV standpoint (may still have SNPs of course, or translocation, etc.) | |
1137 } | |
1138 else{ | |
1139 $caveats = "Copy loss is less severe than in unaffected father (".$parents_ploidy[0]."x), or affected mother (".$parents_ploidy[1]."x)"; | |
1140 } | |
1141 } | |
1142 # else: child has less copies than unaffected Dad, but more than affected Mom | |
1143 else{ | |
1144 if($parents_ploidy[0] > 2){ | |
1145 $caveats = "Copy loss was more severe in affected mother (".$parents_ploidy[1]."x), but unaffected father had polyploidy (".$parents_ploidy[0]."x)"; | |
1146 } | |
1147 elsif($parents_ploidy[0] == 2){ | |
1148 $caveats = "Copy loss was more severe in affected mother (".$parents_ploidy[1]."x), but unaffected father was diploid"; | |
1149 } | |
1150 else{ # unaffected has loss | |
1151 $caveats = "Copy loss is more severe than unaffect father (".$parents_ploidy[0]."x), but less severe than affected mother (".$parents_ploidy[1]."x)"; | |
1152 } | |
1153 } | |
1154 } | |
1155 # past here, ploidy is less than affected mother | |
1156 elsif($parents_ploidy[0] > 2){ | |
1157 $caveats = "Copy loss is more severe than affected mother (".$parents_ploidy[1]."x), and unaffected father had polyploidy (".$parents_ploidy[0]."x)"; | |
1158 } | |
1159 elsif($parents_ploidy[0] == 2){ | |
1160 $caveats = "Copy loss is more severe than in affected mother (".$parents_ploidy[1]."x)"; | |
1161 } | |
1162 else{ | |
1163 $caveats = "Copy loss is more severe than in both unaffect father (".$parents_ploidy[0]."x), and affected mother (".$parents_ploidy[1]."x)"; | |
1164 } | |
1165 } | |
1166 } | |
1167 | |
1168 } | |
1169 if($F[3] and $F[3] ne "-"){ # prexisting caveat from CNV caller | |
1170 if(defined $caveats){ | |
1171 $caveats .= "; $F[3]" unless $caveats =~ /\b$F[3]\b/; | |
1172 } | |
1173 else{ | |
1174 $caveats = $F[3]; | |
1175 } | |
1176 } | |
1177 | |
1178 # Sort by start for consistency | |
1179 my @target_parents = sort {$feature_range{$cnv_chr}->{$a}->[0]->[0] <=> $feature_range{$cnv_chr}->{$b}->[0]->[0]} @$target_parents; | |
1180 | |
1181 for my $target_parent (@target_parents){ | |
1182 my $target_caveats = $caveats; | |
1183 my $strand = $feature_strand{$target_parent}; | |
1184 # report the gain/loss of each gene separately, for simplicity in downstream analysis | |
1185 my $cnv_exon_start = 10000000000; # genomic coords | |
1186 my $cnv_exon_end = 0; | |
1187 my $cnv_cdna_start = 0; # cDNA coords | |
1188 my $cnv_cdna_end = 0; | |
1189 my $off5 = 0; # border outside the exon? | |
1190 my $off3 = 0; | |
1191 my @feature_ranges = @{$feature_range{$cnv_chr}->{$target_parent}}; | |
1192 # find the first and last exons in the gene that are inside the CNV | |
1193 for my $subregion (@feature_ranges){ | |
1194 # exon overlaps CNV? | |
1195 if($subregion->[0] <= $cnv_end and $subregion->[1] >= $cnv_start){ | |
1196 if($cnv_exon_start > $subregion->[0]){ | |
1197 if($cnv_start < $subregion->[0]){ | |
1198 $cnv_exon_start = $subregion->[0]; $off5 = 1; | |
1199 $cnv_cdna_start = $subregion->[2]; | |
1200 } | |
1201 else{ | |
1202 $cnv_exon_start = $cnv_start; $off5 = 0; | |
1203 $cnv_cdna_start = $subregion->[2]+($strand eq "-" ? $subregion->[0]-$cnv_start: $cnv_start-$subregion->[0]); | |
1204 } | |
1205 } | |
1206 if($cnv_exon_end < $subregion->[1]){ | |
1207 if($cnv_end > $subregion->[1]){ | |
1208 $cnv_exon_end = $subregion->[1]; $off3 = 1; | |
1209 $cnv_cdna_end = $subregion->[2]+($strand eq "-" ? $subregion->[0]-$subregion->[1] : $subregion->[1]-$subregion->[0]); | |
1210 } | |
1211 else{ | |
1212 $cnv_exon_end = $cnv_end; $off3 = 0; | |
1213 $cnv_cdna_end = $subregion->[2]+($strand eq "-" ? $subregion->[0]-$cnv_end : $cnv_end-$subregion->[0]); | |
1214 } | |
1215 } | |
1216 } | |
1217 } | |
1218 | |
1219 my $ends_internally = 0; | |
1220 if($cnv_exon_end == 0){ # ends inside the exon | |
1221 $cnv_exon_end = $cnv_end; | |
1222 $ends_internally = 1; | |
1223 } | |
1224 # See if it's in the structural variant database | |
1225 my @gain_coverage; $#gain_coverage = $cnv_exon_end-$cnv_exon_start; # preallocate blanks | |
1226 my @loss_coverage; $#loss_coverage = $cnv_exon_end-$cnv_exon_start; # preallocate blanks | |
1227 my $dgv_loss_id; # report the DGV entry that covers most of the observed structural variant | |
1228 my $dgv_loss_length = 0; # report the DGV entry that covers most of the observed structural variant | |
1229 my $dgv_gain_id; # report the DGV entry that covers most of the observed structural variant | |
1230 my $dgv_gain_length = 0; # report the DGV entry that covers most of the observed structural variant | |
1231 my $gains; | |
1232 my $losses; | |
1233 my $dgv_chr = $cnv_chr; | |
1234 $dgv_chr =~ s/^chr//; # no prefix in DGV | |
1235 #open(DGV, "tabix $dgv_file $dgv_chr:$cnv_exon_start-$cnv_exon_end |") # check out CNV in this gene model region | |
1236 # or die "Cannot run tabix: $!\n"; | |
1237 open(DGV, "/dev/null"); | |
1238 while(<DGV>){ | |
1239 my @C = split /\t/, $_; | |
1240 next if $C[4] ne "CNV"; # todo: handle indels? | |
1241 my $dgv_start = $C[2]; | |
1242 my $dgv_end = $C[3]; | |
1243 my $dgv_direction = $C[5]; | |
1244 my $gain_cov_count = 0; | |
1245 my $loss_cov_count = 0; | |
1246 if($dgv_direction eq "Gain"){ | |
1247 for(my $i = ($dgv_start < $cnv_exon_start ? $cnv_exon_start : $dgv_start); $i <= $dgv_end and $i <= $cnv_exon_end; $i++){ | |
1248 $gain_coverage[$i-$cnv_exon_start] = 1 unless defined $gain_coverage[$i-$cnv_exon_start]; | |
1249 $gain_cov_count++; | |
1250 } | |
1251 } | |
1252 elsif($dgv_direction eq "Loss"){ | |
1253 for(my $i = ($dgv_start < $cnv_exon_start ? $cnv_exon_start : $dgv_start); $i <= $dgv_end and $i <= $cnv_exon_end; $i++){ | |
1254 $loss_coverage[$i-$cnv_exon_start] = 1 unless defined $loss_coverage[$i-$cnv_exon_start]; | |
1255 $loss_cov_count++; | |
1256 } | |
1257 } | |
1258 if($dgv_direction eq "Gain" and $gain_cov_count > $dgv_gain_length){ | |
1259 $dgv_gain_id = $C[0]; | |
1260 $dgv_gain_length = $gain_cov_count; | |
1261 } | |
1262 if($dgv_direction eq "Loss" and $loss_cov_count > $dgv_loss_length){ | |
1263 $dgv_loss_id = $C[0]; | |
1264 $dgv_loss_length = $loss_cov_count; | |
1265 } | |
1266 } | |
1267 close(DGV); | |
1268 | |
1269 my $gain_coverage = 0; | |
1270 for my $count (@gain_coverage){ | |
1271 $gain_coverage++ if defined $count; | |
1272 } | |
1273 $gain_coverage = sprintf "%.3f", $gain_coverage/($cnv_exon_end-$cnv_exon_start+1); # make it a proportion | |
1274 my $loss_coverage = 0; | |
1275 for my $count (@loss_coverage){ | |
1276 $loss_coverage++ if defined $count; | |
1277 } | |
1278 $loss_coverage = sprintf "%.3f", $loss_coverage/($cnv_exon_end-$cnv_exon_start+1); # make it a proportion | |
1279 | |
1280 my $src = "DGV"; | |
1281 my $dgv_id = "NA"; | |
1282 my $dgv_caveat; | |
1283 my $dgv_coverage; | |
1284 if($ploidy > 2){ | |
1285 if(not defined $dgv_gain_id){ | |
1286 if(defined $dgv_loss_id){ | |
1287 $dgv_id = sprintf "%s/%.3f", $dgv_loss_id, $dgv_loss_length/($cnv_exon_end-$cnv_exon_start+1); | |
1288 $dgv_caveat = "; No gains are known in healthy controls, the DGV2 ID reported is for a loss in the same area"; | |
1289 $dgv_coverage = $loss_coverage; | |
1290 } | |
1291 else{ | |
1292 $dgv_id = "novel"; | |
1293 $dgv_coverage = "NA"; | |
1294 $src = "NA"; | |
1295 } | |
1296 } | |
1297 else{ | |
1298 $dgv_id = sprintf "%s/%.3f", $dgv_gain_id, $dgv_gain_length/($cnv_exon_end-$cnv_exon_start+1); | |
1299 $dgv_coverage = $gain_coverage; | |
1300 } | |
1301 } | |
1302 elsif($ploidy < 2){ | |
1303 if(not defined $dgv_loss_id){ | |
1304 if(defined $dgv_gain_id){ | |
1305 $dgv_id = sprintf "%s/%.3f", $dgv_gain_id, $dgv_gain_length/($cnv_exon_end-$cnv_exon_start+1); | |
1306 $dgv_caveat = "; No losses are known in healthy controls, the DGV2 ID reported is for a gain in the same area"; | |
1307 $dgv_coverage = $gain_coverage; | |
1308 } | |
1309 else{ | |
1310 $dgv_id = "novel"; | |
1311 $dgv_coverage = "NA"; | |
1312 $src = "NA"; | |
1313 } | |
1314 } | |
1315 else{ | |
1316 $dgv_id = sprintf "%s/%.3f", $dgv_loss_id, $dgv_loss_length/($cnv_exon_end-$cnv_exon_start+1); | |
1317 $dgv_coverage = $loss_coverage; | |
1318 } | |
1319 } | |
1320 | |
1321 my $non_coding = 0; | |
1322 if(not exists $feature_cds_max{$target_parent} or not defined $feature_cds_max{$target_parent} or $feature_cds_max{$target_parent} eq ""){ | |
1323 $non_coding = 1; | |
1324 } | |
1325 $target_caveats .= $dgv_caveat if defined $dgv_caveat and $dgv_id ne "novel" and $target_caveats !~ /\Q$dgv_caveat\E/; | |
1326 #print "Recorded $cnv_chr:$cnv_start caveat $caveats\n"; | |
1327 # if it doesn't overlap an exon, we need to find out which two exons it's between | |
1328 if($ends_internally){ | |
1329 my $intron_found = 0; | |
1330 for(my $i = 0; $i < $#feature_ranges; $i++){ | |
1331 if($feature_ranges[$i]->[1] < $cnv_start and $feature_ranges[$i+1]->[0] > $cnv_end){ | |
1332 if($ploidy > 2){ # gain | |
1333 if($strand eq "-"){ | |
1334 record_snv("$target_parent\t", | |
1335 ($non_coding ? "g.$cnv_start\_$cnv_end" : | |
1336 "c.".($feature_ranges[$i+1]->[2])."+".($feature_ranges[$i+1]->[0]-$cnv_end)."_".($feature_ranges[$i+1]->[2]+1)."-".($cnv_start-$feature_ranges[$i]->[1])), | |
