Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
comparison train_test_eval.py @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children | 9349ed2749c6 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:af2624d5ab32 |
---|---|
1 import argparse | |
2 import json | |
3 import os | |
4 import pickle | |
5 import warnings | |
6 from itertools import chain | |
7 | |
8 import joblib | |
9 import numpy as np | |
10 import pandas as pd | |
11 from galaxy_ml.model_validations import train_test_split | |
12 from galaxy_ml.utils import (get_module, get_scoring, load_model, | |
13 read_columns, SafeEval, try_get_attr) | |
14 from scipy.io import mmread | |
15 from sklearn import pipeline | |
16 from sklearn.metrics.scorer import _check_multimetric_scoring | |
17 from sklearn.model_selection import _search, _validation | |
18 from sklearn.model_selection._validation import _score | |
19 from sklearn.utils import indexable, safe_indexing | |
20 | |
21 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
22 setattr(_search, "_fit_and_score", _fit_and_score) | |
23 setattr(_validation, "_fit_and_score", _fit_and_score) | |
24 | |
25 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
26 CACHE_DIR = os.path.join(os.getcwd(), "cached") | |
27 del os | |
28 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | |
29 ALLOWED_CALLBACKS = ( | |
30 "EarlyStopping", | |
31 "TerminateOnNaN", | |
32 "ReduceLROnPlateau", | |
33 "CSVLogger", | |
34 "None", | |
35 ) | |
36 | |
37 | |
38 def _eval_swap_params(params_builder): | |
39 swap_params = {} | |
40 | |
41 for p in params_builder["param_set"]: | |
42 swap_value = p["sp_value"].strip() | |
43 if swap_value == "": | |
44 continue | |
45 | |
46 param_name = p["sp_name"] | |
47 if param_name.lower().endswith(NON_SEARCHABLE): | |
48 warnings.warn( | |
49 "Warning: `%s` is not eligible for search and was " | |
50 "omitted!" % param_name | |
51 ) | |
52 continue | |
53 | |
54 if not swap_value.startswith(":"): | |
55 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
56 ev = safe_eval(swap_value) | |
57 else: | |
58 # Have `:` before search list, asks for estimator evaluatio | |
59 safe_eval_es = SafeEval(load_estimators=True) | |
60 swap_value = swap_value[1:].strip() | |
61 # TODO maybe add regular express check | |
62 ev = safe_eval_es(swap_value) | |
63 | |
64 swap_params[param_name] = ev | |
65 | |
66 return swap_params | |
67 | |
68 | |
69 def train_test_split_none(*arrays, **kwargs): | |
70 """extend train_test_split to take None arrays | |
71 and support split by group names. | |
72 """ | |
73 nones = [] | |
74 new_arrays = [] | |
75 for idx, arr in enumerate(arrays): | |
76 if arr is None: | |
77 nones.append(idx) | |
78 else: | |
79 new_arrays.append(arr) | |
80 | |
81 if kwargs["shuffle"] == "None": | |
82 kwargs["shuffle"] = None | |
83 | |
84 group_names = kwargs.pop("group_names", None) | |
85 | |
86 if group_names is not None and group_names.strip(): | |
87 group_names = [name.strip() for name in group_names.split(",")] | |
88 new_arrays = indexable(*new_arrays) | |
89 groups = kwargs["labels"] | |
90 n_samples = new_arrays[0].shape[0] | |
91 index_arr = np.arange(n_samples) | |
92 test = index_arr[np.isin(groups, group_names)] | |
93 train = index_arr[~np.isin(groups, group_names)] | |
94 rval = list( | |
95 chain.from_iterable( | |
96 (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays | |
97 ) | |
98 ) | |
99 else: | |
100 rval = train_test_split(*new_arrays, **kwargs) | |
101 | |
102 for pos in nones: | |
103 rval[pos * 2: 2] = [None, None] | |
104 | |
105 return rval | |
106 | |
107 | |
108 def main( | |
109 inputs, | |
110 infile_estimator, | |
111 infile1, | |
112 infile2, | |
113 outfile_result, | |
114 outfile_object=None, | |
115 outfile_weights=None, | |
116 groups=None, | |
117 ref_seq=None, | |
118 intervals=None, | |
119 targets=None, | |
120 fasta_path=None, | |
121 ): | |
122 """ | |
123 Parameter | |
124 --------- | |
125 inputs : str | |
126 File path to galaxy tool parameter | |
127 | |
128 infile_estimator : str | |
129 File path to estimator | |
130 | |
131 infile1 : str | |
132 File path to dataset containing features | |
133 | |
134 infile2 : str | |
135 File path to dataset containing target values | |
136 | |
