Mercurial > repos > bgruening > cellposesam
view cellpose.xml @ 1:bc1410a8a247 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools commit 283d7d6ae717a1ebdf389d022126946f52e64529
| author | bgruening |
|---|---|
| date | Wed, 07 Jan 2026 17:21:47 +0000 |
| parents | 130d15e15378 |
| children |
line wrap: on
line source
<tool id="cellposesam" name="Run generalist cell and nucleus segmentation" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="24.2"> <description>with Cellpose-SAM</description> <macros> <token name="@TOOL_VERSION@">4.0.8</token> <token name="@VERSION_SUFFIX@">0</token> </macros> <requirements> <requirement type="package" version="@TOOL_VERSION@">cellpose</requirement> </requirements> <command detect_errors="exit_code"> <![CDATA[ export MKL_NUM_THREADS=1 && mkdir ./output && ln -s '${img_in}' './image.${img_in.ext}' && cellpose --image_path ./image.${img_in.ext} --no_npy --savedir ./output #if $save_png --save_png #end if #if $save_tif --save_tif #end if #if $save_flows --save_flows #end if #if $save_outlines --save_outlines #end if #if $use_gpu --use_gpu #end if #if $no_norm --no_norm #end if #if $diameter --diameter $diameter #end if #if $no_resample --no_resample #end if --flow_threshold $flow_threshold --cellprob_threshold $cellprob_threshold --niter $niter --anisotropy $anisotropy #if $do_3D --do_3D #end if #if $z_axis --z_axis $z_axis #end if #if $channel_axis --channel_axis $channel_axis #end if #if $no_interp --no_interp #end if #if $exclude_on_edges --exclude_on_edges #end if #if $transformer --transformer #end if > ./cp.log 2>&1 ]]> </command> <configfiles> <inputs name="inputs" /> </configfiles> <inputs> <param name="img_in" type="data" format="ome.tiff,tiff,jpg,png" label="Choose the image file for segmentation (usually after registration)"> <validator type="dataset_metadata_in_range" metadata_name="frames" min="0" max="1" message="Input image is multi-frame, must be single-frame"/> </param> <param name="save_png" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Save masks as png?"/> <param name="save_tif" type="boolean" truevalue="true" falsevalue="false" checked="true" label="Save masks as tiff?"/> <param name="save_flows" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Save RGN images of flows when masks are saved?"/> <param name="save_outlines" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Save RGB outline images when masks are saved"/> <param name="z_axis" type="integer" optional="true" min="0" label="Z axis" help="The axis of the image which corresponds to the image channels and to the z axis, zero-based." /> <param name="channel_axis" type="integer" optional="true" min="0" label="Channel axis" help="The axis (0-based) of the image which corresponds to the image channels and to the z axis" /> <param name="use_gpu" type="boolean" checked="false" truevalue="true" falsevalue="false" label="Whether to use GPU?" /> <section name="options" title="Advanced Options" expanded="False"> <param name="no_norm" type="boolean" label="Do not normalize images" truevalue="true" falsevalue="false" checked="false"/> <param name="diameter" type="float" optional="true" label="Cell or nuclei diameter in pixels" help="Use to resize cells to the training diameter. Leave blank for automated estimation."/> <param name="no_resample" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Disables flows/cellprob resampling to original image size before computing masks." help="Using this flag will make more masks more jagged with larger diameter settings."/> <param name="no_interp" type="boolean" truevalue="true" falsevalue="false" checked="true" label="Interpolate when running dynamics."/> <param name="flow_threshold" type="float" min="0" value="0.4" label="Flow error threshold (all cells with errors below threshold are kept) (not used for 3D)"/> <param name="cellprob_threshold" type="float" value="0.0" label="Cell probability threshold (all pixels with prob above threshold kept for masks)"/> <param name="niter" type="integer" min="0" value="0" label="Number of iterations" help="Number of iterations for dynamics for mask creation, default of 0 means it is proportional to diameter, set to a larger number like 2000 for very long ROIs"/> <param name="anisotropy" type="float" min="0" value="1.0" label="Anisotropy of volume in 3D" help="By default, sets the number of iterations to be proportional to the ROI diameter. For longer ROIs, more iterations might be needed."