1337 # pos Zygosity P-value Variant Reads Total Reads Ref Bases Var Bases Population Frequency Source Pop. freq. or DGV2 gain/loss coverage dbSNP or DGV2 ID | |
1338 "[".($ploidy-1)."]\t$strand\t$cnv_chr\t$cnv_start\t$cnv_end\tNA\t$p_value\tNA\tNA\t", | |
1339 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t\n"); | |
1340 } | |
1341 else{ | |
1342 record_snv("$target_parent\t", | |
1343 ($non_coding ? "g.$cnv_start\_$cnv_end" : | |
1344 "c.".($feature_ranges[$i+1]->[2]-1)."+".($cnv_start-$feature_ranges[$i]->[1])."_".$feature_ranges[$i+1]->[2]."-".($feature_ranges[$i+1]->[0]-$cnv_end)), | |
1345 "[".($ploidy-1)."]\t$strand\t$cnv_chr\t$cnv_start\t$cnv_end\tNA\t$p_value\tNA\tNA\t", | |
1346 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t\n"); | |
1347 } | |
1348 } | |
1349 else{ # loss | |
1350 if($strand eq "-"){ | |
1351 record_snv("$target_parent\t", | |
1352 ($non_coding ? "g.$cnv_start\_$cnv_end" : | |
1353 "c.".($feature_ranges[$i+1]->[2])."+".($feature_ranges[$i+1]->[0]-$cnv_end)."_".($feature_ranges[$i+1]->[2]+1)."-".($cnv_start-$feature_ranges[$i]->[1])), | |
1354 "del\t$strand\t$cnv_chr\t$cnv_start\t$cnv_end\t", ($ploidy == 1 ? "heterozygote" : "homozygote"), "\t$p_value\tNA\tNA\t", | |
1355 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t\n"); | |
1356 } | |
1357 else{ | |
1358 record_snv("$target_parent\t", | |
1359 ($non_coding ? "g.$cnv_start\_$cnv_end" : | |
1360 "c.".($feature_ranges[$i+1]->[2]-1)."+".($cnv_start-$feature_ranges[$i]->[1])."_".$feature_ranges[$i+1]->[2]."-".($feature_ranges[$i+1]->[0]-$cnv_end)), | |
1361 "del\t$strand\t$cnv_chr\t$cnv_start\t$cnv_end\t", ($ploidy == 1 ? "heterozygote" : "homozygote"), "\t$p_value\tNA\tNA\t", | |
1362 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t\n"); | |
1363 } | |
1364 } | |
1365 $intron_found = 1; last; | |
1366 } | |
1367 } | |
1368 warn "Logic error: CNV overlaps a gene ($target_parent), but is neither intronic nor exonic. Offending CNV was $_\n" unless $intron_found; | |
1369 next; | |
1370 } | |
1371 if($strand eq "-"){ | |
1372 my $tmp = $cnv_cdna_start; | |
1373 $cnv_cdna_start = $cnv_cdna_end; | |
1374 $cnv_cdna_end = $tmp; | |
1375 } | |
1376 # Make the location label pretty descriptive | |
1377 my $cnv_phase = ""; | |
1378 if($cnv_exon_start > $cnv_start or $cnv_exon_end < $cnv_end){ | |
1379 $cnv_phase = "CNV-$cnv_chr:$cnv_start-$cnv_end"; # Use phase to note that it's part of a bigger CNV than just the range of this feature | |
1380 } | |
1381 # if we get here, we're in a gained/deleted exon category | |
1382 # CNVs are fuzzy-edged (as opposed to large indels), so produce HGVS syntax that reflect this | |
1383 if($ploidy > 2){ # gain | |
1384 # find the exons encompassed by the CNV. NOTE that we assume that polyploidies are proximal | |
1385 record_snv("$target_parent\t", | |
1386 ($non_coding ? "g.".($cnv_exon_start > $cnv_start ? "$cnv_exon_start-?" : $cnv_start)."_".($cnv_exon_end < $cnv_end ? "$cnv_exon_end+?" : $cnv_end) : | |
1387 "c.$cnv_cdna_start".($off5?"-?":"")."_$cnv_cdna_end".($off3?"+?":"")), | |
1388 "[".($ploidy-1)."]\t$strand\t$cnv_chr\t$cnv_exon_start\t$cnv_exon_end\tNA\t$p_value\tNA\tNA\t", | |
1389 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t$cnv_phase\n"); | |
1390 } | |
1391 else{ # loss | |
1392 #translate genome coordinates into cDNA coordinates | |
1393 record_snv("$target_parent\t", | |
1394 ($non_coding ? "g.".($cnv_exon_start > $cnv_start ? "$cnv_exon_start-?" : $cnv_start)."_".($cnv_exon_end < $cnv_end ? "$cnv_exon_end+?" : $cnv_end) : | |
1395 "c.$cnv_cdna_start".($off5?"-?":"")."_$cnv_cdna_end".($off3?"+?":"")), | |
1396 "del\t$strand\t$cnv_chr\t$cnv_exon_start\t$cnv_exon_end\t", ($ploidy == 1 ? "heterozygote" : "homozygote"), "\t$p_value\tNA\tNA\t", | |
1397 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t$cnv_phase\n"); | |
1398 } | |
1399 } | |
1400 } | |
1401 close(CNV); | |
1402 | |
1403 } | |
1404 | |
1405 | |
1406 #sort genes by start, then longest if tied | |
1407 my %rc = qw(A T T A G C C G N N S W W S K M M K Y R R Y X X); | |
1408 print STDERR "Processing variant calls..." unless $quiet; | |
1409 %chr_read = (); | |
1410 open(VCFIN, $input_file) | |
1411 or die "Cannot open $input_file for reading: $!\n"; | |
1412 while(<VCFIN>){ | |
1413 if(/^\s*(?:#|$)/){ # blank or hash comment lines | |
1414 next; | |
1415 } | |
1416 chomp; | |
1417 my @fields = split /\t/, $_; | |
1418 | |
1419 next unless exists $feature_range{$fields[0]}; | |
1420 if(not $quiet and not exists $chr_read{$fields[0]}){ | |
1421 print STDERR " $fields[0]"; | |
1422 $chr_read{$fields[0]} = 1; | |
1423 #print STDERR "(not in reference file!)" unless exists $feature_range{$fields[0]}; | |
1424 } | |
1425 | |
1426 next if $fields[4] eq "<NON_REF>"; # GVCF background stuff | |
1427 next if $fields[9] eq "./." or $fields[9] eq "."; # no call | |
1428 my $chr = $fields[0]; | |
1429 next if defined $which_chr and $chr ne $which_chr and $chr ne "chr$which_chr" and "chr$chr" ne $which_chr; | |
1430 print STDERR "passes chr and field # test" if grep /dataset_7684.dat/, @ARGV; | |
1431 $chr = "chr$chr" if $chr !~ /^chr/; | |
1432 $fields[8] =~ s/\s+$//; | |
1433 my @values = split /:/, $fields[9]; | |
1434 #print STDERR join(" / ", @values), "\n" if $. == 84; | |
1435 my @keys = split /:/, $fields[8]; | |
1436 my $zygosity = "n/a"; | |
1437 my $quality = "n/a"; | |
1438 my $read_depth = "n/a"; | |
1439 my $variant_depths = "n/a"; | |
1440 for(my $i = 0; $i <= $#keys and $i <= $#values; $i++){ # values max index check because some genotypers are nasty and don't provide as many fields as they say they will | |
1441 if($keys[$i] eq "GT"){ | |
1442 if($values[$i] =~ /\./ or $values[$i] =~ /0\/0/){ # one genotype not described | |
1443 $zygosity = "none"; | |
1444 last; | |
1445 } | |
1446 else{ # genotypes described | |
1447 $zygosity = $values[$i] =~ /[02]/ ? "heterozygote" : "homozygote"; | |
1448 } | |
1449 } | |
1450 elsif($keys[$i] eq "DNM_CONFIG" and $zygosity eq "n/a"){ # hack | |
1451 $zygosity = $values[$i] =~ /^(.)\1/ ? "homozygote" : "heterozygote"; | |
1452 } | |
1453 elsif($keys[$i] eq "GQ" and $values[$i] ne "."){ | |
1454 #print "Checking GQ (index $i) $values[$i] gq2p\n" if $. == 84; | |
1455 $quality = gq2p($values[$i]); | |
1456 } | |
1457 elsif($keys[$i] eq "RD"){ # from some tools like denovo variant finders | |
1458 $read_depth = $values[$i]; | |
1459 } | |
1460 elsif($keys[$i] eq "DP"){ | |
1461 $read_depth = $values[$i]; | |
1462 } | |
1463 # the frequency of the variant can go by many names, here we have freebayes (A* are new and old versions) and atlas2_indel | |
1464 elsif($keys[$i] eq "AA" or $keys[$i] eq "VR" or $keys[$i] eq "AO"){ | |
1465 $variant_depths = $values[$i]; | |
1466 } | |
1467 # here we have GATK variant freq of form ref#,var# | |
1468 elsif($keys[$i] eq "AD"){ | |
1469 $variant_depths = $values[$i]; | |
1470 $variant_depths =~ s/^\d+,//; | |
1471 } | |
1472 else{ | |
1473 #print STDERR "Ignoring field $keys[$i]\n"; | |
1474 } | |
1475 } | |
1476 next if $zygosity eq "none"; # GVCF non-ref for example or when multiple samples are reported simultaneously | |
1477 $quality = z2p($1) if $fields[7] =~ /Z=(\d+\.\d+)/; | |
1478 if($quality eq "n/a" and $fields[5] ne "."){ | |
1479 $quality = gq2p($fields[5]); | |
1480 } | |
1481 if($fields[5] eq "0" and $fields[6] eq "PASS"){ # not qual and a PASS in the filter column | |
1482 $quality = 1; | |
1483 } | |
1484 elsif($quality ne "n/a" and $quality > $min_pvalue){ # p-value cutoff | |
1485 #print "Checking call quality $fields[5] gq2p\n" if $. == 84; | |
1486 next unless gq2p($fields[5]) <= $min_pvalue; # in some cases, programs like FreeBayes give low genotype quality such as when a call is borderline homo/het | |
1487 # in these cases it would be silly to reject the call if their are many supporting reads. | |
1488 } | |
1489 | |
1490 # Some tools like GATK don't report number of variant reads...infer from other data if possible | |
1491 if($variant_depths eq "n/a"){ | |
1492 my @key_value_pairs = split /;/, $fields[7]; | |
1493 for my $key_value_pair (@key_value_pairs){ | |
1494 if($key_value_pair !~ /^(.*?)=(.*)$/){ | |
1495 next; | |
1496 #next if $key_value_pair eq "INDEL"; # samtools peculiarity | |
1497 #die "Key-value pair field (column #8) does not have the format key=value for entry $key_value_pair (line #$. of ), please fix the VCF file\n"; | |
1498 } | |
1499 if($1 eq "AB"){ # GATK: for het calls, AB is ref/(ref+var), only one variant reported per line | |
1500 $variant_depths = ""; | |
1501 for my $ab (split /,/, $2){ | |
1502 $variant_depths .= int((1-$ab)*$read_depth).","; | |
1503 } | |
1504 chop $variant_depths; | |
1505 } | |
1506 elsif($1 eq "MLEAC"){ | |
1507 } | |
1508 elsif($1 eq "DP4"){ # samtools: high-quality ref-forward bases, ref-reverse, alt-forward and alt-reverse bases | |
1509 my @rds = split /,/, $2; | |
1510 $variant_depths = $rds[2]+$rds[3]; | |
1511 $read_depth = $rds[0]+$rds[1]+$variant_depths; | |
1512 if($fields[4] =~ /,/){ # samtools doesn't break down compound het calls into individual frequencies | |
1513 my $num_alt_genotypes = $fields[4] =~ tr/,/,/; | |
1514 $num_alt_genotypes++; | |
