Previous changeset 1:5112462f2dd3 (2025-01-15) Next changeset 3:33d53eb476fd (2025-01-20) |
Commit message:
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/tabpfn commit e87b82b59dced736af2f0d9de045c916400b7bc2 |
modified:
main.py tabpfn.xml test-data/pr_curve.png |
added:
test-data/classification_local_test_rows.tabular test-data/classification_local_test_rows_labels.tabular test-data/classification_local_train_rows.tabular test-data/r2_curve.png test-data/regression_local_test_rows.tabular test-data/regression_local_test_rows_labels.tabular test-data/regression_local_train_rows.tabular |
removed:
test-data/local_test_rows.tabular test-data/local_train_rows.tabular |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce main.py --- a/main.py Wed Jan 15 20:34:13 2025 +0000 +++ b/main.py Fri Jan 17 22:23:34 2025 +0000 |
[ |
@@ -5,9 +5,15 @@ import time import matplotlib.pyplot as plt +import numpy as np import pandas as pd -from sklearn.metrics import accuracy_score, average_precision_score, precision_recall_curve -from tabpfn import TabPFNClassifier +from sklearn.metrics import ( + average_precision_score, + precision_recall_curve, + r2_score, + root_mean_squared_error +) +from tabpfn import TabPFNClassifier, TabPFNRegressor def separate_features_labels(data): @@ -17,38 +23,103 @@ return features, labels +def classification_plot(xval, yval, leg_label, title, xlabel, ylabel): + plt.figure(figsize=(8, 6)) + plt.plot(xval, yval, label=leg_label) + plt.xlabel(xlabel) + plt.ylabel(ylabel) + plt.title(title) + plt.legend(loc="lower left") + plt.grid(True) + plt.savefig("output_plot.png") + + +def regression_plot(xval, yval, title, xlabel, ylabel): + plt.figure(figsize=(8, 6)) + plt.xlabel(xlabel) + plt.ylabel(ylabel) + plt.title(title) + plt.legend(loc="lower left") + plt.grid(True) + plt.scatter(xval, yval, alpha=0.8) + xticks = np.arange(len(xval)) + plt.plot(xticks, xticks, color="red", linestyle="--", label="y = x") + plt.savefig("output_plot.png") + + def train_evaluate(args): """ - Train TabPFN + Train TabPFN and predict """ + # prepare train data tr_features, tr_labels = separate_features_labels(args["train_data"]) - te_features, te_labels = separate_features_labels(args["test_data"]) - classifier = TabPFNClassifier(device='cpu') + # prepare test data + if args["testhaslabels"] == "haslabels": + te_features, te_labels = separate_features_labels(args["test_data"]) + else: + te_features = pd.read_csv(args["test_data"], sep="\t") + te_labels = [] s_time = time.time() - classifier.fit(tr_features, tr_labels) + if args["selected_task"] == "Classification": + classifier = TabPFNClassifier(device="cpu") + classifier.fit(tr_features, tr_labels) + y_eval = classifier.predict(te_features) + pred_probas_test = classifier.predict_proba(te_features) + if len(te_labels) > 0: + precision, recall, thresholds = precision_recall_curve( + te_labels, pred_probas_test[:, 1] + ) + average_precision = average_precision_score( + te_labels, pred_probas_test[:, 1] + ) + classification_plot( + recall, + precision, + f"Precision-Recall Curve (AP={average_precision:.2f})", + "Precision-Recall Curve", + "Recall", + "Precision", + ) + else: + regressor = TabPFNRegressor(device="cpu") + regressor.fit(tr_features, tr_labels) + y_eval = regressor.predict(te_features) + if len(te_labels) > 0: + score = root_mean_squared_error(te_labels, y_eval) + r2_metric_score = r2_score(te_labels, y_eval) + regression_plot( + te_labels, + y_eval, + f"Scatter plot: True vs predicted values. RMSE={score:.2f}, R2={r2_metric_score:.2f}", + "True values", + "Predicted values", + ) e_time = time.time() - print("Time taken by TabPFN for training: {} seconds".format(e_time - s_time)) - y_eval = classifier.predict(te_features) - print('Accuracy', accuracy_score(te_labels, y_eval)) - pred_probas_test = classifier.predict_proba(te_features) + print( + "Time taken by TabPFN for training and prediction: {} seconds".format( + e_time - s_time + ) + ) te_features["predicted_labels"] = y_eval te_features.to_csv("output_predicted_data", sep="\t", index=None) - precision, recall, thresholds = precision_recall_curve(te_labels, pred_probas_test[:, 1]) - average_precision = average_precision_score(te_labels, pred_probas_test[:, 1]) - plt.figure(figsize=(8, 6)) - plt.plot(recall, precision, label=f'Precision-Recall Curve (AP={average_precision:.2f})') - plt.xlabel('Recall') - plt.ylabel('Precision') - plt.title('Precision-Recall Curve') - plt.legend(loc='lower left') - plt.grid(True) - plt.savefig("output_prec_recall_curve.png") if __name__ == "__main__": arg_parser = argparse.ArgumentParser() arg_parser.add_argument("-trdata", "--train_data", required=True, help="Train data") arg_parser.add_argument("-tedata", "--test_data", required=True, help="Test data") + arg_parser.add_argument( + "-testhaslabels", + "--testhaslabels", + required=True, + help="if test data contain labels", + ) + arg_parser.add_argument( + "-selectedtask", + "--selected_task", + required=True, + help="Type of machine learning task", + ) # get argument values args = vars(arg_parser.parse_args()) train_evaluate(args) |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce tabpfn.xml --- a/tabpfn.xml Wed Jan 15 20:34:13 2025 +0000 +++ b/tabpfn.xml Fri Jan 17 22:23:34 2025 +0000 |
[ |
@@ -2,7 +2,7 @@ <description>with PyTorch</description> <macros> <token name="@TOOL_VERSION@">2.0.3</token> - <token name="@VERSION_SUFFIX@">0</token> + <token name="@VERSION_SUFFIX@">1</token> </macros> <creator> <organization name="European Galaxy Team" url="https://galaxyproject.org/eu/" /> @@ -17,23 +17,34 @@ <version_command>echo "@VERSION@"</version_command> <command detect_errors="aggressive"> <![CDATA[ - python '$__tool_directory__/main.py' + python '$__tool_directory__/main.py' + --selected_task '$selected_task' --train_data '$train_data' + --testhaslabels '$testhaslabels' --test_data '$test_data' ]]> </command> <inputs> - <param name="train_data" type="data" format="tabular" label="Train data" help="Please provide training data for training model."/> - <param name="test_data" type="data" format="tabular" label="Test data" help="Please provide test data for evaluating model."/> + <param name="selected_task" type="select" label="Select a machine learning task"> + <option value="Classification" selected="true"></option> + <option value="Regression" selected="false"></option> + </param> + <param name="train_data" type="data" format="tabular" label="Train data" help="Please provide training data for training model. It should contain labels/class/target in the last column" /> + <param name="test_data" type="data" format="tabular" label="Test data" help="Please provide test data for evaluating model. It may or may not contain labels/class/target in the last column" /> + <param name="testhaslabels" type="boolean" truevalue="haslabels" falsevalue="" checked="false" label="Does test data contain labels?" help="Set this parameter when test data contains labels" /> </inputs> <outputs> <data format="tabular" name="output_predicted_data" from_work_dir="output_predicted_data" label="Predicted data"></data> - <data format="png" name="output_prec_recall_curve" from_work_dir="output_prec_recall_curve.png" label="Precision-recall curve"></data> + <data format="png" name="output_plot" from_work_dir="output_plot.png" label="Prediction plot on test data"> + <filter>testhaslabels is True</filter> + </data> </outputs> <tests> - <test> - <param name="train_data" value="local_train_rows.tabular" ftype="tabular" /> - <param name="test_data" value="local_test_rows.tabular" ftype="tabular" /> + <test expect_num_outputs="1"> + <param name="selected_task" value="Classification" /> + <param name="train_data" value="classification_local_train_rows.tabular" ftype="tabular" /> + <param name="test_data" value="classification_local_test_rows.tabular" ftype="tabular" /> + <param