Mercurial > repos > artbio > small_rna_clusters
comparison small_rna_clusters.py @ 0:8028521b6e4f draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_clusters commit f38805cf151cbda1cf7de0a92cdfeb5978f26547"
author | artbio |
---|---|
date | Mon, 07 Oct 2019 12:51:25 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:8028521b6e4f |
---|---|
1 import argparse | |
2 from collections import defaultdict | |
3 | |
4 import pysam | |
5 | |
6 | |
7 def Parser(): | |
8 the_parser = argparse.ArgumentParser() | |
9 the_parser.add_argument('--inputs', dest='inputs', required=True, | |
10 nargs='+', help='list of input BAM files') | |
11 the_parser.add_argument('--minsize', dest='minsize', type=int, | |
12 default=19, help='minimal size of reads') | |
13 the_parser.add_argument('--maxsize', dest='maxsize', type=int, | |
14 default=29, help='maximal size of reads') | |
15 the_parser.add_argument('--cluster', dest='cluster', type=int, | |
16 default=0, help='clustering distance') | |
17 the_parser.add_argument('--sample_names', dest='sample_names', | |
18 required=True, nargs='+', | |
19 help='list of sample names') | |
20 the_parser.add_argument('--bed', dest='bed', required=False, | |
21 help='Name of bed output must be specified\ | |
22 if --cluster option used') | |
23 the_parser.add_argument('--bed_skipsize', dest='bed_skipsize', | |
24 required=False, type=int, default=1, | |
25 help='Skip clusters of size equal or less than\ | |
26 specified integer in the bed output. \ | |
27 Default = 0, not skipping') | |
28 the_parser.add_argument('--bed_skipdensity', dest='bed_skipdensity', | |
29 required=False, type=float, default=0, | |
30 help='Skip clusters of density equal or less than\ | |
31 specified float number in the bed output. \ | |
32 Default = 0, not skipping') | |
33 the_parser.add_argument('--bed_skipcounts', dest='bed_skipcounts', | |
34 required=False, type=int, default=1, | |
35 help='Skip clusters of size equal or less than\ | |
36 specified integer in the bed output. \ | |
37 Default = 0, not skipping') | |
38 the_parser.add_argument('--outputs', action='store', | |
39 help='list of two output paths (only two)') | |
40 the_parser.add_argument('--nostrand', action='store_true', | |
41 help='Consider reads regardless their polarity') | |
42 | |
43 args = the_parser.parse_args() | |
44 return args | |
45 | |
46 | |
47 class Map: | |
48 | |
49 def __init__(self, bam_file, sample, minsize, maxsize, cluster, nostrand): | |
50 self.sample_name = sample | |
51 self.minsize = minsize | |
52 self.maxsize = maxsize | |
53 self.cluster = cluster | |
54 if not nostrand: | |
55 self.nostrand = False | |
56 else: | |
57 self.nostrand = True | |
58 self.bam_object = pysam.AlignmentFile(bam_file, 'rb') | |
59 self.chromosomes = dict(zip(self.bam_object.references, | |
60 self.bam_object.lengths)) | |
61 self.map_dict = self.create_map(self.bam_object, self.nostrand) | |
62 if self.cluster: | |
63 self.map_dict = self.tile_map(self.map_dict, self.cluster) | |
64 | |
65 def create_map(self, bam_object, nostrand=False): | |
66 ''' | |
67 Returns a map_dictionary {(chromosome,read_position,polarity): | |
68 [read_length, ...]} | |
69 ''' | |
70 map_dictionary = defaultdict(list) | |
71 for chrom in self.chromosomes: | |
72 # get empty value for start and end of each chromosome | |