1515 my $even_prop = sprintf "%.2f", $variant_depths/$read_depth/$num_alt_genotypes; | |
1516 $variant_depths = join(",", ($even_prop) x $num_alt_genotypes); | |
1517 if(not exists $chr2caveats{"$chr:$fields[1]"}){ | |
1518 $chr2caveats{"$chr:$fields[1]"} = "compound het var freq n/a in orig VCF file, auto set to $even_prop"; | |
1519 } | |
1520 else{ | |
1521 $chr2caveats{"$chr:$fields[1]"} .= "; compound het var freq n/a in orig VCF file, auto set to $even_prop"; | |
1522 } | |
1523 } | |
1524 } | |
1525 } | |
1526 } | |
1527 if($variant_depths eq "n/a"){ # usually homo var calls, can only assume all reads are variant | |
1528 if($zygosity eq "homozygote"){ | |
1529 $variant_depths = $read_depth; | |
1530 if($read_depth ne "n/a"){ | |
1531 if(not exists $chr2caveats{"$chr:$fields[1]"}){ | |
1532 $chr2caveats{"$chr:$fields[1]"} = "homo var freq n/a in orig VCF file, auto set to 1.0"; | |
1533 } | |
1534 else{ | |
1535 $chr2caveats{"$chr:$fields[1]"} = "; homo var freq n/a in orig VCF file, auto set to 1.0"; | |
1536 } | |
1537 } | |
1538 } | |
1539 else{ | |
1540 if($read_depth ne "n/a"){ | |
1541 $variant_depths = int($read_depth/2); | |
1542 if(not exists $chr2caveats{"$chr:$fields[1]"}){ | |
1543 $chr2caveats{"$chr:$fields[1]"} = "het var freq n/a in orig VCF file, auto set to 0.5"; | |
1544 } | |
1545 else{ | |
1546 $chr2caveats{"$chr:$fields[1]"} = "; het var freq n/a in orig VCF file, auto set to 0.5"; | |
1547 } | |
1548 } | |
1549 else{ | |
1550 $variant_depths = $read_depth; | |
1551 } | |
1552 } | |
1553 } | |
1554 | |
1555 my $target_parents = $feature_intervaltree{$chr}->fetch($fields[1]-$flanking_bases, $fields[1]+length($fields[3])+$flanking_bases); | |
1556 # Last ditch, if not in a gene model, is it at least in an enrichment region? | |
1557 if(not @$target_parents){ | |
1558 next if not exists $enrichment_regions{$chr}; | |
1559 my $regions_ref = $enrichment_regions{$chr}; | |
1560 my $location = $fields[1]; | |
1561 my $strand = "+"; # for lack of a better choice | |
1562 for(my $i = find_earliest_index($location-$flanking_bases, $regions_ref); | |
1563 $i < $#$regions_ref and $location <= $regions_ref->[$i]->[1]+$flanking_bases; | |
1564 $i++){ | |
1565 next unless $regions_ref->[$i]->[0]-$flanking_bases <= $location and $regions_ref->[$i]->[1]+$flanking_bases >= $location; | |
1566 | |
1567 my $feature_name = "enrichment_target_$chr:".$regions_ref->[$i]->[0]."-".$regions_ref->[$i]->[1]; | |
1568 $feature_type{$feature_name} = "misc_enrichment_kit_target"; | |
1569 $feature_length{$feature_name} = $regions_ref->[$i]->[1]-$regions_ref->[$i]->[0]+1; | |
1570 my @variants = split /,/, $fields[4]; | |
1571 my @variant_depths = split /,/, $variant_depths; | |
1572 my $ref = uc($fields[3]); | |
1573 for(my $j = 0; $j <= $#variants; $j++){ | |
1574 my $variant = $variants[$j]; | |
1575 next if $variant eq "<NON_REF>" or $variant_depths[$j] eq "0"; # GVCF stuff | |
1576 my $variant_depth = $variant_depths[$j]; | |
1577 if($min_prop){ | |
1578 next unless $variant_depth >= $min_depth and $read_depth ne "n/a" and $variant_depth/$read_depth >= $min_prop; | |
1579 } | |
1580 if(length($ref) == 1 and length($variant) == 1){ # SNP | |
1581 record_snv("$feature_name\tg.$location", | |
1582 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1583 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n"); | |
1584 } | |
1585 elsif(length($ref) == 1 and length($variant) > 1){ # insertion | |
1586 record_snv("$feature_name\tg.$location\_",($location+1), | |
1587 "ins",substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1588 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n"); | |
1589 } | |
1590 elsif(length($variant) == 1 and length($ref) > 1){ # deletion | |
1591 record_snv("$feature_name\tg.$location\_",($location+length($ref)-1), | |
1592 "del",substr($ref, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1593 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n"); | |
1594 } | |
1595 else{ # indel | |
1596 record_snv("$feature_name\tg.$location\_",($location+length($ref)-1), | |
1597 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1598 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n"); | |
1599 } | |
1600 } # end for variants | |
1601 next; # process next record, we've done all we can with a non-coding-gene SNP | |
1602 } | |
1603 } | |
1604 | |
1605 for my $target_parent (@$target_parents){ | |
1606 | |
1607 print STDERR "Checking parent $target_parent for on $chr:$fields[1] $fields[3] -> $fields[4]\n" if grep /dataset_7684.dat/, @ARGV; | |
1608 my @feature_ranges = @{$feature_range{$chr}->{$target_parent}}; | |
1609 # Calculate the position of the change within the feature range position | |
1610 my $strand = $feature_strand{$target_parent}; | |
1611 my $trans_table = exists $feature_transl_table{$target_parent} ? $feature_transl_table{$target_parent} : $default_transl_table; | |
1612 $fields[4]=~tr/"//d; # sometime strangely surroundsed by quotes | |
1613 my @variants = split /,/, $fields[4]; | |
1614 my @variant_depths = split /,/, $variant_depths; | |
1615 my @refs = (uc($fields[3])) x scalar(@variants); | |
1616 my @locations = ($fields[1]) x scalar(@variants); | |
1617 | |
1618 for(my $j = 0; $j <= $#variants; $j++){ | |
1619 my $ref = $refs[$j]; | |
1620 my $location = $locations[$j]; | |
1621 my $feature_offset = 0; | |
1622 my $feature_num = 0; | |
1623 my $variant = uc($variants[$j]); | |
1624 next if $variant eq "<NON_REF>" or $variant_depths[$j] eq "0"; # GVCF stuff | |
1625 my $variant_depth = $variant_depths[$j] || "n/a"; | |
1626 #print STDERR "Evaluating target parent $target_parent for $chr:$fields[1]-".($fields[1]+length($fields[3]))." -> ",join("/", @$target_parents) , "\n" if $fields[1] == 982994; | |
1627 | |
1628 # Break down MNPs into individual SNPs that are phased (TODO: skip if it's an inversion? would require amalgamating SNPs for tools that call them individually, phased :-P) | |
1629 if(length($variant) > 1 and length($variant) == length($ref)){ | |
1630 my @subvariants; | |
1631 my @subrefs; | |
1632 my @sublocations; | |
1633 my $phase_range = $location."-".($location+length($ref)-1); | |
1634 for(my $k = 0; $k < length($variant); $k++){ | |
1635 my $r = substr($ref, $k, 1); | |
1636 my $v = substr($variant, $k, 1); | |
1637 if($r ne $v){ | |
1638 push @subvariants, $v; | |
1639 push @subrefs, $r; | |
1640 push @sublocations, $location+$k; | |
1641 } | |
1642 elsif(@variants == 1){ | |
1643 next; # homo ref call | |
1644 } | |
1645 if($zygosity eq "heterozygote"){ | |
1646 # need to ignore case where a homozygous call (variant or ref) is included in a double non-ref het MNP | |
1647 if(@variants > 1){ | |
1648 my $homo = 1; | |
1649 for(my $l = 0; $l <= $#variants; $l++){ # using loop in case we handle oligoploid genomes in the future | |
1650 if(length($variants[$l]) <= $k or substr($variants[$l], $k, 1) ne $v){ | |
1651 $homo = 0; | |
1652 last; | |
1653 } | |
1654 } | |
1655 next if $homo; | |
1656 } | |
1657 my $phase_key = "$chr:".($location+$k).":$v"; | |
1658 my $phase_label = "M$j-$chr:$phase_range"; | |
1659 if(exists $chr2phase{$phase_key}){ | |
1660 if($chr2phase{$phase_key} !~ /$phase_label/){ | |
1661 $chr2phase{$phase_key} .= ",$phase_label"; | |
1662 } | |
1663 } | |
1664 else{ | |
1665 $chr2phase{$phase_key} = $phase_label; | |
1666 } | |
1667 } | |
1668 } | |
1669 # recycle this MNP variant loop to start processing the individual SNPs | |
1670 splice(@refs, $j, 1, @subrefs); | |
1671 splice(@variants, $j, 1, @subvariants); | |
1672 splice(@locations, $j, 1, @sublocations); | |
1673 splice(@variant_depths, $j, 1, ($variant_depth) x scalar(@subvariants)); | |
1674 $j--; | |
1675 next; | |
1676 } | |
1677 | |
1678 if($min_prop != 0 and $variant_depth eq "n/a" or $variant_depth eq "."){ | |
1679 print STDERR "Could not parse variant depth from $_\n" unless $quiet; | |
1680 next; | |
1681 } | |
1682 next unless $min_prop == 0 or $min_prop and $variant_depth >= $min_depth and $read_depth ne "n/a" and $variant_depth/$read_depth >= $min_prop; | |
1683 if($zygosity eq "NA"){ | |
1684 # make the call ourselves | |
1685 $zygosity = $variant_depths/$read_depth > 1-$min_prop ? "homozygote" : "heterozygote"; | |
1686 } | |
1687 # e.g. chr22 47857671 . CAAAG AAGAT,AAAAG 29.04 . | |
1688 if(length($variant) > 1 and length($variant) == length($ref)){ | |
1689 for(my $k = 0; $k < length($variant); $k++){ | |
1690 my $fixed_variant = $variant; | |
1691 substr($fixed_variant, $k, 1) = substr($ref, $k, 1); | |
1692 if($fixed_variant eq $ref){ # single base difference at base k between the two | |
1693 $ref = substr($ref, $k, 1); | |
1694 $variant = substr($variant, $k, 1); | |
1695 $location += $k; | |
1696 last; | |
1697 } | |
1698 } | |
1699 } | |
1700 | |
1701 # samtools reports indels with long common tails, causing non-canonical HGVS reporting and a problem when looking up the variant in dbSNP etc. | |
1702 # remove common tails to variant calls in order to try to rectify this | |
1703 else{ | |
1704 while(length($ref) > 1 and length($variant) > 1 and substr($ref, length($ref)-1) eq substr($variant, length($variant)-1)){ | |
1705 chop $ref; chop $variant; | |
1706 } | |
1707 } | |
1708 | |