name="testhaslabels" value="" /> <output name="output_predicted_data"> <assert_contents> <has_n_columns n="42" /> @@ -41,24 +52,46 @@ </assert_contents> </output> </test> - <test> - <param name="train_data" value="local_train_rows.tabular" ftype="tabular" /> - <param name="test_data" value="local_test_rows.tabular" ftype="tabular" /> - <output name="output_prec_recall_curve" file="pr_curve.png" compare="sim_size" /> + <test expect_num_outputs="2"> + <param name="selected_task" value="Classification" /> + <param name="train_data" value="classification_local_train_rows.tabular" ftype="tabular" /> + <param name="test_data" value="classification_local_test_rows_labels.tabular" ftype="tabular" /> + <param name="testhaslabels" value="haslabels" /> + <output name="output_plot" file="pr_curve.png" compare="sim_size" /> + </test> + <test expect_num_outputs="2"> + <param name="selected_task" value="Regression" /> + <param name="train_data" value="regression_local_train_rows.tabular" ftype="tabular" /> + <param name="test_data" value="regression_local_test_rows_labels.tabular" ftype="tabular" /> + <param name="testhaslabels" value="haslabels" /> + <output name="output_plot" file="r2_curve.png" compare="sim_size" /> + </test> + <test expect_num_outputs="1"> + <param name="selected_task" value="Regression" /> + <param name="train_data" value="regression_local_train_rows.tabular" ftype="tabular" /> + <param name="test_data" value="regression_local_test_rows.tabular" ftype="tabular" /> + <param name="testhaslabels" value="" /> + <output name="output_predicted_data"> + <assert_contents> + <has_n_columns n="14" /> + <has_n_lines n="105" /> + </assert_contents> + </output> </test> </tests> <help> <![CDATA[ **What it does** - Classification on tabular data by TabPFN + Classification and Regression on tabular data by TabPFN **Input files** - - Training data: the training data should contain features and the last column should be the class labels. It could either be tabular or in CSV format. - - Test data: the test data should also contain the same features as the training data and the last column should be the class labels. It could either be tabular or in CSV format. + - Training data: the training data should contain features and the last column should be the class labels. It should be in tabular format. + - Test data: the test data should also contain the same features as the training data and the last column should be the class labels if labels are avaialble. It should be in tabular format. It is not required for the test data to have labels. **Output files** - - Predicted data along with predicted labels + - Predicted data along with predicted labels. + - Prediction plot (when test data has labels available). ]]> </help> <citations> |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/classification_local_test_rows.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/classification_local_test_rows.tabular Fri Jan 17 22:23:34 2025 +0000 |
[ |
@@ -0,0 +1,3 @@ +SpMax_L J_Dz(e) nHM F01[N-N] F04[C-N] NssssC nCb- C% nCp nO F03[C-N] SdssC HyWi_B(m) LOC SM6_L F03[C-O] Me Mi nN-N nArNO2 nCRX3 SpPosA_B(p) nCIR B01[C-Br] B03[C-Cl] N-073 SpMax_A Psi_i_1d B04[C-Br] SdO TI2_L nCrt C-026 F02[C-N] nHDon SpMax_B(m) Psi_i_A nN SM6_B(m) nArCOOR nX +3.919 2.6909 0 0 0 0 0 31.4 2 0 0 0 3.106 2.55 9.002 0 0.96 1.142 0 0 0 1.201 0 0 0 0 1.932 0.011 0 0 4.489 0 0 0 0 2.949 1.591 0 7.253 0 0 +4.17 2.1144 0 0 0 0 0 30.8 1 1 0 0 2.461 1.393 8.723 1 0.989 1.144 0 0 0 1.104 1 0 0 0 2.214 -0.204 0 0 1.542 0 0 0 0 3.315 1.967 0 7.257 0 0 |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/classification_local_test_rows_labels.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/classification_local_test_rows_labels.tabular Fri Jan 17 22:23:34 2025 +0000 |
[ |
@@ -0,0 +1,3 @@ +SpMax_L J_Dz(e) nHM F01[N-N] F04[C-N] NssssC nCb- C% nCp nO F03[C-N] SdssC HyWi_B(m) LOC SM6_L F03[C-O] Me Mi nN-N nArNO2 nCRX3 SpPosA_B(p) nCIR B01[C-Br] B03[C-Cl] N-073 SpMax_A Psi_i_1d B04[C-Br] SdO TI2_L nCrt C-026 F02[C-N] nHDon SpMax_B(m) Psi_i_A nN SM6_B(m) nArCOOR nX Class +3.919 2.6909 0 0 0 0 0 31.4 2 0 0 0 3.106 2.55 9.002 0 0.96 1.142 0 0 0 1.201 0 0 0 0 1.932 0.011 0 0 4.489 0 0 0 0 2.949 1.591 0 7.253 0 0 1 +4.17 2.1144 0 0 0 0 0 30.8 1 1 0 0 2.461 1.393 8.723 1 0.989 1.144 0 0 0 1.104 1 0 0 0 2.214 -0.204 0 0 1.542 0 0 0 0 3.315 1.967 0 7.257 0 0 1 |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/classification_local_train_rows.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/classification_local_train_rows.tabular Fri Jan 17 22:23:34 2025 +0000 |
[ |
b'@@ -0,0 +1,838 @@\n+SpMax_L\tJ_Dz(e)\tnHM\tF01[N-N]\tF04[C-N]\tNssssC\tnCb-\tC%\tnCp\tnO\tF03[C-N]\tSdssC\tHyWi_B(m)\tLOC\tSM6_L\tF03[C-O]\tMe\tMi\tnN-N\tnArNO2\tnCRX3\tSpPosA_B(p)\tnCIR\tB01[C-Br]\tB03[C-Cl]\tN-073\tSpMax_A\tPsi_i_1d\tB04[C-Br]\tSdO\tTI2_L\tnCrt\tC-026\tF02[C-N]\tnHDon\tSpMax_B(m)\tPsi_i_A\tnN\tSM6_B(m)\tnArCOOR\tnX\tClass\n+3.919\t2.6909\t0\t0\t0\t0\t0\t31.4\t2\t0\t0\t0\t3.106\t2.55\t9.002\t0\t0.96\t1.142\t0\t0\t0\t1.201\t0\t0\t0\t0\t1.932\t0.011\t0\t0\t4.489\t0\t0\t0\t0\t2.949\t1.591\t0\t7.253\t0\t0\t1\n+4.17\t2.1144\t0\t0\t0\t0\t0\t30.8\t1\t1\t0\t0\t2.461\t1.393\t8.723\t1\t0.989\t1.144\t0\t0\t0\t1.104\t1\t0\t0\t0\t2.214\t-0.204\t0\t0\t1.542\t0\t0\t0\t0\t3.315\t1.967\t0\t7.257\t0\t0\t1\n+3.932\t3.2512\t0\t0\t0\t0\t0\t26.7\t2\t4\t0\t0\t3.279\t2.585\t9.11\t0\t1.009\t1.152\t0\t0\t0\t1.092\t0\t0\t0\t0\t1.942\t-0.008\t0\t0\t4.891\t0\t0\t0\t1\t3.076\t2.417\t0\t7.601\t0\t0\t1\n+3\t2.7098\t0\t0\t0\t0\t0\t20\t0\t2\t0\t0\t2.1\t0.918\t6.594\t0\t1.108\t1.167\t0\t0\t0\t1.024\t0\t0\t0\t0\t1.414\t1.073\t0\t8.361\t1.333\t0\t0\t0\t1\t3.046\t5\t0\t6.69\t0\t0\t1\n+4.236\t3.3944\t0\t0\t0\t0\t0\t29.4\t2\t4\t0\t-0.271\t3.449\t2.753\t9.528\t2\t1.004\t1.147\t0\t0\t0\t1.137\t0\t0\t0\t0\t1.985\t-0.002\t0\t10.348\t5.588\t0\t0\t0\t0\t3.351\t2.405\t0\t8.003\t0\t0\t1\n+4.236\t3.4286\t0\t0\t0\t0\t0\t28.6\t2\t4\t0\t-0.275\t3.313\t2.522\t9.383\t1\t1.014\t1.149\t0\t0\t0\t1.119\t0\t0\t0\t0\t1.98\t-0.008\t0\t10.276\t4.746\t0\t0\t0\t0\t3.351\t2.556\t0\t7.904\t0\t0\t1\n+5\t5.0476\t1\t0\t0\t0\t0\t11.1\t0\t3\t0\t0\t2.872\t0.722\t9.657\t0\t1.092\t1.153\t0\t0\t0\t1.125\t0\t0\t0\t0\t2\t0.446\t0\t18.375\t0.8\t0\t0\t0\t1\t4.712\t4.583\t0\t9.303\t0\t0\t1\n+4.525\t3.8301\t0\t0\t0\t0\t0\t31.6\t3\t2\t0\t-0.039\t3.418\t2.468\t9.786\t5\t0.98\t1.142\t0\t0\t0\t1.179\t0\t0\t0\t0\t2.119\t-0.002\t0\t11.115\t3.889\t0\t0\t0\t0\t3.379\t2.143\t0\t7.95\t0\t0\t1\n+4.596\t3.0777\t0\t0\t0\t0\t2\t44.4\t2\t0\t0\t0\t2.97\t0.875\t9.54\t0\t0.968\t1.115\t0\t0\t0\t1.328\t1\t0\t0\t0\t2.175\t0.041\t0\t0\t1.069\t0\t0\t0\t0\t3.626\t1.917\t0\t7.939\t0\t0\t1\n+5.04\t3.6112\t0\t0\t1\t0\t2\t41.2\t0\t4\t3\t-1.29\t3.483\t1.258\t10.159\t8\t1.069\t1.127\t0\t1\t0\t1.199\t1\t0\t0\t0\t2.323\t0.005\t0\t30.959\t1.711\t0\t1\t2\t1\t3.888\t3.5\t1\t8.706\t0\t0\t1\n+4.91\t2.7414\t0\t0\t0\t0\t2\t52.9\t0\t2\t0\t-0.302\t3.364\t0.629\t10.06\t5\t1.018\t1.098\t0\t0\t0\t1.279\t3\t0\t0\t0\t2.333\t0.004\t0\t10.717\t1.207\t0\t1\t0\t0\t3.767\t2.5\t0\t8.427\t0\t0\t1\n+3.618\t2.1906\t0\t0\t0\t0\t0\t29.4\t2\t0\t0\t0\t2.333\t1.522\t7.853\t0\t0.959\t1.147\t0\t0\t0\t1.178\t0\t0\t0\t0\t1.732\t0.294\t0\t0\t2.094\t0\t0\t0\t0\t2.794\t1.7\t0\t6.333\t0\t0\t1\n+4.214\t2.6272\t0\t0\t0\t0\t0\t30\t3\t0\t0\t0\t2.523\t1.459\t8.755\t0\t0.959\t1.145\t0\t0\t0\t1.213\t0\t0\t0\t0\t1.902\t-0.181\t0\t0\t2.052\t0\t0\t0\t0\t2.998\t1.722\t0\t6.77\t0\t0\t1\n+3.732\t2.3391\t0\t0\t0\t0\t0\t30\t2\t0\t0\t0\t2.511\t1.585\t8.16\t0\t0.959\t1.145\t0\t0\t0\t1.196\t0\t0\t0\t0\t1.802\t-0.181\t0\t0\t2.488\t0\t0\t0\t0\t2.846\t1.667\t0\t6.557\t0\t0\t1\n+3.879\t2.5951\t0\t0\t0\t0\t0\t31\t2\t0\t0\t0\t2.908\t2.281\t8.743\t0\t0.96\t1.143\t0\t0\t0\t1.202\t0\t0\t0\t0\t1.902\t0.036\t0\t0\t3.685\t0\t0\t0\t0\t2.924\t1.611\t0\t7.029\t0\t0\t1\n+3.942\t2.7719\t1\t0\t0\t0\t0\t31.6\t2\t0\t0\t0\t3.44\t2.777\t9.207\t0\t0.969\t1.141\t0\t0\t0\t1.22\t0\t0\t1\t0\t1.95\t0.003\t0\t0