/> <param name="exclude_on_edges" type="boolean" checked="false" truevalue="true" falsevalue="false" label="Discard masks which touch edges of image?" /> <param name="do_3D" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Whether to run 3D segmentation on 4D image input?"/> <param name="transformer" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Whether to use transformer backnone" help="pretrained model from Cellpose3 is transformer_cp3"/> </section> <param name="detailed_output" type="boolean" label="Detailed logging file?" help="If set, a CellPose log file will be generated." /> </inputs> <outputs> <data format="tiff" name="cp_tiff" from_work_dir="output/image_cp_masks.tif" label="Cellpose SAM masks in TIFF"> <filter>save_tif</filter> </data> <data format="png" name="cp_png" from_work_dir="output/image_cp_masks.png" label="Cellpose SAM masks in PNG"> <filter>save_png</filter> </data> <data format="tiff" name="cp_flows" from_work_dir="output/image_flows_cp_masks.tif" label="RGB images of flows"> <filter>save_flows</filter> </data> <data format="tiff" name="cp_flows_dp" from_work_dir="output/image_dP_cp_masks.tif" label="RGB images of flows(dP)"> <filter>save_flows</filter> </data> <data format="png" name="cp_outlines" from_work_dir="output/image_outlines_cp_masks.png" label="RGB outline images"> <filter>save_outlines</filter> </data> <data format="txt" name="logs" from_work_dir="cp.log" label="CellPose log"> <filter>detailed_output</filter> </data> </outputs> <tests> <test expect_num_outputs="2"> <param name="img_in" value="image.png"/> <param name="save_png" value="true" /> <param name="save_tif" value="true"/> <output name="cp_tiff" file="image_cp_masks.tiff" compare="image_diff" metric="iou"/> <output name="cp_png" file="image_cp_masks.png" compare="image_diff" metric="iou"/> </test> <test expect_num_outputs="1"> <param name="img_in" value="image3d.tiff"/> <param name="save_png" value="false"/> <param name="save_tif" value="true"/> <param name="use_gpu" value="true" /> <param name="z_axis" value="0" /> <section name="options"> <param name="do_3D" value="true" /> <param name="no_interp" value="true" /> <param name="niter" value="1"/> </section> <output name="cp_tiff" file="image3d_cp_masks.tiff" compare="image_diff"/> </test> <test expect_num_outputs="5"> <param name="img_in" value="image.png"/> <param name="save_png" value="true"/> <param name="save_tif" value="false"/> <param name="save_flows" value="true"/> <param name="save_outlines" value="true" /> <param name="use_gpu" value="true" /> <param name="detailed_output" value="true" /> <output name="cp_png" file="image_cp_masks.png" compare="image_diff" metric="iou"/> <output name="cp_flows" file="image_flows_cp_masks.tiff" compare="image_diff" /> <output name="cp_flows_dp" file="image_dP_cp_masks.tiff" compare="image_diff" /> <output name="cp_outlines" file="image_outlines_cp_masks.png" compare="image_diff"/> <output name="logs" ftype='txt'> <assert_contents> <has_text_matching expression="1.15G/1.15G" /> </assert_contents> </output> </test> <test expect_num_outputs="1"> <param name="img_in" value="image.png" /> <param name="save_png" value="true" /> <param name="save_tif" value="false" /> <param name="use_gpu" value="true" /> <section name="options"> <param name="no_norm" value="false" /> <param name="no_resample" value="false" /> <param name="diameter" value="10" /> <param name="flow_threshold" value="0.5" /> <param name="cellprob_threshold" value="0.0" /> <param name="niter" value="10" /> <param name="anisotropy" value="1.0" /> <param name="do_3D" value="false" /> <param name="transformer" value="false" /> </section> <param name="detailed_output" value="false" /> <output name="cp_png" file="image_cp_masks1.png" compare="image_diff" metric="iou" eps="0.02" /> </test> </tests> <help> <![CDATA[ Cellpose-SAM: superhuman generalization for cellular segmentation ]]> </help> <citations> <citation type="doi">https://doi.org/10.1101/2025.04.28.651001</citation> </citations> </tool>