1709 # See if a caveat should be added because the indel was in a polyhomomer region | |
1710 if(length($ref) > length($variant) and index($ref, $variant) == 0 and $fasta_index->fetch("$chr:".($location+1)."-".($location+length($ref)+1)) =~ /^([ACGT])\1+$/i){ | |
1711 if(not exists $chr2caveats{"$chr:$location"}){ | |
1712 $chr2caveats{"$chr:$location"} = "poly".uc($1)." region deletion"; | |
1713 } | |
1714 elsif($chr2caveats{"$chr:$location"} !~ /poly/){ | |
1715 $chr2caveats{"$chr:$location"} .= "; poly".uc($1)." region deletion"; | |
1716 } | |
1717 } | |
1718 elsif(length($ref) < length($variant) and index($variant, $ref) == 0 and substr($variant, 1) =~ /^([ACGT])\1+$/i){ | |
1719 if(not exists $chr2caveats{"$chr:$location"}){ | |
1720 $chr2caveats{"$chr:$location"} .= "poly".uc($1)." region insertion"; | |
1721 } | |
1722 elsif($chr2caveats{"$chr:$location"} !~ /poly/){ | |
1723 $chr2caveats{"$chr:$location"} .= "; poly".uc($1)." region insertion"; | |
1724 } | |
1725 } | |
1726 | |
1727 # Not a protein-coding gene? Report genomic cooordinates for HGVS | |
1728 if(not exists $feature_cds_max{$target_parent} or not defined $feature_cds_max{$target_parent} or $feature_cds_max{$target_parent} eq ""){ | |
1729 if(length($ref) == 1 and length($variant) == 1){ # SNP | |
1730 record_snv("$target_parent\tg.$location", | |
1731 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1732 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n"); | |
1733 } | |
1734 elsif(length($ref) == 1 and length($variant) > 1){ # insertion | |
1735 record_snv("$target_parent\tg.$location\_",($location+1), | |
1736 "ins",substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1737 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n"); | |
1738 } | |
1739 elsif(length($variant) == 1 and length($ref) > 1){ # deletion | |
1740 record_snv("$target_parent\tg.$location\_",($location+length($ref)-1), | |
1741 "del",substr($ref, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1742 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n"); | |
1743 } | |
1744 else{ # indel | |
1745 record_snv("$target_parent\tg.$location\_",($location+length($ref)-1), | |
1746 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1747 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n"); | |
1748 } | |
1749 next; # process next record, we've done all we can with a non-coding-gene SNP | |
1750 } | |
1751 | |
1752 if($strand eq "-"){ | |
1753 # set up utr offset for correct CDS coordinates | |
1754 for(my $i = $#feature_ranges; $i >= 0; $i--){ | |
1755 # exon is completely 5' of the start | |
1756 if($feature_ranges[$i]->[0] > $feature_cds_max{$target_parent}){ | |
1757 #print STDERR "Whole 5' UTR exon $i: ",$feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1,"\n"; | |
1758 $feature_offset -= $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1; | |
1759 } | |
1760 # exon with the cds start | |
1761 elsif($feature_ranges[$i]->[1] >= $feature_cds_max{$target_parent} and | |
1762 $feature_ranges[$i]->[0] <= $feature_cds_max{$target_parent}){ | |
1763 #print STDERR "Start codon in exon $i: ", $feature_cds_max{$target_parent} - $feature_ranges[$i]->[1],"\n"; | |
1764 $feature_offset += $feature_cds_max{$target_parent} - $feature_ranges[$i]->[1]; | |
1765 last; | |
1766 } | |
1767 else{ | |
1768 die "The CDS for $target_parent (on negative strand) ends downstream ", | |
1769 "($feature_cds_max{$target_parent}) of the an exon", | |
1770 " (", $feature_ranges[$i]->[0], "), which is illogical. Please revise the GFF file provided.\n"; | |
1771 } | |
1772 } | |
1773 for(my $i = $#feature_ranges; $i >= 0; $i--){ | |
1774 my $feature = $feature_ranges[$i]; | |
1775 # in the 3' UTR region of the gene | |
1776 if($location < $feature_cds_min{$target_parent}){ | |
1777 my $feature_exon = 0; | |
1778 $feature = $feature_ranges[$feature_exon]; | |
1779 while($location > $feature->[1]+$flanking_bases and | |
1780 $feature_exon < $#feature_ranges){ | |
1781 $feature = $feature_ranges[++$feature_exon]; # find the 3' utr exon in which the variant is located | |
1782 } | |
1783 # utr exons passed entirely | |
1784 my $stop_exon = $feature_exon; | |
1785 while($feature_ranges[$stop_exon]->[1] < $feature_cds_min{$target_parent}){ | |
1786 $stop_exon++; | |
1787 } | |
1788 my $post_offset = $feature_cds_min{$target_parent}-$feature_ranges[$stop_exon]->[0]; # offset from the stop codon in the final coding exon | |
1789 while($stop_exon > $feature_exon){ | |
1790 $post_offset += $feature_ranges[$stop_exon]->[1]-$feature_ranges[$stop_exon]->[0]+1; | |
1791 $stop_exon--; | |
1792 } | |
1793 | |
1794 my $pos = $feature->[1]-$location+1+$post_offset; | |
1795 my $junction_dist; | |
1796 if($location < $feature->[0]){ # after a UTR containing exon? set as .*DD+DD | |
1797 $junction_dist = ($feature->[0]-$location); | |
1798 $pos = ($post_offset+$feature->[1]-$feature->[0]+1)."+".$junction_dist; | |
1799 } | |
1800 elsif($location > $feature->[1]){ # before a total UTR exon? set as .*DD-DD | |
1801 $junction_dist = -($location-$feature->[1]); | |
1802 $pos = ($post_offset+1).$junction_dist; | |
1803 } | |
1804 else{ # in the UTR exon | |
1805 if($location - $feature->[0] < $feature->[1] - $location){ # location is closer to exon donor site | |
1806 $junction_dist = -($location - $feature->[0]+1); # +1 for HGVS syntax compatibility (there is no position 0, direct skip from -1 to +1) | |
1807 } | |
1808 else{ | |
1809 $junction_dist = $feature->[1] - $location +1; | |
1810 } | |
1811 } | |
1812 if(length($ref) == 1 and length($variant) == 1){ | |
1813 my $rc = join("",map({$rc{$_}} split(//,reverse($variant)))); | |
1814 # 3' UTR SNP | |
1815 record_snv("$target_parent\tc.*$pos", | |
1816 "$rc{$ref}>$rc\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1817 #"$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1818 join("\t",prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n"); | |
1819 } | |
1820 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){ | |
1821 my $rc = join("",map({$rc{$_}} split(//,reverse(substr($variant,1))))); | |
1822 # 3' UTR insertion | |
1823 record_snv("$target_parent\tc.*", | |
1824 hgvs_plus($pos,-1),"_*",$pos, | |
1825 "ins$rc\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1826 #"ins",substr($variant,1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1827 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n"); | |
1828 } | |
1829 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){ | |
1830 my $rc = join("",map({$rc{$_}} split(//,reverse($ref)))); | |
1831 my $delBases = substr($rc,0,length($rc)-1); | |
1832 if(length($ref) == 2){ | |
1833 # 3' UTR single base deletion | |
1834 record_snv("$target_parent\tc.*",hgvs_plus($pos,-1), | |
1835 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1836 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n"); | |
1837 } | |
1838 else{ | |
1839 # longer 3' UTR deletion | |
1840 record_snv("$target_parent\tc.*", | |
1841 hgvs_plus($pos,-length($ref)+1),"_*",hgvs_plus($pos, -1), | |
1842 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1843 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n"); | |
1844 } | |
1845 } | |
1846 else{ | |
1847 my $rc = join("",map({$rc{$_}} split(//,reverse($variant)))); | |
1848 if($rc eq $ref and length($variant) > 3){ | |
1849 # 3' UTR inversion | |
1850 record_snv("$target_parent\tc.*", | |
1851 hgvs_plus($pos,-length($ref)+1),"_*",$pos, | |
1852 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1853 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n"); | |
1854 last; | |
1855 } | |
1856 | |
1857 # complex substitution in 3' UTR | |
1858 # Will break if stop codon is modified | |
1859 record_snv("$target_parent\tc.*", | |
1860 hgvs_plus($pos,-length($ref)+1),"_*", $pos, | |
1861 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1862 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n"); | |
1863 } | |
1864 last; | |
1865 } | |
1866 # in the feature | |
1867 elsif($location >= $feature->[0] and $location <= $feature->[1]){ | |
1868 my $pos = $feature_offset+$feature->[1]-$location+1; | |
1869 if($location > $feature_cds_max{$target_parent}){ #since there is no position 0, the pos is in UTR, subtract one | |
1870 $pos = hgvs_plus($pos, -1); | |
1871 } | |
1872 my $first_exon_base = $feature_offset+1; | |
1873 my $exon_edge_dist = $feature->[1]-$location+1; # equiv of HGVS +X or -X intron syntax, but for exons | |
1874 $exon_edge_dist = $feature->[0]-$location-1 if abs($feature->[0]-$location-1) < $exon_edge_dist; # pick closer of donor and acceptor sites | |
1875 #print STDERR "Got ", $feature->[1]-$location+1, "vs. ", $feature->[0]-$location-1, ": chose $exon_edge_dist\n"; | |
1876 if(length($ref) == 1 and length($variant) == 1){ | |
1877 # SNP | |
1878 record_snv("$target_parent\tc.", | |
1879 $pos, | |
1880 "$rc{$ref}>$rc{$variant}\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1881 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
1882 ($pos < 1 ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1883 #($pos < 1 ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1884 } | |
1885 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){ | |