\t5.294\t0\t0\t0\t0\t3.542\t1.739\t0\t8.127\t0\t1\t1\n+3.966\t2.852\t1\t0\t0\t0\t0\t32\t2\t0\t0\t0\t4.075\t3.146\t9.522\t0\t0.965\t1.138\t0\t0\t0\t1.243\t0\t1\t0\t0\t1.97\t0\t1\t0\t6.909\t0\t0\t0\t0\t6.866\t1.603\t0\t11.578\t0\t1\t1\n+3.732\t2.3761\t0\t0\t1\t0\t0\t26.3\t2\t0\t1\t0\t2.532\t1.585\t8.16\t0\t0.969\t1.157\t0\t0\t0\t1.152\t0\t0\t0\t0\t1.802\t-0.195\t0\t0\t2.488\t0\t0\t1\t2\t2.858\t2\t1\t6.599\t0\t0\t1\n+4\t2.6264\t0\t0\t0\t0\t0\t23.1\t0\t0\t0\t0\t2.167\t0.811\t8.318\t0\t0.972\t1.166\t0\t0\t0\t1.182\t0\t0\t0\t0\t1.732\t-0.522\t0\t0\t1\t0\t0\t0\t0\t2.991\t2\t1\t6.579\t0\t0\t1\n+2\t1.1521\t0\t0\t0\t0\t0\t16.7\t1\t1\t0\t0\t1.549\t0\t4.174\t0\t1.016\t1.173\t0\t0\t0\t0.93\t0\t0\t0\t0\t1\t-1.099\t0\t0\t1\t0\t0\t0\t1\t2.279\t4\t0\t4.948\t0\t0\t1\n+3.732\t2.4062\t0\t0\t0\t0\t0\t27.8\t2\t1\t0\t0\t2.555\t1.585\t8.16\t1\t0.979\t1.15\t0\t0\t0\t1.134\t0\t0\t0\t0\t1.802\t-0.205\t0\t0\t2.488\t0\t0\t0\t1\t2.874\t2.333\t0\t6.649\t0\t0\t1\n+4\t2.3699\t0\t0\t0\t0\t0\t30\t1\t1\t0\t0\t2.273\t1\t8.482\t0\t0.998\t1.146\t0\t0\t0\t1.09\t1\t0\t0\t0\t2.17\t0.34\t0\t0\t1\t0\t0\t0\t0\t3.302\t2.083\t0\t7.174\t0\t0\t1\n+3.414\t2.2525\t0\t0\t0\t0\t0\t20\t2\t2\t0\t0\t2.243\t1\t7.408\t0\t1.031\t1.166\t0\t0\t0\t0.98\t0\t0\t0\t0\t1.618\t-0.642\t0\t0\t1.707\t0\t0\t0\t2\t2.817\t3.75\t0\t6.32\t0\t0\t1\n+4.17\t2.8042\t0\t0\t0\t0\t0\t23.1\t2\t2\t0\t0\t2.449\t0.971\t8.597\t1\t1.015\t1.16\t0\t0\t0\t1.044\t0\t0\t0\t0\t1.848\t0.391\t0\t0\t1.542\t0\t0\t0\t2\t3.047\t3.367\t0\t6.782\t0\t0\t1\n+4.303\t2.9558\t0\t0\t0\t0\t0\t25\t2\t2\t0\t0\t2.608\t1.459\t8.815\t2\t1.005\t1.156\t0\t0\t0\t1.056\t0\t0\t0\t0\t1.932\t-0.229\t0\t0\t1.745\t0\t0\t0\t2\t3.083\t3.056\t0\t6.914\t0\t0\t1\n+3.414\t2.6294\t0\t0\t0\t0\t0\t37.5\t1\t1\t0\t0\t2.333\t1\t7.408\t1\t1.012\t1.13\t0\t0\t0\t1.215\t0\t0\t0\t0\t1.618\t-0.66\t0\t0\t1.707\t0\t0\t0\t1\t3.188\t3.5\t0\t7.03'..b'0\t10.38\t1.951\t0\t1\t2\t2\t3.708\t2.773\t1\t8.322\t0\t0\t0\n+4.892\t3.2952\t0\t0\t2\t0\t2\t36.7\t2\t3\t1\t-0.505\t3.598\t1.805\t10.235\t7\t1.009\t1.134\t0\t0\t0\t1.205\t1\t0\t0\t0\t2.295\t-0.001\t0\t11.03\t2.809\t0\t2\t0\t1\t3.712\t2.456\t1\t8.522\t0\t0\t0\n+5.451\t2.5976\t4\t0\t0\t0\t4\t42.4\t1\t2\t0\t0\t4.191\t1.113\t10.865\t8\t1.013\t1.099\t0\t0\t0\t1.36\t2\t0\t1\t0\t2.409\t0\t0\t0\t3.05\t0\t4\t0\t0\t4.72\t2.293\t0\t9.912\t0\t2\t0\n+5.106\t2.5769\t0\t0\t0\t0\t4\t47.1\t2\t0\t0\t0\t3.656\t1\t10.411\t0\t0.969\t1.11\t0\t0\t0\t1.311\t2\t0\t0\t0\t2.384\t0\t0\t0\t2.266\t0\t0\t0\t0\t3.798\t1.854\t0\t8.644\t0\t0\t0\n+4.928\t1.7361\t0\t0\t0\t0\t2\t45\t0\t0\t0\t0\t3.753\t0\t10.506\t0\t0.968\t1.114\t0\t0\t0\t1.29\t3\t0\t0\t0\t2.348\t0\t0\t0\t3.091\t2\t0\t0\t0\t3.685\t1.722\t0\t8.6\t0\t0\t0\n+5.075\t2.4622\t0\t0\t0\t0\t4\t48.3\t0\t3\t0\t-0.203\t3.768\t0.922\t10.518\t9\t1.01\t1.108\t0\t0\t0\t1.263\t2\t0\t0\t0\t2.369\t0\t0\t12.066\t2.847\t0\t2\t0\t1\t3.827\t2.52\t0\t8.828\t0\t0\t0\n+5.459\t3.1356\t1\t0\t2\t0\t4\t41.7\t0\t3\t2\t0\t3.784\t1.029\t10.764\t6\t1.029\t1.113\t0\t0\t0\t1.28\t3\t0\t0\t0\t2.462\t0\t0\t22.286\t1.583\t0\t2\t2\t3\t4.748\t2.906\t1\t9.674\t0\t0\t0\n+5.35\t2.9948\t1\t0\t2\t0\t5\t40\t0\t4\t2\t0\t3.843\t1.024\t10.837\t9\t1.041\t1.117\t0\t0\t0\t1.254\t3\t0\t0\t0\t2.442\t0\t0\t21.854\t1.865\t0\t3\t2\t4\t4.738\t3.078\t1\t9.706\t0\t0\t0\n+5.35\t2.9783\t1\t0\t2\t0\t5\t40\t0\t4\t2\t0\t3.843\t1.024\t10.837\t9\t1.041\t1.117\t0\t0\t0\t1.251\t3\t0\t0\t0\t2.443\t0\t0\t21.831\t1.871\t0\t3\t2\t4\t4.738\t3.078\t1\t9.706\t0\t0\t0\n+5.161\t2.5397\t0\t0\t0\t0\t6\t46.4\t0\t5\t0\t-0.525\t3.844\t0.745\t10.717\t13\t1.038\t1.112\t0\t0\t0\t1.222\t2\t0\t0\t0\t2.404\t0\t0\t12.008\t2.924\t0\t4\t0\t4\t3.881\t3.037\t0\t8.952\t0\t0\t0\n+5.164\t2.9809\t1\t0\t0\t0\t0\t26.7\t0\t2\t0\t0\t3.083\t0.917\t9.968\t4\t1.018\t1.133\t0\t0\t0\t1.245\t1\t0\t0\t0\t2.256\t-0.072\t0\t20.861\t0.939\t0\t0\t0\t0\t4.66\t2.988\t0\t9.26\t0\t0\t0\n+4.802\t1.7802\t2\t0\t5\t0\t2\t39.4\t0\t0\t4\t0\t3.892\t0\t10.46\t0\t0.986\t1.113\t0\t0\t0\t1.339\t4\t0\t0\t0\t2.384\t0\t0\t0\t3.735\t0\t0\t5\t1\t4.341\t1.824\t2\t9.301\t0\t0\t0\n+4.562\t2.931\t0\t1\t0\t0\t0\t33.3\t0\t2\t2\t-0.603\t3.052\t0.875\t9.54\t2\t1.062\t1.153\t1\t0\t0\t1.166\t1\t0\t0\t0\t2.17\t0.05\t0\t20.392\t1.14\t0\t0\t4\t2\t3.587\t3.292\t2\t8.026\t0\t0\t0\n+5.062\t4.0287\t0\t0\t0\t0\t0\t26.3\t0\t6\t27\t0\t4.146\t1.975\t10.792\t12\t1.021\t1.162\t0\t0\t0\t1.137\t1\t0\t0\t0\t2.404\t0\t0\t0\t2.398\t0\t0\t0\t0\t3.83\t2.296\t6\t8.939\t0\t0\t0\n+4.807\t2.7734\t2\t0\t0\t0\t0\t26.3\t0\t0\t4\t1.008\t3.352\t0.881\t9.833\t0\t0.994\t1.131\t0\t0\t0\t1.334\t1\t0\t0\t0\t2.246\t-0.023\t0\t0\t1.06\t0\t0\t0\t0\t4.094\t2.019\t2\t8.76\t0\t0\t0\n+5.092\t2.0631\t0\t0\t3\t0\t5\t51.5\t0\t2\t4\t-0.32\t3.945\t0.548\t10.725\t6\t1.002\t1.103\t0\t0\t0\t1.304\t4\t0\t0\t0\t2.412\t0\t0\t12.207\t3.461\t0\t2\t3\t2\t3.924\t2.375\t1\t9.072\t0\t0\t0\n+5.051\t1.6237\t4\t2\t16\t0\t14\t41.9\t2\t8\t20\t-2.695\t5.032\t0.964\t11.786\t14\t1.032\t1.124\t0\t0\t0\t1.265\t4\t0\t1\t0\t2.399\t0\t0\t50.918\t9.592\t0\t12\t18\t2\t4.016\t2.595\t6\t10.274\t0\t4\t0\n+3.618\t3.4245\t0\t0\t0\t0\t0\t44.4\t0\t1\t0\t0\t2.593\t0\t8.412\t0\t1.011\t1.116\t0\t0\t0\t1.332\t1\t0\t0\t0\t2\t-0.237\t0\t0\t0.579\t0\t0\t0\t0\t3.526\t2.3\t0\t7.6\t0\t0\t0\n+5.389\t2.7726\t1\t0\t3\t0\t2\t41.7\t0\t3\t3\t0.144\t3.772\t1.506\t10.698\t9\t1.029\t1.113\t0\t0\t0\t1.278\t3\t0\t0\t0\t2.504\t0\t0\t23.066\t2.22\t0\t1\t2\t0\t4.757\t2.728\t1\t9.614\t0\t0\t0\n+5.318\t2.6699\t2\t0\t0\t0\t2\t36.4\t0\t3\t0\t0\t3.7\t0.985\t10.545\t9\t1.02\t1.107\t0\t0\t0\t1.317\t3\t0\t0\t0\t2.402\t0.001\t0\t0\t1.511\t0\t1\t0\t0\t4.706\t2.293\t0\t9.538\t0\t0\t0\n+5.306\t2.2373\t0\t0\t11\t0\t4\t36.2\t3\t6\t11\t-1.722\t4.217\t1.577\t11.222\t9\t1.031\t1.14\t0\t0\t0\t1.191\t6\t0\t0\t0\t2.527\t0\t0\t23.86\t3.172\t0\t2\t10\t5\t3.942\t2.846\t4\t9.248\t0\t0\t0\n+4.843\t2.7944\t0\t0\t1\t0\t2\t34.4\t0\t5\t1\t-0.929\t3.729\t2.297\t10.299\t7\t1.029\t1.139\t0\t0\t0\t1.153\t1\t0\t0\t0\t2.268\t0\t0\t10.307\t4.371\t0\t2\t0\t3\t3.681\t2.755\t1\t8.613\t0\t0\t0\n+3.618\t2.3247\t2\t0\t0\t0\t0\t27.3\t2\t0\t0\t0\t3.679\t1.522\t7.853\t0\t1.008\t1.131\t0\t0\t0\t1.338\t0\t1\t1\t0\t1.732\t0.336\t0\t0\t2.094\t0\t0\t0\t0\t6.866\t2.272\t0\t11.578\t0\t2\t0\n+3\t1.7389\t1\t0\t0\t0\t0\t25\t2\t0\t0\t0\t3.426\t0.918\t6.594\t0\t0.985\t1.136\t0\t0\t0\t1.383\t0\t1\t0\t0\t1.414\t0.691\t0\t0\t1.333\t0\t0\t0\t0\t6.867\t2.083\t0\t11.561\t0\t1\t0\n+5.051\t3.532\t0\t0\t2\t0\t0\t30\t2\t6\t2\t-0.794\t4.214\t3.546\t10.717\t9\t0.991\t1.146\t0\t0\t0\t1.141\t0\t0\t0\t0\t2.291\t0\t0\t11.784\t10.986\t0\t0\t2\t6\t3.519\t2.435\t1\t8.71\t0\t0\t0\n+4.876\t2.8477\t0\t0\t2\t0\t0\t30\t2\t2\t3\t-0.608\t3.21\t1.193\t10.053\t4\t1.02\t1.154\t0\t0\t0\t1.174\t1\t0\t0\t0\t2.336\t0.014\t0\t21.357\t1.586\t0\t0\t3\t2\t3.631\t2.9\t2\t8.126\t0\t0\t0\n+4.953\t3.4085\t0\t0\t2\t0\t2\t40\t1\t2\t3\t0\t3.351\t1.273\t9.975\t4\t1.015\t1.129\t0\t1\t0\t1.241\t1\t0\t0\t0\t2.288\t-0.008\t0\t20.772\t1.602\t0\t1\t2\t0\t3.853\t2.803\t1\t8.521\t0\t0\t0\n+5.418\t3.1768\t10\t0\t0\t0\t12\t54.5\t0\t0\t0\t0\t4.608\t0.72\t11.151\t0\t1.121\t1.069\t0\t0\t0\t1.413\t2\t0\t1\t0\t2.532\t0\t0\t0\t2.359\t0\t10\t0\t0\t4.361\t2.778\t0\t10.237\t0\t10\t0\n' |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/local_test_rows.tabular --- a/test-data/local_test_rows.tabular Wed Jan 15 20:34:13 2025 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 |
[ |
@@ -1,3 +0,0 @@ -SpMax_L J_Dz(e) nHM F01[N-N] F04[C-N] NssssC nCb- C% nCp nO F03[C-N] SdssC HyWi_B(m) LOC SM6_L F03[C-O] Me Mi nN-N nArNO2 nCRX3 SpPosA_B(p) nCIR B01[C-Br] B03[C-Cl] N-073 SpMax_A Psi_i_1d B04[C-Br] SdO TI2_L nCrt C-026 F02[C-N] nHDon SpMax_B(m) Psi_i_A nN SM6_B(m) nArCOOR nX predicted_labels -3.919 2.6909 0 0 0 0 0 31.4 2 0 0 0 3.106 2.55 9.002 0 0.96 1.142 0 0 0 1.201 0 0 0 0 1.932 0.011 0 0 4.489 0 0 0 0 2.949 1.591 0 7.253 0 0 1 -4.17 2.1144 0 0 0 0 0 30.8 1 1 0 0 2.461 1.393 8.723 1 0.989 1.144 0 0 0 1.104 1 0 0 0 2.214 -0.204 0 0 1.542 0 0 0 0 3.315 1.967 0 7.257 0 0 1 |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/local_train_rows.tabular --- a/test-data/local_train_rows.tabular Wed Jan 15 20:34:13 2025 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 |
