Mercurial > repos > artbio > small_rna_clusters
view small_rna_clusters.r @ 1:160e35e432a0 draft default tip
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_clusters commit 51dc6c56c7d95fc229ffee958354211cd454fd36"
author | artbio |
---|---|
date | Sun, 09 May 2021 17:10:29 +0000 |
parents | 8028521b6e4f |
children |
line wrap: on
line source
## Setup R error handling to go to stderr options(show.error.messages = F, error = function() { cat(geterrmessage(), file = stderr()); q("no", 1, F) } ) options(warn = -1) library(RColorBrewer) library(lattice) library(latticeExtra) library(grid) library(gridExtra) library(optparse) option_list <- list( make_option(c("-f", "--first_dataframe"), type = "character", help = "path to first dataframe"), make_option("--first_plot_method", type = "character", help = "How additional data should be plotted"), make_option("--output_pdf", type = "character", help = "path to the pdf file with plots") ) parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) args <- parse_args(parser) # data frames implementation ## first table table <- read.delim(args$first_dataframe, header = T, row.names = NULL) colnames(table)[1] <- "Dataset" dropcol <- c("Strandness", "z.score") # not used by this Rscript and is dropped for backward compatibility table <- table[, !(names(table) %in% dropcol)] if (args$first_plot_method == "Counts" | args$first_plot_method == "Size") { table <- within(table, Counts[Polarity == "R"] <- (Counts[Polarity == "R"] * -1)) } n_samples <- length(unique(table$Dataset)) samples <- unique(table$Dataset) genes <- unique(table$Chromosome) per_gene_readmap <- lapply(genes, function(x) subset(table, Chromosome == x)) per_gene_limit <- lapply(genes, function(x) c(1, unique(subset(table, Chromosome == x)$Chrom_length))) n_genes <- length(per_gene_readmap) ## functions plot_unit <- function(df, method = args$first_plot_method, ...) { p <- xyplot(Counts ~ Coordinate | factor(Dataset, levels = unique(Dataset)) + factor(Chromosome, levels = unique(Chromosome)), data = df, type = "h", lwd = 1.5, scales = list(relation = "free", x = list(rot = 0, cex = 0.7, axs = "i", tck = 0.5), y = list(tick.number = 4, rot = 90, cex = 0.7)), xlab = NULL, main = NULL, ylab = NULL, as.table = T, origin = 0, horizontal = FALSE, group = Polarity, col = c("red", "blue"), par.strip.text = list(cex = 0.7), ...) p <- combineLimits(p) } ## function parameters par_settings_firstplot <- list(layout.heights = list(top.padding = -2, bottom.padding = -2), strip.background = list(col = c("lightblue", "lightgreen"))) title_first_method <- list(Counts = "Read Counts", Coverage = "Coverage depths", Median = "Median sizes", Mean = "Mean sizes", Size = "Size Distributions") legend_first_method <- list(Counts = "Read count", Coverage = "Coverage depth", Median = "Median size", Mean = "Mean size", Size = "Read count") bottom_first_method <- list(Counts = "Coordinates (nucleotides)", Coverage = "Coordinates (nucleotides)", Median = "Coordinates (nucleotides)", Mean = "Coordinates (nucleotides)", Size = "Sizes of reads") ## Plotting Functions single_plot <- function(...) { width <- 8.2677 * n_samples / 2 rows_per_page <- 8 graph_heights <- c(rep(40, 8), 10) pdf(file = args$output_pdf, paper = "special", height = 15, width = width) for (i in seq(1, n_genes, rows_per_page)) { start <- i end <- i + rows_per_page - 1 if (end > n_genes) { end <- n_genes } if (end - start + 1 < 8) { graph_heights <- c(rep(c(40), end - start + 1), 10, rep(c(40), 8 - (end - start + 1))) } first_plot_list <- lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings = par_settings_firstplot), strip.left = strip.custom(par.strip.text = list(cex = 0.5))))) plot.list <- rbind(first_plot_list) args_list <- c(plot.list, list(nrow = rows_per_page + 1, ncol = 1, heights = unit(graph_heights, rep("mm", 9)), top = textGrob("Cluster Read Counts (Peaks in middle of clusters)", gp = gpar(cex = 1), vjust = 0, just = "top"), left = textGrob("Read Counts", gp = gpar(cex = 1), vjust = 0, hjust = 0, x = 1, y = (-0.41 / 7) * (end - start - (6.23 / 0.41)), rot = 90), sub = textGrob("Coordinates (nucleotides)", gp = gpar(cex = 1), just = "bottom", vjust = 2) ) ) do.call(grid.arrange, args_list) } devname <- dev.off() } # main single_plot()