1886 my $rc = join("",map({$rc{$_}} split(//,reverse($variant)))); | |
1887 my $insBases = substr($rc,1); | |
1888 # insertion | |
1889 record_snv("$target_parent\tc.", | |
1890 hgvs_plus_exon($pos, -1, $first_exon_base),"_",$pos,"ins$insBases", | |
1891 "\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1892 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
1893 ($pos < 1 ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1894 #($pos < 1 ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1895 } | |
1896 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){ | |
1897 my $rc = join("",map({$rc{$_}} split(//,reverse($ref)))); | |
1898 my $delBases = substr($rc,0,length($rc)-1); | |
1899 # single nucleotide deletion | |
1900 if(length($ref) == 2){ | |
1901 record_snv("$target_parent\tc.", | |
1902 hgvs_plus_exon($pos, -1, $first_exon_base), | |
1903 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1904 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
1905 ($pos-1 < 1 ? "NA" : $pos-1 < $first_exon_base ? "p.?" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1906 #($pos-1 < 1 ? "NA" : $pos-1 < $first_exon_base ? "p.?" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1907 } | |
1908 # longer deletion | |
1909 else{ | |
1910 $exon_edge_dist = $feature->[1]-$location-length($ref)+1 if abs($feature->[1]-$location-length($ref)+1) < $exon_edge_dist; | |
1911 record_snv("$target_parent\tc.", | |
1912 hgvs_plus_exon($pos, -length($ref)+1, $first_exon_base),"_", | |
1913 hgvs_plus_exon($pos, -1, $first_exon_base), | |
1914 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1915 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
1916 ($pos-1 < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1917 #($pos-1 < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1918 } | |
1919 } | |
1920 else{ | |
1921 # complex substitution | |
1922 $exon_edge_dist = $feature->[1]-$location-length($ref)+1 if abs($feature->[1]-$location-length($ref)+1) < $exon_edge_dist; | |
1923 my $rc = join("",map({$rc{$_}} split(//,reverse($variant)))); | |
1924 if($rc eq $variant and length($variant) > 3){ | |
1925 # inversion | |
1926 record_snv("$target_parent\tc.", | |
1927 hgvs_plus_exon($pos,-length($ref)+1,$first_exon_base),"_", | |
1928 $pos, | |
1929 "inv", | |
1930 "\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1931 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
1932 ($pos < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1933 | |
1934 last; | |
1935 } | |
1936 record_snv("$target_parent\tc.", | |
1937 hgvs_plus_exon($pos,-length($ref)+1,$first_exon_base),"_", | |
1938 $pos, | |
1939 "delins$rc", | |
1940 "\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1941 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
1942 ($pos < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1943 #($pos < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
1944 } | |
1945 last; | |
1946 } | |
1947 # 5' of feature (on negative strand) | |
1948 elsif($location > $feature->[1]){ | |
1949 if(length($ref) == 1 and length($variant) == 1){ | |
1950 # intronic SNP | |
1951 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){ | |
1952 # Closer to acceptor site | |
1953 record_snv("$target_parent\tc.",$feature_offset+1, | |
1954 ($feature->[1]-$location), | |
1955 "$rc{$ref}>$rc{$variant}\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1956 #"$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1957 join("\t", prop_info_key($chr,$location,$ref,$variant, $feature->[1]-$location)),"\tNA\n"); | |
1958 } | |
1959 else{ | |
1960 # Closer to donor site | |
1961 record_snv("$target_parent\tc.",$feature_offset,"+", | |
1962 ($feature_ranges[$i+1]->[0]-$location), | |
1963 "$rc{$ref}>$rc{$variant}\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1964 #"$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1965 join("\t", prop_info_key($chr,$location,$ref,$variant, $feature_ranges[$i+1]->[0]-$location)),"\tNA\n"); | |
1966 } | |
1967 } | |
1968 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){ | |
1969 my $rc = join("",map({$rc{$_}} split(//,reverse(substr($variant,1))))); | |
1970 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){ | |
1971 # intronic insertion near acceptor | |
1972 my $pos = ($feature_offset+1).($feature->[1]-$location); | |
1973 record_snv("$target_parent\tc.", | |
1974 hgvs_plus($pos,-1),"_",$pos, | |
1975 "ins", | |
1976 $rc,"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1977 #substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1978 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature->[1]-$location-1)),"\tNA\n"); | |
1979 } | |
1980 else{ | |
1981 # intronic insertion near donor | |
1982 my $pos = $feature_offset."+".($feature_ranges[$i+1]->[0]-$location); | |
1983 record_snv("$target_parent\tc.", | |
1984 hgvs_plus($pos,-1),"_",$pos, | |
1985 "ins", | |
1986 $rc,"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1987 #substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
1988 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature_ranges[$i+1]->[0]-$location+1)),"\tNA\n"); | |
1989 } | |
1990 } | |
1991 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){ | |
1992 # intronic deletion | |
1993 # single nucleotide deletion | |
1994 my $rc = reverse($ref); | |
1995 $rc=~tr/ACGT/TGCA/; | |
1996 my $delBases = substr($rc, 0, length($rc)-1); | |
1997 if(length($ref) == 2){ | |
1998 # single intronic deletion near acceptor | |
1999 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){ | |
2000 my $off = $feature->[1]-$location-1; | |
2001 record_snv("$target_parent\tc.", | |
2002 ($feature_offset+1),$off, | |
2003 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2004 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off >= -2 ? "p.?" : "NA"),"\n"); | |
2005 } | |
2006 # single intronic deletion near donor | |
2007 else{ | |
2008 my $pos = $feature_offset; | |
2009 my $off = $feature_ranges[$i+1]->[0]-$location+1; | |
2010 record_snv("$target_parent\tc.", | |
2011 hgvs_plus_exon($pos, $off, $pos), | |
2012 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2013 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off <= 2 ? "p.?" : "NA"),"\n"); | |
2014 } | |
2015 } | |
2016 # longer deletion | |
2017 else{ | |
2018 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){ | |
2019 # long intronic deletion near acceptor | |
2020 my $off = $feature->[1]-$location-1; | |
2021 my $pos = ($feature_offset+1).$off; | |
2022 record_snv("$target_parent\tc.", | |
2023 hgvs_plus($pos,-length($ref)+2),"_",$pos, | |
2024 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2025 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off >= -2 ? "p.?" : "NA"),"\n"); | |
2026 } | |
2027 else{ | |
2028 # long intronic deletion near donor | |
2029 my $off = $feature_ranges[$i+1]->[0]-$location+1; | |
2030 my $pos = ($feature_offset)."+".$off; | |
2031 record_snv("$target_parent\tc.", | |
2032 $pos,"_",hgvs_plus($pos,-length($ref)-1), | |
2033 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2034 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off-length($ref)+1 <= 2 ? "p.?" : "NA"),"\n"); | |
2035 } | |
2036 last; | |
2037 } | |
2038 } | |
2039 else{ | |
2040 my $rc = reverse($ref); | |
2041 $rc=~tr/ACGT/TGCA/; | |
2042 if($rc eq $variant and length($variant) > 3){ | |
2043 # intronic inversion near acceptor site | |
2044 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){ | |
2045 my $pos = ($feature_offset+1).($feature->[1]-$location); | |
2046 record_snv("$target_parent\tc.", | |
2047 hgvs_plus($pos,-length($ref)+1),"_",$pos, | |
2048 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2049 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature->[1]-$location)),"\tNA\n"); | |
2050 } | |
2051 else{ | |
2052 my $pos = ($feature_offset)."+".($feature_ranges[$i+1]->[0]-$location); | |
2053 record_snv("$target_parent\tc.", | |
2054 $pos,"_",hgvs_plus($pos, length($ref)-1), | |
2055 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2056 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature_ranges[$i+1]->[0]-$location)),"\tNA\n"); | |
2057 } | |
2058 last; | |
2059 } | |
2060 $rc = reverse($variant); | |
2061 $rc=~tr/ACGT/TGCA/; | |
2062 # Intronic complex substitution | |
2063 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){ | |
2064 # complex intronic substitution near acceptor site | |
2065 my $pos = ($feature_offset+1).($feature->[1]-$location); | |
2066 record_snv("$target_parent\tc.", | |
2067 hgvs_plus($pos, -length($ref)+1),"_",$pos, | |
2068 "delins$rc\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2069 #"delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2070 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature->[1]-$location)),"\tNA\n"); | |
2071 } | |
2072 else{ | |
2073 # complex intronic substitution near donor site | |
2074 my $pos = $feature_offset."+".($feature_ranges[$i+1]->[0]-$location); | |
2075 record_snv("$target_parent\tc.", | |
2076 $pos,"_",hgvs_plus($pos, length($ref)-1), | |
2077 "delins$rc\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2078 #"delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2079 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature_ranges[$i+1]->[0]-$location)),"\tNA\n"); | |