[ |
b'@@ -1,838 +0,0 @@\n-SpMax_L\tJ_Dz(e)\tnHM\tF01[N-N]\tF04[C-N]\tNssssC\tnCb-\tC%\tnCp\tnO\tF03[C-N]\tSdssC\tHyWi_B(m)\tLOC\tSM6_L\tF03[C-O]\tMe\tMi\tnN-N\tnArNO2\tnCRX3\tSpPosA_B(p)\tnCIR\tB01[C-Br]\tB03[C-Cl]\tN-073\tSpMax_A\tPsi_i_1d\tB04[C-Br]\tSdO\tTI2_L\tnCrt\tC-026\tF02[C-N]\tnHDon\tSpMax_B(m)\tPsi_i_A\tnN\tSM6_B(m)\tnArCOOR\tnX\tClass\n-3.919\t2.6909\t0\t0\t0\t0\t0\t31.4\t2\t0\t0\t0\t3.106\t2.55\t9.002\t0\t0.96\t1.142\t0\t0\t0\t1.201\t0\t0\t0\t0\t1.932\t0.011\t0\t0\t4.489\t0\t0\t0\t0\t2.949\t1.591\t0\t7.253\t0\t0\t1\n-4.17\t2.1144\t0\t0\t0\t0\t0\t30.8\t1\t1\t0\t0\t2.461\t1.393\t8.723\t1\t0.989\t1.144\t0\t0\t0\t1.104\t1\t0\t0\t0\t2.214\t-0.204\t0\t0\t1.542\t0\t0\t0\t0\t3.315\t1.967\t0\t7.257\t0\t0\t1\n-3.932\t3.2512\t0\t0\t0\t0\t0\t26.7\t2\t4\t0\t0\t3.279\t2.585\t9.11\t0\t1.009\t1.152\t0\t0\t0\t1.092\t0\t0\t0\t0\t1.942\t-0.008\t0\t0\t4.891\t0\t0\t0\t1\t3.076\t2.417\t0\t7.601\t0\t0\t1\n-3\t2.7098\t0\t0\t0\t0\t0\t20\t0\t2\t0\t0\t2.1\t0.918\t6.594\t0\t1.108\t1.167\t0\t0\t0\t1.024\t0\t0\t0\t0\t1.414\t1.073\t0\t8.361\t1.333\t0\t0\t0\t1\t3.046\t5\t0\t6.69\t0\t0\t1\n-4.236\t3.3944\t0\t0\t0\t0\t0\t29.4\t2\t4\t0\t-0.271\t3.449\t2.753\t9.528\t2\t1.004\t1.147\t0\t0\t0\t1.137\t0\t0\t0\t0\t1.985\t-0.002\t0\t10.348\t5.588\t0\t0\t0\t0\t3.351\t2.405\t0\t8.003\t0\t0\t1\n-4.236\t3.4286\t0\t0\t0\t0\t0\t28.6\t2\t4\t0\t-0.275\t3.313\t2.522\t9.383\t1\t1.014\t1.149\t0\t0\t0\t1.119\t0\t0\t0\t0\t1.98\t-0.008\t0\t10.276\t4.746\t0\t0\t0\t0\t3.351\t2.556\t0\t7.904\t0\t0\t1\n-5\t5.0476\t1\t0\t0\t0\t0\t11.1\t0\t3\t0\t0\t2.872\t0.722\t9.657\t0\t1.092\t1.153\t0\t0\t0\t1.125\t0\t0\t0\t0\t2\t0.446\t0\t18.375\t0.8\t0\t0\t0\t1\t4.712\t4.583\t0\t9.303\t0\t0\t1\n-4.525\t3.8301\t0\t0\t0\t0\t0\t31.6\t3\t2\t0\t-0.039\t3.418\t2.468\t9.786\t5\t0.98\t1.142\t0\t0\t0\t1.179\t0\t0\t0\t0\t2.119\t-0.002\t0\t11.115\t3.889\t0\t0\t0\t0\t3.379\t2.143\t0\t7.95\t0\t0\t1\n-4.596\t3.0777\t0\t0\t0\t0\t2\t44.4\t2\t0\t0\t0\t2.97\t0.875\t9.54\t0\t0.968\t1.115\t0\t0\t0\t1.328\t1\t0\t0\t0\t2.175\t0.041\t0\t0\t1.069\t0\t0\t0\t0\t3.626\t1.917\t0\t7.939\t0\t0\t1\n-5.04\t3.6112\t0\t0\t1\t0\t2\t41.2\t0\t4\t3\t-1.29\t3.483\t1.258\t10.159\t8\t1.069\t1.127\t0\t1\t0\t1.199\t1\t0\t0\t0\t2.323\t0.005\t0\t30.959\t1.711\t0\t1\t2\t1\t3.888\t3.5\t1\t8.706\t0\t0\t1\n-4.91\t2.7414\t0\t0\t0\t0\t2\t52.9\t0\t2\t0\t-0.302\t3.364\t0.629\t10.06\t5\t1.018\t1.098\t0\t0\t0\t1.279\t3\t0\t0\t0\t2.333\t0.004\t0\t10.717\t1.207\t0\t1\t0\t0\t3.767\t2.5\t0\t8.427\t0\t0\t1\n-3.618\t2.1906\t0\t0\t0\t0\t0\t29.4\t2\t0\t0\t0\t2.333\t1.522\t7.853\t0\t0.959\t1.147\t0\t0\t0\t1.178\t0\t0\t0\t0\t1.732\t0.294\t0\t0\t2.094\t0\t0\t0\t0\t2.794\t1.7\t0\t6.333\t0\t0\t1\n-4.214\t2.6272\t0\t0\t0\t0\t0\t30\t3\t0\t0\t0\t2.523\t1.459\t8.755\t0\t0.959\t1.145\t0\t0\t0\t1.213\t0\t0\t0\t0\t1.902\t-0.181\t0\t0\t2.052\t0\t0\t0\t0\t2.998\t1.722\t0\t6.77\t0\t0\t1\n-3.732\t2.3391\t0\t0\t0\t0\t0\t30\t2\t0\t0\t0\t2.511\t1.585\t8.16\t0\t0.959\t1.145\t0\t0\t0\t1.196\t0\t0\t0\t0\t1.802\t-0.181\t0\t0\t2.488\t0\t0\t0\t0\t2.846\t1.667\t0\t6.557\t0\t0\t1\n-3.879\t2.5951\t0\t0\t0\t0\t0\t31\t2\t0\t0\t0\t2.908\t2.281\t8.743\t0\t0.96\t1.143\t0\t0\t0\t1.202\t0\t0\t0\t0\t1.902\t0.036\t0\t0\t3.685\t0\t0\t0\t0\t2.924\t1.611\t0\t7.029\t0\t0\t1\n-3.942\t2.7719\t1\t0\t0\t0\t0\t31.6\t2\t0\t0\t0\t3.44\t2.777\t9.207\t0\t0.969\t1.141\t0\t0\t0\t1.22\t0\t0\t1\t0\t1.95\t0.003\t0\t0\t5.294\t0\t0\t0\t0\t3.542\t1.739\t0\t8.127\t0\t1\t1\n-3.966\t2.852\t1\t0\t0\t0\t0\t32\t2\t0\t0\t0\t4.075\t3.146\t9.522\t0\t0.965\t1.138\t0\t0\t0\t1.243\t0\t1\t0\t0\t1.97\t0\t1\t0\t6.909\t0\t0\t0\t0\t6.866\t1.603\t0\t11.578\t0\t1\t1\n-3.732\t2.3761\t0\t0\t1\t0\t0\t26.3\t2\t0\t1\t0\t2.532\t1.585\t8.16\t0\t0.969\t1.157\t0\t0\t0\t1.152\t0\t0\t0\t0\t1.802\t-0.195\t0\t0\t2.488\t0\t0\t1\t2\t2.858\t2\t1\t6.599\t0\t0\t1\n-4\t2.6264\t0\t0\t0\t0\t0\t23.1\t0\t0\t0\t0\t2.167\t0.811\t8.318\t0\t0.972\t1.166\t0\t0\t0\t1.182\t0\t0\t0\t0\t1.732\t-0.522\t0\t0\t1\t0\t0\t0\t0\t2.991\t2\t1\t6.579\t0\t0\t1\n-2\t1.1521\t0\t0\t0\t0\t0\t16.7\t1\t1\t0\t0\t1.549\t0\t4.174\t0\t1.016\t1.173\t0\t0\t0\t0.93\t0\t0\t0\t0\t1\t-1.099\t0\t0\t1\t0\t0\t0\t1\t2.279\t4\t0\t4.948\t0\t0\t1\n-3.732\t2.4062\t0\t0\t0\t0\t0\t27.8\t2\t1\t0\t0\t2.555\t1.585\t8.16\t1\t0.979\t1.15\t0\t0\t0\t1.134\t0\t0\t0\t0\t1.802\t-0.205\t0\t0\t2.488\t0\t0\t0\t1\t2.874\t2.333\t0\t6.649\t0\t0\t1\n-4\t2.3699\t0\t0\t0\t0\t0\t30\t1\t1\t0\t0\t2.273\t1\t8.482\t0\t0.998\t1.146\t0\t0\t0\t1.09\t1\t0\t0\t0\t2.17\t0.34\t0\t0\t1\t0\t0\t0\t0\t3.302\t2.083\t0\t7.174\t0\t0\t1\n-3.414\t2.2525\t0\t0\t0\t0\t0\t20\t2\t2\t0\t0\t2.243\t1\t7.408\t0\t1.031\t1.166\t0\t0\t0\t0.98\t0\t0\t0\t0\t1.618\t-0.642\t0\t0\t1.707\t0\t0\t0\t2\t2.817\t3.75\t0\t6.32\t0\t0\t1\n-4.17\t2.8042\t0\t0\t0\t0\t0\t23.1\t2\t2\t0\t0\t2.449\t0.971\t8.597\t1\t1.015\t1.16\t0\t0\t0\t1.044\t0\t0\t0\t0\t1.848\t0.391\t0\t0\t1.542\t0\t0\t0\t2\t3.047\t3.367\t0\t6.782\t0\t0\t1\n-4.303\t2.9558\t0\t0\t0\t0\t0\t25\t2\t2\t0\t0\t2.608\t1.459\t8.815\t2\t1.005\t1.156\t0\t0\t0\t1.056\t0\t0\t0\t0\t1.932\t-0.229\t0\t0\t1.745\t0\t0\t0\t2\t3.083\t3.056\t0\t6.914\t0\t0\t1\n-3.414\t2.6294\t0\t0\t0\t0\t0\t37.5\t1\t1\t0\t0\t2.333\t1\t7.408\t1\t1.012\t1.13\t0\t0\t0\t1.215\t0\t0\t0\t0\t1.618\t-0.66\t0\t0\t1.707\t0\t0\t0\t1\t3.188\t3.5\t0\t7.03'..b'0\t10.38\t1.951\t0\t1\t2\t2\t3.708\t2.773\t1\t8.322\t0\t0\t0\n-4.892\t3.2952\t0\t0\t2\t0\t2\t36.7\t2\t3\t1\t-0.505\t3.598\t1.805\t10.235\t7\t1.009\t1.134\t0\t0\t0\t1.205\t1\t0\t0\t0\t2.295\t-0.001\t0\t11.03\t2.809\t0\t2\t0\t1\t3.712\t2.456\t1\t8.522\t0\t0\t0\n-5.451\t2.5976\t4\t0\t0\t0\t4\t42.4\t1\t2\t0\t0\t4.191\t1.113\t10.865\t8\t1.013\t1.099\t0\t0\t0\t1.36\t2\t0\t1\t0\t2.409\t0\t0\t0\t3.05\t0\t4\t0\t0\t4.72\t2.293\t0\t9.912\t0\t2\t0\n-5.106\t2.5769\t0\t0\t0\t0\t4\t47.1\t2\t0\t0\t0\t3.656\t1\t10.411\t0\t0.969\t1.11\t0\t0\t0\t1.311\t2\t0\t0\t0\t2.384\t0\t0\t0\t2.266\t0\t0\t0\t0\t3.798\t1.854\t0\t8.644\t0\t0\t0\n-4.928\t1.7361\t0\t0\t0\t0\t2\t45\t0\t0\t0\t0\t3.753\t0\t10.506\t0\t0.968\t1.114\t0\t0\t0\t1.29\t3\t0\t0\t0\t2.348\t0\t0\t0\t3.091\t2\t0\t0\t0\t3.685\t1.722\t0\t8.6\t0\t0\t0\n-5.075\t2.4622\t0\t0\t0\t0\t4\t48.3\t0\t3\t0\t-0.203\t3.768\t0.922\t10.518\t9\t1.01\t1.108\t0\t0\t0\t1.263\t2\t0\t0\t0\t2.369\t0\t0\t12.066\t2.847\t0\t2\t0\t1\t3.827\t2.52\t0\t8.828\t0\t0\t0\n-5.459\t3.1356\t1\t0\t2\t0\t4\t41.7\t0\t3\t2\t0\t3.784\t1.029\t10.764\t6\t1.029\t1.113\t0\t0\t0\t1.28\t3\t0\t0\t0\t2.462\t0\t0\t22.286\t1.583\t0\t2\t2\t3\t4.748\t2.906\t1\t9.674\t0\t0\t0\n-5.35\t2.9948\t1\t0\t2\t0\t5\t40\t0\t4\t2\t0\t3.843\t1.024\t10.837\t9\t1.041\t1.117\t0\t0\t0\t1.254\t3\t0\t0\t0\t2.442\t0\t0\t21.854\t1.865\t0\t3\t2\t4\t4.738\t3.078\t1\t9.706\t0\t0\t0\n-5.35\t2.9783\t1\t0\t2\t0\t5\t40\t0\t4\t2\t0\t3.843\t1.024\t10.837\t9\t1.041\t1.117\t0\t0\t0\t1.251\t3\t0\t0\t0\t2.443\t0\t0\t21.831\t1.871\t0\t3\t2\t4\t4.738\t3.078\t1\t9.706\t0\t0\t0\n-5.161\t2.5397\t0\t0\t0\t0\t6\t46.4\t0\t5\t0\t-0.525\t3.844\t0.745\t10.717\t13\t1.038\t1.112\t0\t0\t0\t1.222\t2\t0\t0\t0\t2.404\t0\t0\t12.008\t2.924\t0\t4\t0\t4\t3.881\t3.037\t0\t8.952\t0\t0\t0\n-5.164\t2.9809\t1\t0\t0\t0\t0\t26.7\t0\t2\t0\t0\t3.083\t0.917\t9.968\t4\t1.018\t1.133\t0\t0\t0\t1.245\t1\t0\t0\t0\t2.256\t-0.072\t0\t20.861\t0.939\t0\t0\t0\t0\t4.66\t2.988\t0\t9.26\t0\t0\t0\n-4.802\t1.7802\t2\t0\t5\t0\t2\t39.4\t0\t0\t4\t0\t3.892\t0\t10.46\t0\t0.986\t1.113\t0\t0\t0\t1.339\t4\t0\t0\t0\t2.384\t0\t0\t0\t3.735\t0\t0\t5\t1\t4.341\t1.824\t2\t9.301\t0\t0\t0\n-4.562\t2.931\t0\t1\t0\t0\t0\t33.3\t0\t2\t2\t-0.603\t3.052\t0.875\t9.54\t2\t1.062\t1.153\t1\t0\t0\t1.166\t1\t0\t0\t0\t2.17\t0.05\t0\t20.392\t1.14\t0\t0\t4\t2\t3.587\t3.292\t2\t8.026\t0\t0\t0\n-5.062\t4.0287\t0\t0\t0\t0\t0\t26.3\t0\t6\t27\t0\t4.146\t1.975\t10.792\t12\t1.021\t1.162\t0\t0\t0\t1.137\t1\t0\t0\t0\t2.404\t0\t0\t0\t2.398\t0\t0\t0\t0\t3.83\t2.296\t6\t8.939\t0\t0\t0\n-4.807\t2.7734\t2\t0\t0\t0\t0\t26.3\t0\t0\t4\t1.008\t3.352\t0.881\t9.833\t0\t0.994\t1.131\t0\t0\t0\t1.334\t1\t0\t0\t0\t2.246\t-0.023\t0\t0\t1.06\t0\t0\t0\t0\t4.094