73 map_dictionary[(chrom, 1, 'F')] = [] | |
74 map_dictionary[(chrom, self.chromosomes[chrom], 'F')] = [] | |
75 if not nostrand: | |
76 for read in bam_object.fetch(chrom): | |
77 positions = read.positions # a list of covered positions | |
78 if read.is_reverse: | |
79 map_dictionary[(chrom, positions[-1]+1, 'R')].append( | |
80 read.query_alignment_length) | |
81 else: | |
82 map_dictionary[(chrom, positions[0]+1, 'F')].append( | |
83 read.query_alignment_length) | |
84 else: | |
85 for read in bam_object.fetch(chrom): | |
86 positions = read.positions # a list of covered positions | |
87 map_dictionary[(chrom, positions[0]+1, 'F')].append( | |
88 read.query_alignment_length) | |
89 return map_dictionary | |
90 | |
91 def grouper(self, iterable, clust_distance): | |
92 prev = None | |
93 group = [] | |
94 for item in iterable: | |
95 if not prev or item - prev <= clust_distance: | |
96 group.append(item) | |
97 else: | |
98 yield group | |
99 group = [item] | |
100 prev = item | |
101 if group: | |
102 yield group | |
103 | |
104 def tile_map(self, map_dic, clust_distance): | |
105 ''' | |
106 takes a map_dictionary {(chromosome,read_position,polarity): | |
107 [read_length, ...]} | |
108 and returns a map_dictionary with structure: | |
109 {(chromosome,read_position,polarity): | |
110 [*counts*, [start_clust, end_clust]]} | |
111 ''' | |
112 clustered_dic = defaultdict(list) | |
113 for chrom in self.chromosomes: | |
114 F_chrom_coord = [] | |
115 R_chrom_coord = [] | |
116 for key in map_dic: | |
117 if key[0] == chrom and key[2] == 'F': | |
118 F_chrom_coord.append(key[1]) | |
119 elif key[0] == chrom and key[2] == 'R': | |
120 R_chrom_coord.append(key[1]) | |
121 F_chrom_coord = list(set(F_chrom_coord)) | |
122 R_chrom_coord = list(set(R_chrom_coord)) | |
123 F_chrom_coord.sort() | |
124 R_chrom_coord.sort() | |
125 F_clust_values = [i for i in self.grouper(F_chrom_coord, | |
126 clust_distance)] | |
127 F_clust_keys = [(i[-1]+i[0])/2 for i in F_clust_values] | |
128 R_clust_values = [i for i in self.grouper(R_chrom_coord, | |
129 clust_distance)] | |
130 R_clust_keys = [(i[-1]+i[0])/2 for i in R_clust_values] | |
131 # now 2 dictionnaries (F and R) with structure: | |
132 # {centered_coordinate: [coord1, coord2, coord3, ..]} | |
133 F_clust_dic = dict(zip(F_clust_keys, F_clust_values)) | |
134 R_clust_dic = dict(zip(R_clust_keys, R_clust_values)) | |
135 for centcoor in F_clust_dic: | |
136 accumulator = [] | |
137 for coor in F_clust_dic[centcoor]: | |
138 accumulator.extend(map_dic[(chrom, coor, 'F')]) | |
139 ''' | |
140 compute the offset of the cluster due to | |
141 size of reads | |
142 ''' | |
143 last = sorted(F_clust_dic[centcoor])[-1] | |
144 try: | |
145 margin = max(map_dic[(chrom, last, 'F')]) - 1 | |
146 except ValueError: | |
147 margin = 0 | |
148 clustered_dic[(chrom, centcoor, 'F')] = [len(accumulator), [ | |
149 F_clust_dic[centcoor][0], | |
150 F_clust_dic[centcoor][-1] + margin]] | |
151 for centcoor in R_clust_dic: | |
152 accumulator = [] | |
153 for coor in R_clust_dic[centcoor]: | |
154 accumulator.extend(map_dic[(chrom, coor, 'R')]) | |
155 ''' | |
156 compute the offset of the cluster due to | |
157 size of reads | |
158 ''' | |
159 first = sorted(R_clust_dic[centcoor])[0] | |
160 try: | |