2080 } | |
2081 } | |
2082 last; | |
2083 } | |
2084 else{ | |
2085 #print STDERR "Offset going from ", $feature_offset, " to ", $feature_offset+$feature->[1]-$feature->[0]+1,"\n"; | |
2086 $feature_offset += $feature->[1]-$feature->[0]+1; | |
2087 #print STDERR "Set feature offset to $feature_offset by adding ",$feature->[1],"-", $feature->[0],"+1\n"; | |
2088 } | |
2089 } | |
2090 } | |
2091 else{ | |
2092 # forward strand | |
2093 | |
2094 # set up utr offset for correct CDS coordinates | |
2095 for(my $i = 0; $i <= $#feature_ranges; $i++){ | |
2096 # All 5' utr exon | |
2097 if($feature_ranges[$i]->[1] < $feature_cds_min{$target_parent}){ | |
2098 $feature_offset -= $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1; | |
2099 } | |
2100 # exon with the cds start | |
2101 elsif($feature_ranges[$i]->[1] >= $feature_cds_min{$target_parent} and | |
2102 $feature_ranges[$i]->[0] <= $feature_cds_min{$target_parent}){ | |
2103 $feature_offset -= $feature_cds_min{$target_parent} - $feature_ranges[$i]->[0]; | |
2104 last; | |
2105 } | |
2106 else{ | |
2107 die "The CDS for $target_parent starts upstream ($feature_cds_max{$target_parent}) of the first exon", | |
2108 " (", $feature_ranges[$i]->[0], "), which is illogical. Please revise the GFF file provided.\n"; | |
2109 } | |
2110 } | |
2111 for(my $i = 0; $i <= $#feature_ranges; $i++){ | |
2112 my $feature = $feature_ranges[$i]; | |
2113 # 3' of last coding position | |
2114 if($location > $feature_cds_max{$target_parent}){ | |
2115 # find the exon with the stop codon | |
2116 while($feature->[1] < $feature_cds_max{$target_parent}){ | |
2117 $feature = $feature_ranges[++$i]; | |
2118 } | |
2119 my $post_offset = $feature->[0]-$feature_cds_max{$target_parent}; | |
2120 while($location > $feature->[1]+$flanking_bases and | |
2121 $i < $#feature_ranges){ | |
2122 $post_offset += $feature->[1]-$feature->[0]+1; | |
2123 $feature = $feature_ranges[++$i]; # find the 3' utr exon in which the variant is located | |
2124 } | |
2125 my $pos = $location-$feature->[0]+$post_offset; | |
2126 #print STDERR "Positive strand: got $pos for $location, exon #$i of $#feature_ranges, post_offset is $post_offset\n" if $location-$feature->[1] > $flanking_bases; | |
2127 my $off; | |
2128 if($location > $feature->[1]){ # after a UTR containing exon? set as .*DD+DD | |
2129 $off = $location-$feature->[1]; | |
2130 $pos = ($post_offset+$feature->[1]-$feature->[0]+1)."+".$off; | |
2131 } | |
2132 elsif($location < $feature->[0]){ # before a total UTR exon? set as .*DD-DD | |
2133 $off = -($feature->[0]-$location); | |
2134 $pos = ($post_offset+1).$off; | |
2135 } | |
2136 else{ | |
2137 if($location-$feature->[0] < $feature->[1]-$location){ | |
2138 $off = $location-$feature->[0]+1; # +1 since HGVS skips right from -1 to +1 at exon boundary | |
2139 } | |
2140 else{ | |
2141 $off = $location-$feature->[1]-1; # will be negative | |
2142 } | |
2143 } | |
2144 if(length($ref) == 1 and length($variant) == 1){ | |
2145 # 3' UTR SNP | |
2146 record_snv("$target_parent\tc.*$pos", | |
2147 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2148 join("\t", prop_info_key($chr,$location,$ref,$variant, $off)),"\tNA\n"); | |
2149 } | |
2150 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){ | |
2151 # 3' UTR insertion | |
2152 record_snv("$target_parent\tc.*", | |
2153 hgvs_plus($pos,1),"_*",hgvs_plus($pos,2), | |
2154 "ins",substr($variant,1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2155 join("\t", prop_info_key($chr,$location,$ref,$variant, $off)),"\tNA\n"); | |
2156 } | |
2157 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){ | |
2158 my $delBases = substr($ref, 1); | |
2159 if(length($ref) == 2){ | |
2160 # 3' UTR single base deletion | |
2161 record_snv("$target_parent\tc.*",hgvs_plus($pos,1), | |
2162 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2163 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\tNA\n"); | |
2164 } | |
2165 else{ | |
2166 # longer 3' UTR deletion | |
2167 record_snv("$target_parent\tc.*", | |
2168 hgvs_plus($pos,1),"_*",hgvs_plus($pos,length($ref)-1), | |
2169 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2170 join("\t", prop_info_key($chr,$location,$ref,$variant, $off)),"\tNA\n"); | |
2171 } | |
2172 } | |
2173 else{ | |
2174 my $rc = reverse($ref); | |
2175 $rc=~tr/ACGT/TGCA/; | |
2176 if($rc eq $variant and length($variant) > 3){ | |
2177 # 3' UTR inversion | |
2178 record_snv("$target_parent\tc.*$pos", | |
2179 "_*",hgvs_plus($pos,length($ref)-1), | |
2180 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2181 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\tNA\n"); | |
2182 last; | |
2183 } | |
2184 # complex substitution in 3' UTR | |
2185 record_snv("$target_parent\tc.*$pos", | |
2186 "_*",hgvs_plus($pos,length($ref)-1), | |
2187 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2188 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\tNA\n"); | |
2189 } | |
2190 last; | |
2191 } | |
2192 # in the exon | |
2193 elsif($location >= $feature->[0] and $location <= $feature->[1]){ | |
2194 my $pos = $feature_offset+$location-$feature->[0]+1; | |
2195 my $last_exon_base = $feature_offset+$feature->[1]-$feature->[0]+1; | |
2196 my $exon_edge_dist = $location-$feature->[0]+1; # equiv of HGVS +X or -X intron syntax, but for exons | |
2197 $exon_edge_dist = $location-$feature->[1]-1 if abs($location-$feature->[1]-1) < $exon_edge_dist; # pick closer of donor and acceptor sites | |
2198 #print STDERR "Got ", $location-$feature->[0]+1, "vs. ", $location-$feature->[1]-1, ": chose $exon_edge_dist\n"; | |
2199 if($location < $feature_cds_min{$target_parent}){ #since there is no position 0, the pos is in UTR, subtract one | |
2200 $pos = hgvs_plus($pos, -1); | |
2201 } | |
2202 if(length($ref) == 1 and length($variant) == 1){ | |
2203 # SNP | |
2204 record_snv("$target_parent\tc.$pos", | |
2205 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2206 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
2207 ($pos < 1 ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2208 #($pos < 1 ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2209 } | |
2210 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){ | |
2211 # insertion | |
2212 record_snv("$target_parent\tc.$pos", | |
2213 "_",hgvs_plus_exon($pos,1,$last_exon_base),"ins", | |
2214 substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2215 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
2216 ($pos < 1 ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2217 #($pos < 1 ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2218 } | |
2219 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){ | |
2220 my $delBases = substr($ref, 1); | |
2221 # single nucleotide deletion | |
2222 if(length($delBases) == 1){ | |
2223 record_snv("$target_parent\tc.", | |
2224 hgvs_plus_exon($pos,1,$last_exon_base), | |
2225 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2226 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
2227 ($pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2228 #($pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2229 } | |
2230 # longer deletion | |
2231 else{ | |
2232 $exon_edge_dist = $feature->[1]-$location-length($ref)-1 if abs($feature->[1]-$location-length($ref)-1) < $exon_edge_dist; | |
2233 record_snv("$target_parent\tc.", | |
2234 hgvs_plus_exon($pos,1,$last_exon_base),"_", | |
2235 hgvs_plus_exon($pos,length($ref)-1,$last_exon_base), | |
2236 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2237 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
2238 ($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2239 #($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2240 } | |
2241 } | |
2242 else{ | |
2243 $exon_edge_dist = $feature->[1]-$location-length($ref)-1 if abs($feature->[1]-$location-length($ref)-1) < $exon_edge_dist; | |
2244 my $rc = reverse($ref); | |
2245 $rc=~tr/ACGT/TGCA/; | |
2246 if($rc eq $variant and length($variant) > 3){ | |
2247 # inversion | |
2248 record_snv("$target_parent\tc.$pos", | |
2249 "_",hgvs_plus_exon($pos,length($ref)-1, $last_exon_base), | |
2250 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2251 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
2252 ($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2253 #($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2254 last; | |
2255 } | |
2256 # complex substitution | |
2257 record_snv("$target_parent\tc.$pos", | |
2258 "_",hgvs_plus_exon($pos, length($ref)-1, $last_exon_base), | |
2259 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2260 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t", | |
2261 ($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2262 #($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n"); | |
2263 } | |
2264 last; | |
2265 } | |
2266 # 5' of feature | |
2267 elsif($location < $feature->[0]){ | |
2268 if(length($ref) == 1 and length($variant) == 1){ | |
2269 # intronic SNP | |
2270 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){ | |
2271 # Closer to donor site | |
2272 record_snv("$target_parent\tc.",$feature_offset,"+", | |
2273 ($location-$feature_ranges[$i-1]->[1]), | |