\t2.019\t2\t8.76\t0\t0\t0\n-5.092\t2.0631\t0\t0\t3\t0\t5\t51.5\t0\t2\t4\t-0.32\t3.945\t0.548\t10.725\t6\t1.002\t1.103\t0\t0\t0\t1.304\t4\t0\t0\t0\t2.412\t0\t0\t12.207\t3.461\t0\t2\t3\t2\t3.924\t2.375\t1\t9.072\t0\t0\t0\n-5.051\t1.6237\t4\t2\t16\t0\t14\t41.9\t2\t8\t20\t-2.695\t5.032\t0.964\t11.786\t14\t1.032\t1.124\t0\t0\t0\t1.265\t4\t0\t1\t0\t2.399\t0\t0\t50.918\t9.592\t0\t12\t18\t2\t4.016\t2.595\t6\t10.274\t0\t4\t0\n-3.618\t3.4245\t0\t0\t0\t0\t0\t44.4\t0\t1\t0\t0\t2.593\t0\t8.412\t0\t1.011\t1.116\t0\t0\t0\t1.332\t1\t0\t0\t0\t2\t-0.237\t0\t0\t0.579\t0\t0\t0\t0\t3.526\t2.3\t0\t7.6\t0\t0\t0\n-5.389\t2.7726\t1\t0\t3\t0\t2\t41.7\t0\t3\t3\t0.144\t3.772\t1.506\t10.698\t9\t1.029\t1.113\t0\t0\t0\t1.278\t3\t0\t0\t0\t2.504\t0\t0\t23.066\t2.22\t0\t1\t2\t0\t4.757\t2.728\t1\t9.614\t0\t0\t0\n-5.318\t2.6699\t2\t0\t0\t0\t2\t36.4\t0\t3\t0\t0\t3.7\t0.985\t10.545\t9\t1.02\t1.107\t0\t0\t0\t1.317\t3\t0\t0\t0\t2.402\t0.001\t0\t0\t1.511\t0\t1\t0\t0\t4.706\t2.293\t0\t9.538\t0\t0\t0\n-5.306\t2.2373\t0\t0\t11\t0\t4\t36.2\t3\t6\t11\t-1.722\t4.217\t1.577\t11.222\t9\t1.031\t1.14\t0\t0\t0\t1.191\t6\t0\t0\t0\t2.527\t0\t0\t23.86\t3.172\t0\t2\t10\t5\t3.942\t2.846\t4\t9.248\t0\t0\t0\n-4.843\t2.7944\t0\t0\t1\t0\t2\t34.4\t0\t5\t1\t-0.929\t3.729\t2.297\t10.299\t7\t1.029\t1.139\t0\t0\t0\t1.153\t1\t0\t0\t0\t2.268\t0\t0\t10.307\t4.371\t0\t2\t0\t3\t3.681\t2.755\t1\t8.613\t0\t0\t0\n-3.618\t2.3247\t2\t0\t0\t0\t0\t27.3\t2\t0\t0\t0\t3.679\t1.522\t7.853\t0\t1.008\t1.131\t0\t0\t0\t1.338\t0\t1\t1\t0\t1.732\t0.336\t0\t0\t2.094\t0\t0\t0\t0\t6.866\t2.272\t0\t11.578\t0\t2\t0\n-3\t1.7389\t1\t0\t0\t0\t0\t25\t2\t0\t0\t0\t3.426\t0.918\t6.594\t0\t0.985\t1.136\t0\t0\t0\t1.383\t0\t1\t0\t0\t1.414\t0.691\t0\t0\t1.333\t0\t0\t0\t0\t6.867\t2.083\t0\t11.561\t0\t1\t0\n-5.051\t3.532\t0\t0\t2\t0\t0\t30\t2\t6\t2\t-0.794\t4.214\t3.546\t10.717\t9\t0.991\t1.146\t0\t0\t0\t1.141\t0\t0\t0\t0\t2.291\t0\t0\t11.784\t10.986\t0\t0\t2\t6\t3.519\t2.435\t1\t8.71\t0\t0\t0\n-4.876\t2.8477\t0\t0\t2\t0\t0\t30\t2\t2\t3\t-0.608\t3.21\t1.193\t10.053\t4\t1.02\t1.154\t0\t0\t0\t1.174\t1\t0\t0\t0\t2.336\t0.014\t0\t21.357\t1.586\t0\t0\t3\t2\t3.631\t2.9\t2\t8.126\t0\t0\t0\n-4.953\t3.4085\t0\t0\t2\t0\t2\t40\t1\t2\t3\t0\t3.351\t1.273\t9.975\t4\t1.015\t1.129\t0\t1\t0\t1.241\t1\t0\t0\t0\t2.288\t-0.008\t0\t20.772\t1.602\t0\t1\t2\t0\t3.853\t2.803\t1\t8.521\t0\t0\t0\n-5.418\t3.1768\t10\t0\t0\t0\t12\t54.5\t0\t0\t0\t0\t4.608\t0.72\t11.151\t0\t1.121\t1.069\t0\t0\t0\t1.413\t2\t0\t1\t0\t2.532\t0\t0\t0\t2.359\t0\t10\t0\t0\t4.361\t2.778\t0\t10.237\t0\t10\t0\n' |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/pr_curve.png |
b |
Binary file test-data/pr_curve.png has changed |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/r2_curve.png |
b |
Binary file test-data/r2_curve.png has changed |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/regression_local_test_rows.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/regression_local_test_rows.tabular Fri Jan 17 22:23:34 2025 +0000 |
b |
b'@@ -0,0 +1,105 @@\n+RPA2_3\tZYG11A_4\tF5_2\tHOXC4_1\tNKIRAS2_2\tMEIS1_1\tSAMD10_2\tGRM2_9\tTRIM59_5\tLDB2_3\tELOVL2_6\tDDO_1\tKLF14_2\n+65.96\t18.08\t41.57\t55.46\t30.69\t63.42\t40.86\t68.88\t44.32\t56.17\t62.29\t40.99\t2.3\n+66.83\t20.27\t40.55\t49.67\t29.53\t30.47\t37.73\t53.3\t50.09\t58.4\t61.1\t49.73\t1.07\n+50.3\t11.74\t40.17\t33.85\t23.39\t58.83\t38.84\t35.08\t35.9\t58.81\t50.38\t63.03\t0.95\n+65.54\t15.56\t33.56\t36.79\t20.23\t56.39\t41.75\t50.37\t41.46\t58.05\t50.58\t62.13\t1.99\n+59.01\t14.38\t41.95\t30.3\t24.99\t54.4\t37.38\t30.35\t31.28\t65.8\t48.74\t41.88\t0.9\n+81.3\t14.68\t35.91\t50.2\t26.57\t32.37\t32.3\t55.19\t42.21\t70.15\t61.36\t33.62\t1.87\n+58.07\t18.4\t40.41\t40.44\t20.42\t41.29\t43.78\t20.06\t38.36\t63.45\t51.52\t57.68\t1.25\n+58.11\t24.58\t32.84\t54.21\t21.08\t29.35\t30.96\t44.67\t53.84\t57.26\t73.85\t49.15\t4.18\n+76.61\t22.13\t32.07\t53.67\t24.99\t16.48\t27.86\t69.81\t54.41\t48.23\t63.84\t44.54\t4.73\n+64.47\t11.97\t47.64\t49.14\t25.42\t57.06\t42.25\t35.5\t40.97\t64.4\t50.56\t73.24\t3.43\n+54.71\t16.85\t39.04\t40.71\t24.69\t41.87\t34.2\t35.37\t42.89\t49.23\t52.07\t38.21\t4.29\n+69.66\t15.27\t28.33\t53.9\t27.11\t20.4\t32.71\t67.25\t58.37\t37.8\t61.11\t44.65\t4.17\n+68.48\t21.2\t34.33\t50.36\t19.44\t63.27\t36.53\t59.96\t47.17\t59.1\t64.7\t64.61\t6.89\n+65.05\t16.04\t34.4\t48.93\t22.79\t51.25\t35.52\t75.99\t50.14\t41.77\t66.53\t27.31\t6.54\n+54.45\t10.21\t50.73\t27.27\t31.07\t53.47\t35.6\t17.94\t36.84\t68.94\t38.64\t58.43\t2.6\n+60.84\t15.07\t36.77\t29.72\t24.63\t49.39\t33.83\t30\t35.35\t63.05\t58.68\t44.81\t2.96\n+50.78\t10.59\t51.44\t39.27\t32.29\t59.7\t42.74\t48.36\t43.44\t69.35\t47.18\t37.83\t1\n+63.87\t21.75\t36.83\t48.64\t21.88\t38.96\t33.96\t69.21\t46.35\t57.9\t64.4\t42.64\t1.57\n+54.14\t10.42\t39.07\t29.36\t36.61\t58.72\t31.64\t22.21\t24.32\t71.76\t37.27\t61.94\t1.57\n+67.32\t28.13\t33.12\t41.52\t22.74\t38.61\t35.46\t77.11\t57.4\t53.68\t72.84\t51.44\t9.23\n+55.89\t20.02\t28.76\t55.2\t23.04\t24.77\t24.57\t71.62\t59.3\t44.48\t67.77\t42.74\t4.76\n+66.67\t20.69\t39.55\t46.14\t26.82\t55.45\t38.53\t40.4\t37.02\t69.88\t52.36\t52.51\t2.72\n+58.3\t15.1\t42.13\t35.57\t29.33\t61.6\t43.6\t41.99\t38.71\t61.11\t48.17\t56.52\t1.4\n+58.84\t16.79\t37.43\t41.08\t31.06\t61.21\t38.54\t27.74\t35.81\t64.56\t45.19\t54.88\t0.55\n+74.06\t21.37\t34.03\t48.29\t24.59\t27.12\t45.56\t47.21\t55.19\t66.28\t71.54\t51.61\t1.92\n+65.73\t18.53\t40.29\t48.81\t25.52\t32.7\t27.92\t70.37\t56.02\t40.21\t61.75\t45.46\t6.62\n+59.06\t15.78\t48.72\t37.58\t28.2\t63.21\t44.36\t15.07\t30.45\t64.42\t40.91\t66.66\t0.67\n+85.48\t26.82\t32.61\t58.16\t24.01\t35.17\t30.4\t51.67\t63.25\t39.63\t68.25\t28.55\t6.72\n+60.92\t14.26\t45.64\t41.18\t24.98\t58.48\t33.54\t27.59\t40.56\t64.82\t54.74\t45.23\t2.25\n+71.42\t29.17\t39.78\t53.66\t28.72\t31.27\t28.72\t82.09\t59.34\t40.89\t70.57\t32.36\t8.07\n+59.54\t20.47\t35.92\t56.56\t22.26\t22.44\t34.99\t59.45\t44.15\t57.85\t61.5\t43.48\t2.16\n+70.29\t16.63\t28.76\t48.88\t31.46\t53.18\t34.28\t48.43\t52.39\t52.73\t65.75\t56.55\t1.51\n+69.06\t11.7\t33.98\t39.33\t25.75\t44.91\t44.84\t56.36\t40.32\t64.6\t65.15\t56.98\t0.58\n+72.31\t14.37\t37.99\t55.84\t20.81\t50.18\t31.07\t50.98\t44.02\t64.17\t55.56\t44.11\t2.93\n+68.46\t21.73\t37.11\t50.09\t29.16\t37.37\t29.36\t36.1\t47.67\t53.88\t65.41\t26.61\t3.83\n+61.71\t14.62\t43.32\t36.84\t27.77\t61.07\t43.66\t24.08\t36.34\t55.67\t47.02\t38.15\t3.12\n+71.88\t33.89\t38.64\t55.36\t20.83\t31.29\t42.17\t44.46\t53.71\t51.36\t69.8\t28.58\t3.31\n+73.09\t20.54\t34.16\t57.35\t20.8\t45.58\t31.12\t57.47\t57.47\t55.38\t62.96\t70.04\t4.37\n+68.45\t22.04\t36.1\t53.16\t27.63\t60.95\t42.24\t56.48\t49.11\t60\t57.39\t39.25\t2.24\n+74.55\t22.19\t35.84\t52.73\t35.98\t24.99\t38.3\t79.58\t57.03\t57.84\t73.16\t42.48\t2.56\n+61.37\t7.61\t42.98\t42.97\t32.4\t75.92\t33.69\t26.84\t35.21\t61.57\t38.28\t53.33\t0.56\n+78.25\t22.16\t39.93\t50.78\t27.86\t29.73\t29.67\t36.65\t50.52\t58.18\t67.55\t20.28\t3.41\n+61.89\t18.9\t38.61\t57.03\t21.96\t42.45\t28.67\t70.16\t44.67\t69.98\t60.44\t60.58\t5.2\n+68.31\t18.4\t33.59\t52.88\t17.78\t38.54\t35.91\t56.68\t46.48\t52.62\t59.62\t32.14\t4.39\n+63.6\t18.32\t29.35\t68.12\t27.42\t29.44\t30.47\t72.58\t52.54\t53.67\t68.62\t40.18\t4.36\n+71.17\t21.44\t36.52\t55.8\t28.59\t27.99\t50.39\t55.6\t49.82\t47.05\t64.8\t55.51\t1.31\n+52.51\t6.22\t49.28\t36.38\t38.54\t59.56\t39.5\t16.91\t26.21\t67.83\t38.71\t61.48\t1.28\n+72\t25.91\t42.99\t65.26\t23.91\t30.52\t39.8\t61.48\t67.92\t61.68\t76.8\t26.31\t5.72\n+71.34\t18.29\t35.78\t44.86\t25.35\t46.11\t37.44\t48.44\t45.24\t62.63\t58.59\t42.48\t2.88\n+55.08\t10.54\t50.3\t32.69\t25.18\t50.29\t45.4\t19.5\t35.62\t61.69\t51.19\t47.62\t2.03\n+54.81\t18.31\t35.09\t50.88\t18.64\t42.8\t29.82\t47.64\t46.97\t4'..b'49\t25.76\t43.05\t57.62\t61.87\t32.23\t2.02\n+46.2\t18.57\t48.54\t31.24\t35.17\t68.2\t43.87\t5.4\t33.88\t67.13\t41.01\t64.51\t1.64\n+64.49\t11.87\t48.75\t36.55\t31.16\t49.61\t40.24\t19.9\t41.68\t68.84\t49.03\t52.77\t1.11\n+48.11\t17.04\t49.81\t33.46\t30.64\t75.86