161 margin = max(map_dic[(chrom, first, 'R')]) - 1 | |
162 except ValueError: | |
163 margin = 0 | |
164 clustered_dic[(chrom, centcoor, 'R')] = [len(accumulator), [ | |
165 R_clust_dic[centcoor][0] - margin, | |
166 R_clust_dic[centcoor][-1]]] | |
167 return clustered_dic | |
168 | |
169 def write_table(self, mapdict, out): | |
170 ''' | |
171 Writer of a tabular file | |
172 Dataset, Chromosome, Chrom_length, Coordinate, Polarity, | |
173 <some mapped value> | |
174 out is an *open* file handler | |
175 ''' | |
176 for key in sorted(mapdict): | |
177 line = [self.sample_name, key[0], self.chromosomes[key[0]], | |
178 key[1], key[2], mapdict[key]] | |
179 line = [str(i) for i in line] | |
180 out.write('\t'.join(line) + '\n') | |
181 | |
182 def write_cluster_table(self, clustered_dic, out, bedpath): | |
183 ''' | |
184 Writer of a tabular file | |
185 Dataset, Chromosome, Chrom_length, Coordinate, Polarity, | |
186 <some mapped value> | |
187 out is an *open* file handler | |
188 bed is an a file handler internal to the function | |
189 ''' | |
190 def filterCluster(size, count, density): | |
191 if size < args.bed_skipsize: | |
192 return False | |
193 if count < args.bed_skipcounts: | |
194 return False | |
195 if density <= args.bed_skipdensity: | |
196 return False | |
197 return True | |
198 bed = open(bedpath, 'w') | |
199 clusterid = 0 | |
200 for key in sorted(clustered_dic): | |
201 start = clustered_dic[key][1][0] | |
202 end = clustered_dic[key][1][1] | |
203 size = end - start + 1 | |
204 read_count = clustered_dic[key][0] | |
205 if self.nostrand: | |
206 polarity = '.' | |
207 elif key[2] == 'F': | |
208 polarity = '+' | |
209 else: | |
210 polarity = '-' | |
211 density = float(read_count) / size | |
212 line = [self.sample_name, key[0], self.chromosomes[key[0]], | |
213 key[1], key[2], read_count, | |
214 str(start) + "-" + str(end), str(size), str(density)] | |
215 line = [str(i) for i in line] | |
216 out.write('\t'.join(line) + '\n') | |
217 if filterCluster(size, read_count, density): | |
218 clusterid += 1 | |
219 name = 'cluster_' + str(clusterid) | |
220 bedline = [key[0], str(start-1), str(end), name, | |
221 str(read_count), polarity, str(density)] | |
222 bed.write('\t'.join(bedline) + '\n') | |
223 print("number of reported clusters:", clusterid) | |
224 bed.close() | |
225 | |
226 | |
227 def main(inputs, samples, outputs, minsize, maxsize, cluster, | |
228 nostrand, bedfile=None, bed_skipsize=0): | |
229 out = open(outputs, 'w') | |
230 header = ["# Dataset", "Chromosome", "Chrom_length", "Coordinate", | |
231 "Polarity", "Counts", "Start-End", "Cluster Size", "density"] | |
232 out.write('\t'.join(header) + '\n') | |
233 for input, sample in zip(inputs, samples): | |
234 mapobj = Map(input, sample, minsize, maxsize, cluster, nostrand) | |
235 mapobj.write_cluster_table(mapobj.map_dict, out, bedfile) | |
236 out.close() | |
237 | |
238 | |
239 if __name__ == "__main__": | |
240 args = Parser() | |
241 # if identical sample names | |
242 if len(set(args.sample_names)) != len(args.sample_names): | |
243 args.sample_names = [name + '_' + str(i) for | |
244 i, name in enumerate(args.sample_names)] | |
245 main(args.inputs, args.sample_names, args.outputs, | |
246 args.minsize, args.maxsize, args.cluster, args.nostrand, args.bed) |