2274 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2275 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature_ranges[$i-1]->[1])),"\tNA\n"); | |
2276 } | |
2277 else{ | |
2278 # Closer to acceptor site | |
2279 record_snv("$target_parent\tc.",$feature_offset+1, | |
2280 ($location-$feature->[0]), | |
2281 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2282 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature->[0])),"\tNA\n"); | |
2283 } | |
2284 } | |
2285 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){ | |
2286 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){ | |
2287 # intronic insertion near donor | |
2288 my $pos = $feature_offset."+".($location-$feature_ranges[$i-1]->[1]); | |
2289 record_snv("$target_parent\tc.", | |
2290 $pos,"_",hgvs_plus($pos,1), | |
2291 "ins", | |
2292 substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2293 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature_ranges[$i-1]->[1])),"\tNA\n"); | |
2294 } | |
2295 else{ | |
2296 # intronic insertion near acceptor | |
2297 my $pos = ($feature_offset+1).($location-$feature->[0]); | |
2298 record_snv("$target_parent\tc.", | |
2299 $pos,"_",hgvs_plus($pos,1), | |
2300 "ins", | |
2301 substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2302 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature->[0])),"\tNA\n"); | |
2303 } | |
2304 } | |
2305 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){ | |
2306 # intronic deletion | |
2307 # single nucleotide deletion | |
2308 my $delBases = substr($ref, 1); | |
2309 if(length($ref) == 2){ | |
2310 # single intronic deletion near donor | |
2311 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){ | |
2312 my $off = $location-$feature_ranges[$i-1]->[1]+1; | |
2313 record_snv("$target_parent\tc.", | |
2314 $feature_offset,"+",$off, | |
2315 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2316 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off <= 2 ? "p.?" : "NA"),"\n"); | |
2317 } | |
2318 # single intronic deletion near acceptor | |
2319 else{ | |
2320 my $pos = ($feature_offset+1); | |
2321 my $off = $location-$feature->[0]; | |
2322 record_snv("$target_parent\tc.", | |
2323 hgvs_plus_exon($pos, $off, $pos), | |
2324 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2325 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off >= -2 ? "p.?" : "NA"),"\n"); | |
2326 } | |
2327 } | |
2328 # longer deletion | |
2329 else{ | |
2330 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){ | |
2331 # long intronic deletion near donor | |
2332 my $off = $location-$feature_ranges[$i-1]->[1]+1; | |
2333 my $pos = $feature_offset."+".$off; | |
2334 record_snv("$target_parent\tc.", | |
2335 $pos,"_",hgvs_plus($pos,length($ref)-2), | |
2336 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2337 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off <= 2 ? "p.?" : "NA"),"\n"); | |
2338 } | |
2339 else{ | |
2340 # long intronic deletion near acceptor | |
2341 my $off = $location-$feature->[0]+1; | |
2342 my $pos = ($feature_offset+1).$off; | |
2343 record_snv("$target_parent\tc.", | |
2344 $pos,"_",hgvs_plus($pos,length($ref)-2), | |
2345 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2346 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off+length($ref)-2 >= -2 ? "p.?" : "NA"),"\n"); | |
2347 } | |
2348 } | |
2349 } | |
2350 else{ | |
2351 my $rc = reverse($ref); | |
2352 $rc=~tr/ACGT/TGCA/; | |
2353 if($rc eq $variant and length($variant) > 3){ | |
2354 # intronic inversion near donor site | |
2355 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){ | |
2356 my $pos = $feature_offset."+".($location-$feature_ranges[$i-1]->[1]); | |
2357 record_snv("$target_parent\tc.", | |
2358 $pos,"_",hgvs_plus($pos,length($ref)-1), | |
2359 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2360 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature_ranges[$i-1]->[1])),"\tNA\n"); | |
2361 } | |
2362 else{ | |
2363 my $pos = ($feature_offset+1).($location-$feature->[0]); | |
2364 record_snv("$target_parent\tc.", | |
2365 $pos,"_",hgvs_plus($pos, length($ref)-1), | |
2366 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2367 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature->[0])),"\tNA\n"); | |
2368 } | |
2369 last; | |
2370 } | |
2371 # Intronic complex substitution | |
2372 # Note: sub maybe have comma in it to denote two possible variants | |
2373 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){ | |
2374 # complex intronic substitution near donor site | |
2375 my $pos = $feature_offset."+".($location-$feature_ranges[$i-1]->[1]); | |
2376 record_snv("$target_parent\tc.", | |
2377 $pos,"_",hgvs_plus($pos, length($ref)-1), | |
2378 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2379 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature_ranges[$i-1]->[1])),"\tNA\n"); | |
2380 } | |
2381 else{ | |
2382 # complex intronic substitution near acceptor site | |
2383 my $pos = ($feature_offset+1).($location-$feature->[0]); | |
2384 record_snv("$target_parent\tc.", | |
2385 $pos,"_",hgvs_plus($pos, length($ref)-1), | |
2386 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t", | |
2387 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature->[0])),"\tNA\n"); | |
2388 } | |
2389 } | |
2390 last; | |
2391 } | |
2392 else{ | |
2393 # feature is past this exon | |
2394 $feature_offset += $feature->[1]-$feature->[0]+1; | |
2395 } | |
2396 } | |
2397 } | |
2398 } # for each variant on the line | |
2399 } # for each gene overlapping the site the VCF describes | |
2400 } # for each VCF line | |
2401 print STDERR "\n" unless $quiet; | |
2402 close(VCFIN); | |
2403 | |
2404 # Before we can start printing the variants, we need to look at the phase information and calculate the real haplotype HGVS changes | |
2405 #if(keys %chr2phase){ | |
2406 # Note that we could have samtools read-backed haplotype info, MNPs in the VCF, and pre-existing haplotypes in the input VCF (e.g. imputed or based on Mendelian inheritance where trios exist) | |
2407 # We need to create new disjoint sets of phased blocks from the (consistent) union of these data. | |
2408 # my $chr2phase2variants = combine_phase_data(\%chr2phase); | |
2409 | |
2410 # TODO: Calculate protein HGVS syntax for each variant, now that all phase data has been incorporated | |
2411 #for my $chr (keys %$chr2phase2variants){ | |
2412 # for my $phase (keys %{$chr2phase2variants{$chr}){ | |
2413 # # apply all phased changes to the reference chromosomal seq | |
2414 # my $phased_seq = $seq{$chr}; #reference | |
2415 # # sort the variants from 3' to 5' so that edits after indels don't need adjustment in their ref coordinate | |
2416 # my @sorted_variants = sort {my($a_pos) = $a =~ /:(\d+):/; my($b_pos) = $b =~ /:(\d+):/; $b_pos <=> $a_pos} @{$chr2phase2variants{$chr}->{$phase}}; | |
2417 # for my $variant (@sorted_variants){ | |
2418 # } | |
2419 # } | |
2420 #} | |
2421 #} | |
2422 | |
2423 # retrieve the MAF info en masse for each chromosome, as this is much more efficient | |
2424 my @out_lines; | |
2425 for my $snv (@snvs){ | |
2426 chomp $snv; | |
2427 my @fields = split /\t/, $snv; | |
2428 # For CNVs, all the fields are already filled out | |
2429 if(@fields > 13){ | |
2430 push @out_lines, join("\t", $feature_type{$fields[0]}, ($fields[0] =~ /\S/ ? $feature_length{$fields[0]} : "NA"), @fields); | |
2431 next; | |
2432 } | |
2433 my $variant_key = $fields[9]; | |
2434 $fields[9] = join("\t", prop_info($dbsnp,$internal_snp,$variant_key)); | |
2435 my $from = $fields[4]; | |
2436 my $chr_pos_key = $fields[3].":".$from; | |
2437 my $to = $fields[4]; # true for SNPs and insertions | |
2438 my @variant_key = split /:/, $variant_key; | |
2439 # For deletions and complex variants, calculate the affected reference genome range and set the 'to' | |
2440 if(length($variant_key[2]) > 1){ | |
2441 $to += length($variant_key[2])-1; | |
2442 } | |
2443 splice(@fields, 5, 0, $to); | |
2444 | |
2445 # Otherwise expand the key into the relevant MAF values | |
2446 $fields[0] =~ s/\/chr.*$//; # some transcript ids are repeated... we expect "id/chr#" in the GTF file to distinguish these, but should get rid of them at reporting time | |
2447 # the offset from the nearest exon border if coding | |
2448 push @fields, ($#variant_key > 3 ? $variant_key[4] : ""); | |
2449 # add gene name(s) | |
2450 push @fields, range2genes($fields[3], $from, $to+1); | |
2451 # add caveats | |
2452 my $c = $fields[3]; | |
2453 if(not exists $chr2mappability{$c}){ | |
2454 if($c =~ s/^chr//){ | |
2455 # nothing more | |
2456 } | |
2457 else{ | |
2458 $c = "chr$c"; | |
2459 } | |
2460 } | |
2461 my $mappability_caveats = exists $chr2mappability{$c} ? $chr2mappability{$c}->fetch($fields[4], $fields[4]+1) : []; | |
2462 if(ref $mappability_caveats eq "ARRAY" and @$mappability_caveats){ | |
2463 my %h; | |
2464 if(exists $chr2caveats{$chr_pos_key}){ | |
2465 if($chr2caveats{$chr_pos_key} !~ /non-unique/){ | |
2466 $chr2caveats{$chr_pos_key} = join("; ", grep {not $h{$_}++} @$mappability_caveats)."; ".$chr2caveats{$chr_pos_key}; | |
2467 } | |
2468 } | |
2469 else{ | |
2470 $chr2caveats{$chr_pos_key} = join("; ", grep {not $h{$_}++} @$mappability_caveats); | |