\t46.32\t27.19\t38.83\t73.47\t43.43\t55.63\t1.39\n+60.55\t17.9\t43.5\t47.85\t26.5\t40.52\t42.94\t51.51\t41.96\t63.12\t53.81\t48.77\t2.67\n+64.5\t14.88\t27.85\t47.59\t21.68\t39.64\t33.94\t47.07\t43.87\t47.27\t57.7\t54.51\t2.03\n+75.61\t21.86\t32.83\t47.05\t23.15\t45.14\t30.06\t63.47\t46.99\t56.56\t65.1\t32.03\t3.09\n+49.98\t10.34\t49.53\t32.76\t31.85\t76.73\t38.48\t22.82\t34.32\t81.78\t34.26\t82.15\t1.17\n+57.45\t15.09\t45.51\t31.82\t29.9\t35.98\t38.75\t36.07\t33.62\t56.38\t46.54\t53.56\t0.54\n+61.14\t17.52\t42.49\t43.79\t27.61\t43.48\t39.63\t61.39\t35.14\t53.4\t48.4\t46.26\t4.31\n+64.41\t11.88\t41.7\t42.97\t29.52\t49.49\t32.59\t46.34\t36.23\t63.11\t45.41\t51.46\t1.48\n+71.27\t34.14\t31.3\t60.82\t21.77\t45\t34.94\t66.4\t51.45\t65.58\t72.44\t38.48\t8.73\n+65.79\t14.3\t35.4\t31.71\t25.9\t55.23\t37.84\t32.63\t37.01\t59.75\t53.04\t41.87\t2.14\n+59.79\t18.24\t42.28\t44.86\t27.93\t42.13\t39.03\t47.16\t44.88\t56.05\t52.06\t53.08\t0.84\n+61.45\t16.22\t33.6\t42.66\t19.71\t32.17\t31.94\t29.94\t49.46\t47.45\t62.89\t41.42\t2.5\n+68.35\t24.98\t28.63\t55.51\t21.54\t37.86\t34.59\t44.51\t53.16\t45.17\t62.11\t36.32\t4.84\n+56.86\t14.17\t42.2\t42.94\t23.82\t43.77\t38.88\t25.73\t33.79\t57.77\t43.04\t56.19\t1.35\n+55.09\t11.28\t49.06\t39.41\t35.44\t65.69\t36.61\t17.18\t31.04\t65.45\t34.99\t48.97\t1.05\n+73.35\t23.4\t35.31\t53.57\t22.21\t47.03\t29\t67.94\t50.09\t40.94\t63.22\t47.49\t2.99\n+49.8\t12.22\t46.82\t34.94\t29.35\t47.74\t36.28\t14.31\t32.78\t71.75\t38.77\t32.36\t0.92\n+72.32\t16.96\t29.58\t60.93\t18.42\t27.68\t23.66\t38.89\t51.3\t36.2\t71.53\t31.02\t5.78\n+61.55\t14.34\t37.38\t52.9\t25.69\t45.21\t24.64\t65.97\t46.05\t51.96\t58.01\t41.67\t4.13\n+65.8\t7.36\t49.92\t43.26\t33.1\t65.85\t44.5\t22.3\t39.35\t72.01\t43.91\t64.57\t2\n+52.98\t11.61\t46.42\t38.91\t29.62\t67.72\t38.92\t27.52\t32.71\t69.79\t42.15\t45.95\t0.55\n+74.21\t17.93\t34.12\t48.57\t14.59\t32.28\t37.07\t18.5\t46.52\t46.54\t70.31\t47.18\t5.07\n+60.86\t20.08\t37.9\t48.19\t20.12\t51.65\t33.79\t26.76\t42.09\t43.67\t52.4\t39.61\t1.37\n+70.85\t22.72\t34.08\t51.39\t19.92\t35.63\t37.61\t62.47\t55.79\t45.3\t65.65\t18.6\t6.64\n+61.94\t12.86\t42.9\t38.99\t23.06\t58.53\t35.25\t43.39\t44\t65.43\t56.6\t48.17\t2.35\n+64.42\t15.87\t45.15\t49.11\t31.47\t35.64\t42.8\t35.62\t42.79\t67.26\t55.98\t72.19\t3.05\n+65.75\t15.92\t31.78\t47.18\t24.63\t29.35\t28.6\t35.59\t42.01\t50.14\t60.22\t39.13\t4.81\n+52.2\t10.06\t49.24\t39.85\t30.6\t63.05\t32.3\t15.52\t33.81\t71.05\t36.58\t61.43\t0.79\n+71.16\t20.29\t37\t42.9\t20.53\t29.02\t33.57\t48.88\t49.17\t41.55\t61.18\t41.06\t2.35\n+73.45\t21.84\t32.36\t56.65\t21.31\t35.22\t23.15\t31.64\t59.84\t40.1\t75.21\t40.27\t3.78\n+70.04\t22.37\t31.59\t52.79\t25.09\t38.39\t27.2\t59.33\t48.63\t44.54\t65.57\t50.22\t8.75\n+74.31\t24.4\t34.77\t47.16\t17.02\t46.77\t29.02\t20.03\t37.56\t67.05\t64.6\t54.1\t3.66\n+54.15\t10.64\t50.26\t38.38\t26.46\t54.68\t45.32\t17.99\t31.84\t68.89\t38.83\t60.77\t1.46\n+66.48\t11.43\t41.27\t51.04\t26.53\t61.66\t26.53\t47.44\t36.18\t79.03\t53.66\t63.88\t3.64\n+64.33\t13.78\t32.2\t37.51\t23.8\t44.1\t29.28\t39.53\t44.34\t61.13\t61.55\t53.3\t4.55\n+59.44\t14.36\t34.69\t46.39\t21.51\t22.21\t24.72\t44.11\t52.47\t59.83\t61.88\t46.82\t2.13\n+63.01\t11.25\t42.89\t29.97\t25.58\t49.1\t34.08\t33.86\t38.45\t55.17\t51.23\t39.51\t1.63\n+71.39\t18.84\t41.59\t44.85\t22.07\t51.73\t41.67\t59.46\t44.05\t58.41\t56.39\t47.79\t2.64\n+61.3\t37.09\t30.77\t60.22\t18.97\t19.71\t32.4\t45.16\t65.51\t47.2\t69.32\t64.16\t1.73\n+64.44\t15.25\t35.73\t33.69\t19.96\t44.13\t41.85\t36.53\t37.19\t50.33\t46.3\t28.84\t0.96\n+60.33\t12.96\t40.07\t43.65\t25\t55.58\t32.76\t38.51\t45.4\t60.27\t59.04\t60.34\t6.72\n+66.39\t19.79\t35.59\t52.15\t24.86\t34.32\t40.46\t51.84\t50.96\t56.46\t65.91\t36.37\t5.64\n+64.59\t14.53\t30.11\t52.06\t22.11\t22.34\t26.37\t48\t48.23\t56.39\t56.22\t51.5\t2.63\n+74.16\t22.66\t29.36\t48.54\t21.6\t30.58\t33.72\t56.9\t52.96\t48.51\t71.95\t31.68\t3.28\n+57.85\t11.32\t45.51\t35.93\t26.41\t51\t35.86\t39.3\t35.29\t74.82\t47.07\t72.9\t1.52\n+58.69\t18.35\t44.93\t47.38\t28.52\t27.93\t36.91\t38.85\t43.6\t66.52\t50.38\t61.35\t2.36\n+63.83\t12.09\t41.9\t44.6\t24.75\t39.18\t36.72\t59.16\t47.58\t61.89\t56.56\t46.96\t2.32\n+74.61\t24.72\t31.47\t56.47\t27.28\t20.12\t29.83\t65.22\t54.89\t43.36\t68.69\t16.45\t6.54\n+66.44\t20.96\t34.99\t55.25\t23.77\t49.99\t36.05\t73.52\t51.74\t49.9\t67.48\t36.06\t4.22\n+49.13\t12.58\t46.85\t37.69\t27.03\t57.83\t32.56\t30.09\t40.35\t66.59\t51.18\t33.94\t2.3\n' |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/regression_local_test_rows_labels.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/regression_local_test_rows_labels.tabular Fri Jan 17 22:23:34 2025 +0000 |
b |
b'@@ -0,0 +1,105 @@\n+RPA2_3\tZYG11A_4\tF5_2\tHOXC4_1\tNKIRAS2_2\tMEIS1_1\tSAMD10_2\tGRM2_9\tTRIM59_5\tLDB2_3\tELOVL2_6\tDDO_1\tKLF14_2\tAge\n+65.96\t18.08\t41.57\t55.46\t30.69\t63.42\t40.86\t68.88\t44.32\t56.17\t62.29\t40.99\t2.3\t40\n+66.83\t20.27\t40.55\t49.67\t29.53\t30.47\t37.73\t53.3\t50.09\t58.4\t61.1\t49.73\t1.07\t44\n+50.3\t11.74\t40.17\t33.85\t23.39\t58.83\t38.84\t35.08\t35.9\t58.81\t50.38\t63.03\t0.95\t28\n+65.54\t15.56\t33.56\t36.79\t20.23\t56.39\t41.75\t50.37\t41.46\t58.05\t50.58\t62.13\t1.99\t37\n+59.01\t14.38\t41.95\t30.3\t24.99\t54.4\t37.38\t30.35\t31.28\t65.8\t48.74\t41.88\t0.9\t24\n+81.3\t14.68\t35.91\t50.2\t26.57\t32.37\t32.3\t55.19\t42.21\t70.15\t61.36\t33.62\t1.87\t43\n+58.07\t18.4\t40.41\t40.44\t20.42\t41.29\t43.78\t20.06\t38.36\t63.45\t51.52\t57.68\t1.25\t34\n+58.11\t24.58\t32.84\t54.21\t21.08\t29.35\t30.96\t44.67\t53.84\t57.26\t73.85\t49.15\t4.18\t66\n+76.61\t22.13\t32.07\t53.67\t24.99\t16.48\t27.86\t69.81\t54.41\t48.23\t63.84\t44.54\t4.73\t62\n+64.47\t11.97\t47.64\t49.14\t25.42\t57.06\t42.25\t35.5\t40.97\t64.4\t50.56\t73.24\t3.43\t32\n+54.71\t16.85\t39.04\t40.71\t24.69\t41.87\t34.2\t35.37\t42.89\t49.23\t52.07\t38.21\t4.29\t38\n+69.66\t15.27\t28.33\t53.9\t27.11\t20.4\t32.71\t67.25\t58.37\t37.8\t61.11\t44.65\t4.17\t65\n+68.48\t21.2\t34.33\t50.36\t19.44\t63.27\t36.53\t59.96\t47.17\t59.1\t64.7\t64.61\t6.89\t63\n+65.05\t16.04\t34.4\t48.93\t22.79\t51.25\t35.52\t75.99\t50.14\t41.77\t66.53\t27.31\t6.54\t52\n+54.45\t10.21\t50.73\t27.27\t31.07\t53.47\t35.6\t17.94\t36.84\t68.94\t38.64\t58.43\t2.6\t23\n+60.84\t15.07\t36.77\t29.72\t24.63\t49.39\t33.83\t30\t35.35\t63.05\t58.68\t44.81\t2.96\t41\n+50.78\t10.59\t51.44\t39.27\t32.29\t59.7\t42.74\t48.36\t43.44\t69.35\t47.18\t37.83\t1\t29\n+63.87\t21.75\t36.83\t48.64\t21.88\t38.96\t33.96\t69.21\t46.35\t57.9\t64.4\t42.64\t1.57\t48\n+54.14\t10.42\t39.07\t29.36\t36.61\t58.72\t31.64\t22.21\t24.32\t71.76\t37.27\t61.94\t1.57\t19\n+67.32\t28.13\t33.12\t41.52\t22.74\t38.61\t35.46\t77.11\t57.4\t53.68\t72.84\t51.44\t9.23\t67\n+55.89\t20.02\t28.76\t55.2\t23.04\t24.77\t24.57\t71.62\t59.3\t44.48\t67.77\t42.74\t4.76\t64\n+66.67\t20.69\t39.55\t46.14\t26.82\t55.45\t38.53\t40.4\t37.02\t69.88\t52.36\t52.51\t2.72\t32\n+58.3\t15.1\t42.13\t35.57\t29.33\t61.6\t43.6\t41.99\t38.71\t61.11\t48.17\t56.52\t1.4\t27\n+58.84\t16.79\t37.43\t41.08\t31.06\t61.21\t38.54\t27.74\t35.81\t64.56\t45.19\t54.88\t0.55\t26\n+74.06\t21.37\t34.03\t48.29\t24.59\t27.12\t45.56\t47.21\t55.19\t66.28\t71.54\t51.61\t1.92\t56\n+65.73\t18.53\t40.29\t48.81\t25.52\t32.7\t27.92\t70.37\t56.02\t40.21\t61.75\t45.46\t6.62\t54\n+59.06\t15.78\t48.72\t37.58\t28.2\t63.21\t44.36\t15.07\t30.45\t64.42\t40.91\t66.66\t0.67\t26\n+85.48\t26.82\t32.61\t58.16\t24.01\t35.17\t30.4\t51.67\t63.25\t39.63\t68.25\t28.55\t6.72\t60\n+60.92\t14.26\t45.64\t41.18\t24.98\t58.48\t33.54\t27.59\t40.56\t64.82\t54.74\t45.23\t2.25\t31\n+71.42\t29.17\t39.78\t53.66\t28.72\t31.27\t28.72\t82.09\t59.34\t40.89\t70.57\t32.36\t8.07\t68\n+59.54\t20.47\t35.92\t56.56\t22.26\t22.44\t34.99\t59.45\t44.15\t57.85\t61.5\t43.48\t2.16\t45\n+70.29\t16.63\t28.76\t48.88\t31.46\t53.18\t34.28\t48.43\t52.39\t52.73\t65.75\t56.55\t1.51\t55\n+69.06\t11.7\t33.98\t39.33\t25.75\t44.91\t44.84\t56.36\t40.32\t64.6\t65.15\t56.98\t0.58\t35\n+72.31\t14.37\t37.99\t