137 outfile_result : str | |
138 File path to save the results, either cv_results or test result | |
139 | |
140 outfile_object : str, optional | |
141 File path to save searchCV object | |
142 | |
143 outfile_weights : str, optional | |
144 File path to save deep learning model weights | |
145 | |
146 groups : str | |
147 File path to dataset containing groups labels | |
148 | |
149 ref_seq : str | |
150 File path to dataset containing genome sequence file | |
151 | |
152 intervals : str | |
153 File path to dataset containing interval file | |
154 | |
155 targets : str | |
156 File path to dataset compressed target bed file | |
157 | |
158 fasta_path : str | |
159 File path to dataset containing fasta file | |
160 """ | |
161 warnings.simplefilter("ignore") | |
162 | |
163 with open(inputs, "r") as param_handler: | |
164 params = json.load(param_handler) | |
165 | |
166 # load estimator | |
167 with open(infile_estimator, "rb") as estimator_handler: | |
168 estimator = load_model(estimator_handler) | |
169 | |
170 # swap hyperparameter | |
171 swapping = params["experiment_schemes"]["hyperparams_swapping"] | |
172 swap_params = _eval_swap_params(swapping) | |
173 estimator.set_params(**swap_params) | |
174 | |
175 estimator_params = estimator.get_params() | |
176 | |
177 # store read dataframe object | |
178 loaded_df = {} | |
179 | |
180 input_type = params["input_options"]["selected_input"] | |
181 # tabular input | |
182 if input_type == "tabular": | |
183 header = "infer" if params["input_options"]["header1"] else None | |
184 column_option = params["input_options"]["column_selector_options_1"][ | |
185 "selected_column_selector_option" | |
186 ] | |
187 if column_option in [ | |
188 "by_index_number", | |
189 "all_but_by_index_number", | |
190 "by_header_name", | |
191 "all_but_by_header_name", | |
192 ]: | |
193 c = params["input_options"]["column_selector_options_1"]["col1"] | |
194 else: | |
195 c = None | |
196 | |
197 df_key = infile1 + repr(header) | |
198 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
199 loaded_df[df_key] = df | |
200 | |
201 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
202 # sparse input | |
203 elif input_type == "sparse": | |
204 X = mmread(open(infile1, "r")) | |
205 | |
206 # fasta_file input | |
207 elif input_type == "seq_fasta": | |
208 pyfaidx = get_module("pyfaidx") | |
209 sequences = pyfaidx.Fasta(fasta_path) | |
210 n_seqs = len(sequences.keys()) | |
211 X = np.arange(n_seqs)[:, np.newaxis] | |
212 for param in estimator_params.keys(): | |
213 if param.endswith("fasta_path"): | |
214 estimator.set_params(**{param: fasta_path}) | |
215 break | |
216 else: | |
217 raise ValueError( | |
218 "The selected estimator doesn't support " | |
219 "fasta file input! Please consider using " | |
220 "KerasGBatchClassifier with " | |
221 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
222 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
223 "in pipeline!" | |
224 ) | |
225 | |
226 elif input_type == "refseq_and_interval": | |
227 path_params = { | |
228 "data_batch_generator__ref_genome_path": ref_seq, | |
229 "data_batch_generator__intervals_path": intervals, | |
230 "data_batch_generator__target_path": targets, | |
231 } | |
232 estimator.set_params(**path_params) | |
233 n_intervals = sum(1 for line in open(intervals)) | |
234 X = np.arange(n_intervals)[:, np.newaxis] | |
235 | |
236 # Get target y | |
237 header = "infer" if params["input_options"]["header2"] else None | |
238 column_option = params["input_options"]["column_selector_options_2"][ | |
239 "selected_column_selector_option2" | |
240 ] | |
241 if column_option in [ | |
242 "by_index_number", | |
243 "all_but_by_index_number", | |
244 "by_header_name", | |
245 "all_but_by_header_name", | |
246 ]: | |
247 c = params["input_options"]["column_selector_options_2"]["col2"] | |
248 else: | |
249 c = None | |
250 | |
251 df_key = infile2 + repr(header) | |
252 if df_key in loaded_df: | |
253 infile2 = loaded_df[df_key] | |
254 else: | |
255 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | |
256 loaded_df[df_key] = infile2 | |
257 | |
258 y = read_columns( | |
259 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True | |
260 ) | |
261 if len(y.shape) == 2 and y.shape[1] == 1: | |