2471 } | |
2472 } | |
2473 push @fields, (exists $chr2caveats{$chr_pos_key} ? $chr2caveats{$chr_pos_key} : ""); | |
2474 # add phase | |
2475 push @fields, find_phase($variant_key); | |
2476 push @out_lines, join("\t", $feature_type{$fields[0]}, $feature_length{$fields[0]}, @fields); | |
2477 } | |
2478 | |
2479 # Now tabulate the rare variant numbers | |
2480 my %gene2rares; | |
2481 my %gene2aa_rares; | |
2482 for my $line (@out_lines){ | |
2483 my @F = split /\t/, $line, -1; | |
2484 if($F[15] eq "NA" or $F[15] < $rare_variant_prop and (!$internal_snp or $F[17] < $rare_variant_prop)){ | |
2485 my $gene_list = $internal_snp ? $F[20] : $F[19]; | |
2486 next unless defined $gene_list; | |
2487 for my $g (split /; /, $gene_list){ | |
2488 $gene2rares{$g}++; | |
2489 # Check the cDNA HGVS syntax for relevance | |
2490 if($F[3] =~ /c.\d+/ or # coding | |
2491 $F[3] =~ /c.\d+.*-[12]/ or # splicing acceptor | |
2492 $F[3] =~ /c.\d+\+[12345]/){ # splicing donor | |
2493 $gene2aa_rares{$g}++; | |
2494 } | |
2495 } | |
2496 } | |
2497 } | |
2498 | |
2499 # Print the results | |
2500 for my $line (@out_lines){ | |
2501 my @F = split /\t/, $line, -1; | |
2502 my $gene_list = $internal_snp ? $F[20] : $F[19]; | |
2503 if(not defined $gene_list){ | |
2504 print OUT join("\t", @F, "", ""), "\n"; next; | |
2505 } | |
2506 | |
2507 my $max_gene_rare = 0; | |
2508 my $max_gene_aa_rare = 0; | |
2509 for my $g (split /; /, $gene_list){ | |
2510 next unless exists $gene2rares{$g}; | |
2511 if($gene2rares{$g} > $max_gene_rare){ | |
2512 $max_gene_rare = $gene2rares{$g}; | |
2513 } | |
2514 next unless exists $gene2aa_rares{$g}; | |
2515 if($gene2aa_rares{$g} > $max_gene_aa_rare){ | |
2516 $max_gene_aa_rare = $gene2aa_rares{$g}; | |
2517 } | |
2518 } | |
2519 print OUT join("\t", @F, $max_gene_rare, $max_gene_aa_rare), "\n"; | |
2520 } | |
2521 close(OUT); | |
2522 | |
2523 sub range2genes{ | |
2524 my ($c, $from, $to) = @_; | |
2525 if(not exists $gene_ids{$c}){ | |
2526 if($c =~ s/^chr//){ | |
2527 # nothing more | |
2528 } | |
2529 else{ | |
2530 $c = "chr$c"; | |
2531 } | |
2532 } | |
2533 if(exists $gene_ids{$c}){ | |
2534 my %have; | |
2535 return join("; ", grep {not $have{$_}++} @{$gene_ids{$c}->fetch($from, $to+1)}); | |
2536 } | |
2537 else{ | |
2538 return ""; | |
2539 } | |
2540 } | |
2541 sub combine_phase_data{ | |
2542 my ($phases) = @_; # map from variant to its phase data | |
2543 | |
2544 # Create a reverse mapping from phase regions to their variants | |
2545 my %chr2phase_region2variants; | |
2546 my @variants = keys %$phases; | |
2547 for my $variant (@variants){ | |
2548 my ($chr) = $variant =~ /^\S+?-(\S+):/; | |
2549 $chr2phase_region2variants{$chr} = {} if not exists $chr2phase_region2variants{$chr}; | |
2550 for my $phase_region (split /,/, $phases->{$variant}){ | |
2551 $chr2phase_region2variants{$chr}->{$phase_region} = [] if not exists $chr2phase_region2variants{$chr}->{$phase_region}; | |
2552 push @{$chr2phase_region2variants{$phase_region}}, $variant; | |
2553 } | |
2554 } | |
2555 | |
2556 # Now for each phased block known so far, see if any variant in it is also part of another block | |
2557 # If so, do a union since phasing is both transitive and commutative. | |
2558 # The quickest way to do this is to check for overlapping intervals, then check for common members amongst those that do overlap | |
2559 for my $chr (keys %chr2phase_region2variants){ | |
2560 my @ordered_phase_regions = sort {my($a_pos) = $a =~ /:(\d+)/; my($b_pos) = $b =~ /:(\d+)/; $a_pos <=> $b_pos} keys %{$chr2phase_region2variants{$chr}}; | |
2561 my $sets = new DisjointSets(scalar(@ordered_phase_regions)); | |
2562 | |
2563 for (my $i = 0; $i < $#ordered_phase_regions; $i++){ | |
2564 my ($start, $stop, $variant) = $ordered_phase_regions[$i]; | |
2565 for (my $j = $i+1; $j <= $#ordered_phase_regions; $j++){ | |
2566 my ($start2, $stop2, $variant2) = $ordered_phase_regions[$j]; | |
2567 if($start2 > $stop){ # won't overlap any regions after this in the sorted list | |
2568 last; | |
2569 } | |
2570 # If we get here, it is implicit that $stop >= $start2 and $start < $stop2, i.e. there is overlap | |
2571 # Now check if there is a shared variant (otherwise we might erroneously join blocks from different physical chromosomal arms) | |
2572 my $have_shared_variant = 0; | |
2573 my $overlapping_phase_region = $ordered_phase_regions[$j]; | |
2574 for my $variant (@{$chr2phase_region2variants{$chr}->{$ordered_phase_regions[$i]}}){ | |
2575 if($phases->{$variant} =~ /\b$overlapping_phase_region\b/){ | |
2576 $have_shared_variant = 1; last; | |
2577 } | |
2578 } | |
2579 # sanity check that there aren't conflicting variants in the new block (i.e. two different variants in the same position) | |
2580 my %pos2base; | |
2581 my $have_conflicting_variant = 0; | |
2582 for my $variant (@{$chr2phase_region2variants{$chr}->{$ordered_phase_regions[$i]}}, @{$chr2phase_region2variants{$chr}->{$ordered_phase_regions[$j]}}){ | |
2583 my ($pos, $base) = $variant =~ /(\d+):(.+?)$/; | |
2584 if(exists $pos2base{$pos} and $pos2base{$pos} ne $base){ | |
2585 # conflict, note with a caveat | |
2586 if(exists $chr2caveats{"$chr:$pos"}){ | |
2587 $chr2caveats{"$chr:$pos"} .= "; inconsistent haplotype phasing" unless $chr2caveats{"$chr:$pos"} =~ /inconsistent haplotype phasing/; | |
2588 } | |
2589 else{ | |
2590 $chr2caveats{"$chr:$pos"} = "inconsistent haplotype phasing"; | |
2591 } | |
2592 $have_conflicting_variant ||= 1; | |
2593 } | |
2594 elsif(not exists $pos2base{$pos}){ | |
2595 $pos2base{$pos} = $base; | |
2596 } | |
2597 } | |
2598 | |
2599 $sets->union($i+1, $j+1) if $have_shared_variant and not $have_conflicting_variant; # indexes are one-based for sets rather than 0-based | |
2600 } | |
2601 } | |
2602 my $phase_sets = $sets->sets; #disjoint haplotype sets | |
2603 my %region_counts; | |
2604 for my $phase_set (@$phase_sets){ | |
2605 next if scalar(@$phase_set) == 1; # No change to existing phase region (is disjoint from all others) | |
2606 # Generate a new haploblock to replace the old ones that are being merged | |
2607 my $merged_start = 10000000000; | |
2608 my $merged_end = 0; | |
2609 for my $ordered_phase_region_index (@$phase_set){ | |
2610 my ($start, $end) = $ordered_phase_regions[$ordered_phase_region_index-1] =~ /(\d+)-(\d+)$/; | |
2611 $merged_start = $start if $start < $merged_start; | |
2612 $merged_end = $end if $end > $merged_end; | |
2613 } | |
2614 # At the start of the region is a unique prefix so we can tell the arms apart if two haploblocks have the exact same boundary | |
2615 my $region_count = $region_counts{"$merged_start-$merged_end"}++; | |
2616 my $merged_haploblock_name = "Y$region_count-$chr:$merged_start-$merged_end"; | |
2617 # Assign this new name to overwrite the premerge values for each variant contained within | |
2618 for my $ordered_phase_region_index (@$phase_set){ | |
2619 for my $variant (@{$chr2phase_region2variants{$chr}->{$ordered_phase_regions[$ordered_phase_region_index-1]}}){ # incl. one-based set correction in 0-based array index | |
2620 print STDERR "Merging $variant from ", $phases->{$variant}, " into new block $merged_haploblock_name\n"; | |
2621 $phases->{$variant} = $merged_haploblock_name; | |
2622 } | |
2623 } | |
2624 } | |
2625 # TODO: if there are overlapping phase blocks still, but with different variants in the same position, we can infer that they are on the opposite strands... | |
2626 } | |
2627 } | |
2628 | |
2629 # Sees if the positions of the variant are in the range of a phased haplotype, returning which allele it belongs to | |
2630 sub find_phase{ | |
2631 my ($chr,$pos,$ref,$variant) = split /:/, $_[0]; | |
2632 return "" if length($ref) != length($variant); # Can only deal with SNPs (and broken down MNPs) for now | |
2633 for(my $i = 0; $i < length($ref); $i++){ | |
2634 my $key = "$chr:".($pos+$i).":".substr($variant, $i, 1); | |
2635 #print STDERR "Checking phase for $key\n" if $pos == 12907379; | |
2636 if(exists $chr2phase{$key}){ | |
2637 #print STDERR "returning phase data $chr2phase{$key}\n"; | |
2638 return $chr2phase{$key}; | |
2639 } | |
2640 elsif(exists $chr2phase{"chr".$key}){ | |
2641 #print STDERR "returning phase data ", $chr2phase{"chr".$key}, "\n"; | |
2642 return $chr2phase{"chr".$key}; | |
2643 } | |
2644 } | |
2645 return ""; | |
2646 } | |
2647 | |
2648 sub find_earliest_index{ | |
2649 # employs a binary search to find the smallest index that must be the starting point of a search of [start,end] elements sorted in an array by start | |
2650 my ($query, $array) = @_; | |
2651 | |
2652 return 0 if $query < $array->[0]->[0]; | |
2653 | |
2654 my ($left, $right, $prevCenter) = (0, $#$array, -1); | |
2655 | |
2656 while(1){ | |
2657 my $center = int (($left + $right)/2); | |
2658 | |
2659 my $cmp = $query <=> $array->[$center]->[0] || ($center == 0 || $query != $array->[$center-1]->[0] ? 0 : -1); | |
2660 | |
2661 return $center if $cmp == 0; | |
2662 if ($center == $prevCenter) { | |
2663 return $left; | |
2664 } | |
2665 $right = $center if $cmp < 0; | |
2666 $left = $center if $cmp > 0; | |
2667 $prevCenter = $center; | |
2668 } | |
2669 } | |
2670 |