55.84\t20.81\t50.18\t31.07\t50.98\t44.02\t64.17\t55.56\t44.11\t2.93\t44\n+68.46\t21.73\t37.11\t50.09\t29.16\t37.37\t29.36\t36.1\t47.67\t53.88\t65.41\t26.61\t3.83\t49\n+61.71\t14.62\t43.32\t36.84\t27.77\t61.07\t43.66\t24.08\t36.34\t55.67\t47.02\t38.15\t3.12\t33\n+71.88\t33.89\t38.64\t55.36\t20.83\t31.29\t42.17\t44.46\t53.71\t51.36\t69.8\t28.58\t3.31\t61\n+73.09\t20.54\t34.16\t57.35\t20.8\t45.58\t31.12\t57.47\t57.47\t55.38\t62.96\t70.04\t4.37\t51\n+68.45\t22.04\t36.1\t53.16\t27.63\t60.95\t42.24\t56.48\t49.11\t60\t57.39\t39.25\t2.24\t45\n+74.55\t22.19\t35.84\t52.73\t35.98\t24.99\t38.3\t79.58\t57.03\t57.84\t73.16\t42.48\t2.56\t68\n+61.37\t7.61\t42.98\t42.97\t32.4\t75.92\t33.69\t26.84\t35.21\t61.57\t38.28\t53.33\t0.56\t22\n+78.25\t22.16\t39.93\t50.78\t27.86\t29.73\t29.67\t36.65\t50.52\t58.18\t67.55\t20.28\t3.41\t55\n+61.89\t18.9\t38.61\t57.03\t21.96\t42.45\t28.67\t70.16\t44.67\t69.98\t60.44\t60.58\t5.2\t57\n+68.31\t18.4\t33.59\t52.88\t17.78\t38.54\t35.91\t56.68\t46.48\t52.62\t59.62\t32.14\t4.39\t50\n+63.6\t18.32\t29.35\t68.12\t27.42\t29.44\t30.47\t72.58\t52.54\t53.67\t68.62\t40.18\t4.36\t69\n+71.17\t21.44\t36.52\t55.8\t28.59\t27.99\t50.39\t55.6\t49.82\t47.05\t64.8\t55.51\t1.31\t57\n+52.51\t6.22\t49.28\t36.38\t38.54\t59.56\t39.5\t16.91\t26.21\t67.83\t38.71\t61.48\t1.28\t18\n+72\t25.91\t42.99\t65.26\t23.91\t30.52\t39.8\t61.48\t67.92\t61.68\t76.8\t26.31\t5.72\t56\n+71.34\t18.29\t35.78\t44.86\t25.35\t46.11\t37.44\t48.44\t45.24\t62.63'..b'4\t19.9\t41.68\t68.84\t49.03\t52.77\t1.11\t32\n+48.11\t17.04\t49.81\t33.46\t30.64\t75.86\t46.32\t27.19\t38.83\t73.47\t43.43\t55.63\t1.39\t21\n+60.55\t17.9\t43.5\t47.85\t26.5\t40.52\t42.94\t51.51\t41.96\t63.12\t53.81\t48.77\t2.67\t39\n+64.5\t14.88\t27.85\t47.59\t21.68\t39.64\t33.94\t47.07\t43.87\t47.27\t57.7\t54.51\t2.03\t46\n+75.61\t21.86\t32.83\t47.05\t23.15\t45.14\t30.06\t63.47\t46.99\t56.56\t65.1\t32.03\t3.09\t59\n+49.98\t10.34\t49.53\t32.76\t31.85\t76.73\t38.48\t22.82\t34.32\t81.78\t34.26\t82.15\t1.17\t18\n+57.45\t15.09\t45.51\t31.82\t29.9\t35.98\t38.75\t36.07\t33.62\t56.38\t46.54\t53.56\t0.54\t29\n+61.14\t17.52\t42.49\t43.79\t27.61\t43.48\t39.63\t61.39\t35.14\t53.4\t48.4\t46.26\t4.31\t38\n+64.41\t11.88\t41.7\t42.97\t29.52\t49.49\t32.59\t46.34\t36.23\t63.11\t45.41\t51.46\t1.48\t33\n+71.27\t34.14\t31.3\t60.82\t21.77\t45\t34.94\t66.4\t51.45\t65.58\t72.44\t38.48\t8.73\t61\n+65.79\t14.3\t35.4\t31.71\t25.9\t55.23\t37.84\t32.63\t37.01\t59.75\t53.04\t41.87\t2.14\t40\n+59.79\t18.24\t42.28\t44.86\t27.93\t42.13\t39.03\t47.16\t44.88\t56.05\t52.06\t53.08\t0.84\t35\n+61.45\t16.22\t33.6\t42.66\t19.71\t32.17\t31.94\t29.94\t49.46\t47.45\t62.89\t41.42\t2.5\t47\n+68.35\t24.98\t28.63\t55.51\t21.54\t37.86\t34.59\t44.51\t53.16\t45.17\t62.11\t36.32\t4.84\t62\n+56.86\t14.17\t42.2\t42.94\t23.82\t43.77\t38.88\t25.73\t33.79\t57.77\t43.04\t56.19\t1.35\t25\n+55.09\t11.28\t49.06\t39.41\t35.44\t65.69\t36.61\t17.18\t31.04\t65.45\t34.99\t48.97\t1.05\t19\n+73.35\t23.4\t35.31\t53.57\t22.21\t47.03\t29\t67.94\t50.09\t40.94\t63.22\t47.49\t2.99\t53\n+49.8\t12.22\t46.82\t34.94\t29.35\t47.74\t36.28\t14.31\t32.78\t71.75\t38.77\t32.36\t0.92\t21\n+72.32\t16.96\t29.58\t60.93\t18.42\t27.68\t23.66\t38.89\t51.3\t36.2\t71.53\t31.02\t5.78\t60\n+61.55\t14.34\t37.38\t52.9\t25.69\t45.21\t24.64\t65.97\t46.05\t51.96\t58.01\t41.67\t4.13\t42\n+65.8\t7.36\t49.92\t43.26\t33.1\t65.85\t44.5\t22.3\t39.35\t72.01\t43.91\t64.57\t2\t27\n+52.98\t11.61\t46.42\t38.91\t29.62\t67.72\t38.92\t27.52\t32.71\t69.79\t42.15\t45.95\t0.55\t24\n+74.21\t17.93\t34.12\t48.57\t14.59\t32.28\t37.07\t18.5\t46.52\t46.54\t70.31\t47.18\t5.07\t58\n+60.86\t20.08\t37.9\t48.19\t20.12\t51.65\t33.79\t26.76\t42.09\t43.67\t52.4\t39.61\t1.37\t42\n+70.85\t22.72\t34.08\t51.39\t19.92\t35.63\t37.61\t62.47\t55.79\t45.3\t65.65\t18.6\t6.64\t67\n+61.94\t12.86\t42.9\t38.99\t23.06\t58.53\t35.25\t43.39\t44\t65.43\t56.6\t48.17\t2.35\t37\n+64.42\t15.87\t45.15\t49.11\t31.47\t35.64\t42.8\t35.62\t42.79\t67.26\t55.98\t72.19\t3.05\t36\n+65.75\t15.92\t31.78\t47.18\t24.63\t29.35\t28.6\t35.59\t42.01\t50.14\t60.22\t39.13\t4.81\t54\n+52.2\t10.06\t49.24\t39.85\t30.6\t63.05\t32.3\t15.52\t33.81\t71.05\t36.58\t61.43\t0.79\t20\n+71.16\t20.29\t37\t42.9\t20.53\t29.02\t33.57\t48.88\t49.17\t41.55\t61.18\t41.06\t2.35\t53\n+73.45\t21.84\t32.36\t56.65\t21.31\t35.22\t23.15\t31.64\t59.84\t40.1\t75.21\t40.27\t3.78\t65\n+70.04\t22.37\t31.59\t52.79\t25.09\t38.39\t27.2\t59.33\t48.63\t44.54\t65.57\t50.22\t8.75\t59\n+74.31\t24.4\t34.77\t47.16\t17.02\t46.77\t29.02\t20.03\t37.56\t67.05\t64.6\t54.1\t3.66\t64\n+54.15\t10.64\t50.26\t38.38\t26.46\t54.68\t45.32\t17.99\t31.84\t68.89\t38.83\t60.77\t1.46\t20\n+66.48\t11.43\t41.27\t51.04\t26.53\t61.66\t26.53\t47.44\t36.18\t79.03\t53.66\t63.88\t3.64\t36\n+64.33\t13.78\t32.2\t37.51\t23.8\t44.1\t29.28\t39.53\t44.34\t61.13\t61.55\t53.3\t4.55\t48\n+59.44\t14.36\t34.69\t46.39\t21.51\t22.21\t24.72\t44.11\t52.47\t59.83\t61.88\t46.82\t2.13\t46\n+63.01\t11.25\t42.89\t29.97\t25.58\t49.1\t34.08\t33.86\t38.45\t55.17\t51.23\t39.51\t1.63\t30\n+71.39\t18.84\t41.59\t44.85\t22.07\t51.73\t41.67\t59.46\t44.05\t58.41\t56.39\t47.79\t2.64\t41\n+61.3\t37.09\t30.77\t60.22\t18.97\t19.71\t32.4\t45.16\t65.51\t47.2\t69.32\t64.16\t1.73\t63\n+64.44\t15.25\t35.73\t33.69\t19.96\t44.13\t41.85\t36.53\t37.19\t50.33\t46.3\t28.84\t0.96\t34\n+60.33\t12.96\t40.07\t43.65\t25\t55.58\t32.76\t38.51\t45.4\t60.27\t59.04\t60.34\t6.72\t43\n+66.39\t19.79\t35.59\t52.15\t24.86\t34.32\t40.46\t51.84\t50.96\t56.46\t65.91\t36.37\t5.64\t50\n+64.59\t14.53\t30.11\t52.06\t22.11\t22.34\t26.37\t48\t48.23\t56.39\t56.22\t51.5\t2.63\t47\n+74.16\t22.66\t29.36\t48.54\t21.6\t30.58\t33.72\t56.9\t52.96\t48.51\t71.95\t31.68\t3.28\t66\n+57.85\t11.32\t45.51\t35.93\t26.41\t51\t35.86\t39.3\t35.29\t74.82\t47.07\t72.9\t1.52\t25\n+58.69\t18.35\t44.93\t47.38\t28.52\t27.93\t36.91\t38.85\t43.6\t66.52\t50.38\t61.35\t2.36\t31\n+63.83\t12.09\t41.9\t44.6\t24.75\t39.18\t36.72\t59.16\t47.58\t61.89\t56.56\t46.96\t2.32\t39\n+74.61\t24.72\t31.47\t56.47\t27.28\t20.12\t29.83\t65.22\t54.89\t43.36\t68.69\t16.45\t6.54\t69\n+66.44\t20.96\t34.99\t55.25\t23.77\t49.99\t36.05\t73.52\t51.74\t49.9\t67.48\t36.06\t4.22\t58\n+49.13\t12.58\t46.85\t37.69\t27.03\t57.83\t32.56\t30.09\t40.35\t66.59\t51.18\t33.94\t2.3\t30\n' |
b |
diff -r 5112462f2dd3 -r c081e5e1d7ce test-data/regression_local_train_rows.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/regression_local_train_rows.tabular Fri Jan 17 22:23:34 2025 +0000 |
b |
b'@@ -0,0 +1,209 @@\n+RPA2_3\tZYG11A_4\tF5_2\tHOXC4_1\tNKIRAS2_2\tMEIS1_1\tSAMD10_2\tGRM2_9\tTRIM59_5\tLDB2_3\tELOVL2_6\tDDO_1\tKLF14_2\tAge\n+52.36\t11.95\t47.48\t36.08\t35.1\t70.16\t43.46\t23.31\t33.64\t74.44\t36.12\t70.65\t2.46\t20\n+59.44\t21.49\t41.19\t39.51\t30.15\t58.9\t27.73\t53.05\t35.94\t66.46\t45.35\t54.23\t1.77\t29\n+67.84\t17.43\t38.29\t47.76\t21.82\t43.83\t23.28\t37.69\t47.76\t54\t59.2\t42.77\t2\t49\n+67.68\t19.64\t30.53\t43.83\t22.08\t31.06\t30.25\t44.54\t53.88\t31.94\t64.33\t14.77\t5.44\t67\n+70.51\t30.56\t31.76\t69.47\t20.55\t21.64\t26.18\t68.05\t51.74\t48.22\t71.09\t53.04\t4.48\t65\n+52.83\t8.29\t46.59\t41.11\t29.41\t65.85\t39.35\t13.57\t25.26\t75.5\t32.16\t66.18\t0.98\t20\n+69.02\t12.35\t43.93\t39.04\t29.26\t52.02\t39.52\t45.83\t39.29\t68.59\t45.11\t57.02\t2.12\t31\n+57.38\t19.73\t34.07\t42.84\t20.55\t45.68\t30.78\t40.09\t42.1\t45.92\t53.05\t58.33\t2.29\t37\n+62.56\t20.76\t42.52\t36.57\t29.06\t31.85\t33.77\t38.08\t48.31\t58.53\t53.82\t46.96\t1.69\t35\n+64.05\t16.36\t41.39\t51.92\t25.54\t48.97\t29.54\t43.98\t46.39\t56.13\t58.19\t42.09\t2.54\t39\n+74.22\t24.87\t24.05\t59.98\t25.33\t44.89\t32.4\t62.28\t54.4\t53.22\t69.05\t41.46\t4.55\t64\n+65.84\t28.24\t34.84\t48.05\t27.42\t29.54\t27.63\t66.47\t55.91\t40.77\t57.99\t48.01\t6.49\t56\n+71.6\t19.59\t36.77\t48.53\t28.38\t26.15\t32.64\t36.06\t55.35\t49.76\t65.77\t55.58\t2.63\t60\n+65.74\t17.56\t36.8\t43.5\t23.12\t32.7\t30.13\t35.08\t43.53\t47.99\t56.45\t33.23\t4.02\t43\n+62.1\t14.76\t38.29\t43.78\t23.01\t38.66\t28.53\t64.31\t39.34\t51.39\t49.58\t54.99\t1.72\t36\n+59.99\t11.62\t42.89\t43.33\t23.34\t57.94\t38.03\t36.21\t35.47\t62.69\t47.77\t53.52\t1.4\t29\n+56.17\t12.05\t45.18\t30.87\t26.32\t58.93\t44\t18.37\t32.16\t70.12\t45.07\t46.65\t0.53\t27\n+49.93\t7.24\t46.93\t38.73\t29.49\t54.02\t40.57\t25.48\t35.19\t73.91\t42.44\t79.54\t1.05\t28\n+68.58\t17.67\t33.78\t58.93\t21.83\t36.76\t32.16\t59.2\t40.92\t45.99\t65.48\t52.23\t7.42\t55\n+60.55\t10.61\t43.06\t46.32\t28.77\t65.01\t36.11\t32.03\t36.09\t65.92\t46.53\t75.3\t1.7\t32\n+56.57\t15.5\t34.09\t35.5\t24.3\t44.91\t34.66\t27.43\t37.09\t56.83\t57.22\t56.8\t1.87\t38\n+52.16\t11.12\t45.57\t39.93\t26.52\t72.4\t40.43\t22.19\t37.6\t77.9\t42.82\t60.16\t1.19\t25\n+65.78\t20.35\t33.34\t31.59\t24.15\t53.41\t42.61\t42.96\t49.12\t62\t64.01\t42.23\t3.37\t41\n+63.54\t16.82\t46.49\t57.97\t26.06\t45.52\t41.2\t33.53\t43.93\t57.18\t57.39\t51.5\t2.17\t44\n+60.25\t14.56\t32.77\t54.98\t21.23\t42.16\t32.6\t53.29\t52.71\t57.81\t59.1\t19.63\t4.65\t60\n+76.51\t17.45\t31.92\t59.38\t23.14\t43.69\t33.86\t65.36\t53.24\t55.47\t65.48\t29.47\t4.6\t51\n+62.86\t18.68\t34.8\t50.22\t18.41\t48.08\t31.74\t45.74\t45.23\t53.01\t58.25\t31.9\t5.1\t51\n+58.85\t13.3\t40.14\t40.93\t26.85\t54.37\t36.41\t28.93\t42.21\t64.34\t50.68\t68.27\t1.15\t33\n+60.38\t16.18\t46.01\t37.04\t25.37\t50.12\t36.59\t32.67\t33.57\t70.9\t46.78\t63.43\t1.44\t24\n+65.07\t18.15\t37.07\t52.1\t24.55\t34.6\t36.11\t65.96\t49.71\t41.75\t63.27\t62.17\t2.69\t48\n+58.96\t14.24\t38.65\t42.29\t21.46\t50.08\t39.26\t42.12\t43.56\t51.5\t60.83\t37.2\t2.73\t41\n+57.15\t17.7\t37.02\t35.44\t26.5\t39.97\t43.1\t39.15\t39.83\t65.65\t54.11\t49.84\t2.44\t42\n+60.08\t14.82\t42.71\t48.24\t23.52\t62.27\t36.15\t42.55\t35.89\t57.83\t51.77\t63.03\t3.13\t36\n+51.47\t14.3\t44.76\t35.79\t32.68\t76.44\t32.15\t33.09\t28.88\t60.87\t45.7\t75.17\t1.77\t26\n+69.83\t18.76\t42.27\t42.34\t24.19\t39.66\t43.26\t59.01\t39.9\t55.45\t59.98\t38.95\t2.47\t41\n+71.47\t33.56\t29.24\t65.38\t24.52\t33.82\t36.45\t67.19\t69.96\t38.12\t70.52\t39.11\t6.57\t69\n+61.13\t15.4\t42.65\t35.15\t28.53\t66.1\t40.33\t29.33\t27.85\t67.55\t40.11\t65.16\t2.08\t24\n+74.16\t21.64\t32.27\t35.39\t20.45\t39.38\t30.76\t53.02\t43\t40.05\t69.31\t34.41\t2.88\t55\n+52.17\t12.79\t41.66\t38.53\t27.27\t22.01\t37.08\t24.47\t35.29\t56\t50.52\t52.49\t1.35\t32\n+73.14\t13.38\t33.27\t46.52\t24.5\t27.76\t37.44\t62.45\t51.91\t61.16\t60.68\t31.28\t3.82\t50\n+64.53\t12.89\t49.17\t39.92\t30.78\t46.43\t42.43\t23.86\t43.72\t62.93\t46.32\t56.7\t1.31\t27\n+57.65\t14.52\t33.22\t54.34\t19.48\t37.98\t32.75\t48.87\t53.52\t47.83\t63.49\t47.46\t2.84\t50\n+48.38\t8.16\t48.94\t38.95\t24.73\t71.65\t35.02\t25.26\t33.39\t71.53\t39.3\t57.71\t1.29\t19\n+62.97\t20.38\t34.38\t47.32\t19.64\t45.32\t33.38\t54.29\t54.42\t53.14\t65.38\t62.07\t3.15\t58\n+61.03\t8.27\t43.12\t41.71\t28.38\t39.58\t41.92\t39.25\t39.65\t65.21\t52.21\t53.12\t1.87\t34\n+78.77\t19.63\t33.81\t54.01\t24.13\t37.13\t27.51\t45.13\t41.6\t42.11\t62.01\t35.19\t5.9\t52\n+59.5\t14.27\t44.97\t35.4\t26.66\t68.88\t41.21\t25.3\t33.1\t70.23\t46.08\t68.34\t1.85\t34\n+67.77\t18.44\t31.41\t53.7\t15.54\t38\t24.66\t59.07\t58.39\t55.31\t73.61\t43.88\t4.56\t68\n+50.87\t9.24\t45.01\t41.56\t32.07\t53.33\t47.14\t15.24\t36.52\t59.58\t46.65\t'..b'54.12\t40.56\t68.97\t28.31\t5.75\t65\n+72.92\t23.61\t32.56\t42.58\t21.21\t25.31\t32.51\t52.81\t51.73\t50.58\t63.49\t40.62\t4.28\t54\n+73.85\t17.67\t34.85\t47.77\t25.06\t37.38\t31.03\t53.58\t51.07\t58.59\t68.91\t52.45\t3.11\t55\n+69.57\t20.92\t33.14\t52.27\t28.13\t42.86\t38.77\t41.31\t51.99\t53.03\t60.82\t40.5\t1.83\t46\n+59.41\t12.97\t48.63\t29.65\t34.83\t79.27\t35.46\t12.48\t31.35\t74.12\t36.36\t77.18\t1.41\t23\n+51.89\t13.88\t47.17\t35.01\t29.72\t46.42\t43.36\t14.97\t26.99\t67.76\t37.28\t78.42\t0.99\t18\n+67.49\t20.39\t36.33\t51.84\t25.11\t55.27\t36.31\t46.5\t50.41\t61.77\t60.8\t42.45\t2.39\t52\n+63.1\t18.95\t37.98\t41.02\t27\t45.23\t40.9\t24.14\t43.68\t61.2\t53.6\t64.07\t2.51\t32\n+66.37\t21.02\t28.65\t57.98\t21.73\t36.25\t33.02\t45.63\t49.18\t50.65\t70.26\t30.49\t3.18\t59\n+62.56\t11.18\t36.86\t47.71\t21.45\t41.36\t35.36\t39.65\t50.59\t38.2\t56.75\t58.89\t3.81\t47\n+70.52\t20.86\t42.32\t56.7\t19.97\t51.46\t30.45\t64.61\t52.19\t49.29\t65.72\t44.34\t3.27\t62\n+62.99\t13.32\t33.42\t44.85\t19.25\t28.16\t41.4\t50.47\t54.24\t51.57\t61.93\t30.83\t3.09\t53\n+61.26\t16.91\t44.19\t43.2\t23.21\t56.12\t40.72\t31.98\t45.47\t57.7\t55.02\t54.8\t1.9\t39\n+51.7\t11.86\t47.3\t32.63\t29.4\t52.01\t42.96\t22.5\t39.52\t57.97\t43.04\t71.56\t0.72\t23\n+60.99\t10.38\t47.24\t31.33\t30.03\t58.61\t46.9\t12.95\t33.53\t70.9\t39.28\t70.62\t0.48\t22\n+51.78\t12.73\t38.87\t33.93\t23.82\t36.87\t40.63\t38.29\t35.17\t66.5\t44.68\t60.38\t1.85\t33\n+62.85\t20.39\t41.09\t60.76\t21.81\t57.94\t25.77\t50.74\t53.95\t67.39\t69.17\t46.56\t8.75\t56\n+74.35\t25.85\t29.71\t45.09\t20.09\t20.83\t29.82\t52.82\t56.19\t43.03\t55.23\t38.84\t4.72\t60\n+64.66\t29.54\t34.85\t50.07\t21.64\t23.32\t23.3\t59.43\t61.87\t37.85\t77.16\t23.14\t2.72\t68\n+43.78\t9.98\t32.83\t31.51\t25.5\t54.05\t33.56\t26.02\t36.85\t61.38\t39.76\t60.61\t2.41\t23\n+61.36\t23.44\t34.82\t49.42\t22.57\t39.88\t28.19\t70.51\t51.59\t45.78\t64.94\t24.52\t4.01\t58\n+73.99\t27.48\t31.6\t53.6\t19.7\t36.86\t31.26\t39.55\t55.59\t51.61\t64.58\t35.24\t3.58\t63\n+65.96\t22.13\t32.5\t57.3\t24.98\t51.76\t43.15\t50.72\t50.49\t57.22\t60.82\t64.52\t2.45\t49\n+78.97\t27.7\t36.88\t61.24\t26.39\t32.94\t30.49\t63.48\t60.2\t45.96\t74.53\t34.47\t5.89\t66\n+59.89\t9.01\t42.87\t51.7\t27.48\t49.67\t31.62\t54.71\t46.5\t56.58\t59.58\t43.97\t2.18\t42\n+43.99\t7.09\t49.24\t31.08\t33.07\t62.14\t43.95\t9.51\t30.46\t75.58\t37.41\t68.34\t1.05\t18\n+68.76\t27.13\t30.56\t63.03\t18.77\t28.98\t22.38\t74.04\t54.68\t46.28\t70.74\t33.15\t6.9\t61\n+61.9\t16.16\t32\t42.88\t24.03\t40.56\t34.42\t46.38\t47.68\t39.41\t57\t48.3\t2.6\t45\n+68.05\t18.27\t42.51\t46.26\t26.45\t52.14\t33.9\t27.83\t38.07\t58.06\t48.36\t50.05\t2.88\t35\n+68.62\t23.31\t30.83\t52.15\t22.62\t37.96\t29.89\t76.27\t56.42\t49.47\t65.72\t30.93\t6.51\t63\n+58.47\t18.7\t42.18\t43.98\t29.13\t53.41\t36.31\t45.09\t37.1\t59.83\t53.25\t49.88\t2.15\t31\n+76.1\t21.69\t33.1\t43.68\t20.49\t14.18\t26.57\t58.19\t58.35\t43.68\t70.47\t18.83\t5.44\t68\n+78.21\t18.61\t29.77\t47.66\t21.78\t24.77\t42.63\t34.08\t39.94\t52.6\t62.23\t31.87\t3.07\t54\n+67.35\t26.86\t33.8\t43.55\t23.73\t31.17\t34.33\t64.25\t50.48\t53.58\t62.18\t32.58\t3.12\t51\n+61.81\t25.79\t33.78\t51.13\t22.94\t43.26\t34.79\t60.69\t55.61\t56.24\t68.06\t56.49\t4.95\t58\n+62.32\t21.01\t23.58\t63.73\t16.89\t17.28\t18.22\t25.49\t56.49\t51.26\t68.89\t30.45\t5\t55\n+58.48\t15.15\t48.72\t37.61\t28.91\t49.44\t37.22\t24.98\t41.21\t53.56\t50.4\t43.89\t1.21\t29\n+53.24\t15.52\t43.61\t45.94\t27.06\t27.13\t44.41\t46.12\t40.83\t52.4\t43.7\t63.71\t0.91\t30\n+60.84\t14.92\t36.47\t48.12\t24.12\t54.85\t33.33\t40.53\t36.07\t60.1\t46.57\t38.08\t3.87\t41\n+51.92\t11.19\t41.91\t41.87\t26.39\t59.65\t31.24\t7.31\t39.23\t56.02\t42.07\t75.07\t1.36\t26\n+54.36\t20\t37.96\t48.89\t22.24\t38.97\t38.27\t44.05\t43.05\t58.16\t54.29\t48.48\t2.89\t40\n+61.11\t15.95\t41.28\t38.32\t27.55\t39.08\t36.64\t40.8\t44.42\t48.41\t61.77\t43.59\t2.12\t39\n+57.63\t15.11\t42.68\t47.47\t31.54\t55.03\t37.39\t25.67\t40.03\t61.64\t51.22\t52.05\t2.89\t32\n+64.8\t15.96\t30.48\t58.11\t21.85\t19.71\t32.48\t56.79\t51.6\t33.09\t64.63\t43.12\t5.27\t59\n+63.07\t15.72\t40.93\t51.13\t27.67\t37.26\t34.46\t46.18\t42.78\t59.04\t56.76\t43.23\t1.31\t42\n+69.38\t25.11\t35.79\t55.44\t20.35\t25.14\t31.11\t56.02\t46.17\t47.28\t72.49\t55.22\t4.21\t63\n+66.5\t17.51\t36.19\t43.25\t22.35\t51.74\t37.76\t37.29\t47.99\t45.86\t64.91\t43.98\t1.4\t44\n+75.33\t31.3\t27.83\t56.04\t18.66\t26.1\t29.1\t69.76\t62.66\t55.72\t75.41\t32.94\t5.52\t68\n+66.39\t11.81\t41.87\t43.49\t25.61\t50.47\t38.5\t24.09\t43.85\t63.39\t57.99\t43.52\t1.59\t40\n+57.42\t12.51\t42\t42.97\t27.21\t40.85\t37.23\t17.58\t39.32\t57.28\t51.46\t33.88\t1.5\t34\n+68.19\t20.88\t35.27\t43.91\t24.08\t34.68\t37.68\t57.78\t51.55\t52.46\t64\t51.53\t5.06\t48\n' |