262 y = y.ravel() | |
263 if input_type == "refseq_and_interval": | |
264 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | |
265 y = None | |
266 # end y | |
267 | |
268 # load groups | |
269 if groups: | |
270 groups_selector = ( | |
271 params["experiment_schemes"]["test_split"]["split_algos"] | |
272 ).pop("groups_selector") | |
273 | |
274 header = "infer" if groups_selector["header_g"] else None | |
275 column_option = groups_selector["column_selector_options_g"][ | |
276 "selected_column_selector_option_g" | |
277 ] | |
278 if column_option in [ | |
279 "by_index_number", | |
280 "all_but_by_index_number", | |
281 "by_header_name", | |
282 "all_but_by_header_name", | |
283 ]: | |
284 c = groups_selector["column_selector_options_g"]["col_g"] | |
285 else: | |
286 c = None | |
287 | |
288 df_key = groups + repr(header) | |
289 if df_key in loaded_df: | |
290 groups = loaded_df[df_key] | |
291 | |
292 groups = read_columns( | |
293 groups, | |
294 c=c, | |
295 c_option=column_option, | |
296 sep="\t", | |
297 header=header, | |
298 parse_dates=True, | |
299 ) | |
300 groups = groups.ravel() | |
301 | |
302 # del loaded_df | |
303 del loaded_df | |
304 | |
305 # handle memory | |
306 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
307 # cache iraps_core fits could increase search speed significantly | |
308 if estimator.__class__.__name__ == "IRAPSClassifier": | |
309 estimator.set_params(memory=memory) | |
310 else: | |
311 # For iraps buried in pipeline | |
312 new_params = {} | |
313 for p, v in estimator_params.items(): | |
314 if p.endswith("memory"): | |
315 # for case of `__irapsclassifier__memory` | |
316 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): | |
317 # cache iraps_core fits could increase search | |
318 # speed significantly | |
319 new_params[p] = memory | |
320 # security reason, we don't want memory being | |
321 # modified unexpectedly | |
322 elif v: | |
323 new_params[p] = None | |
324 # handle n_jobs | |
325 elif p.endswith("n_jobs"): | |
326 # For now, 1 CPU is suggested for iprasclassifier | |
327 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): | |
328 new_params[p] = 1 | |
329 else: | |
330 new_params[p] = N_JOBS | |
331 # for security reason, types of callback are limited | |
332 elif p.endswith("callbacks"): | |
333 for cb in v: | |
334 cb_type = cb["callback_selection"]["callback_type"] | |
335 if cb_type not in ALLOWED_CALLBACKS: | |
336 raise ValueError("Prohibited callback type: %s!" % cb_type) | |
337 | |
338 estimator.set_params(**new_params) | |
339 | |
340 # handle scorer, convert to scorer dict | |
341 # Check if scoring is specified | |
342 scoring = params["experiment_schemes"]["metrics"].get("scoring", None) | |
343 if scoring is not None: | |
344 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
345 # Check if secondary_scoring is specified | |
346 secondary_scoring = scoring.get("secondary_scoring", None) | |
347 if secondary_scoring is not None: | |
348 # If secondary_scoring is specified, convert the list into comman separated string | |
349 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
350 scorer = get_scoring(scoring) | |
351 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
352 | |
353 # handle test (first) split | |
354 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] | |
355 | |
356 if test_split_options["shuffle"] == "group": | |
357 test_split_options["labels"] = groups | |
358 if test_split_options["shuffle"] == "stratified": | |
359 if y is not None: | |
360 test_split_options["labels"] = y | |
361 else: | |
362 raise ValueError( | |
363 "Stratified shuffle split is not " "applicable on empty target values!" | |
364 ) | |
365 | |
366 ( | |
367 X_train, | |
368 X_test, | |
369 y_train, | |
370 y_test, | |
371 groups_train, | |
372 _groups_test, | |
373 ) = train_test_split_none(X, y, groups, **test_split_options) | |
374 | |
375 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | |
376 | |
377 # handle validation (second) split | |
378 if exp_scheme == "train_val_test": | |
379 val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] | |
380 | |
381 if val_split_options["shuffle"] == "group": | |
382 val_split_options["labels"] = groups_train | |
383 if val_split_options["shuffle"] == "stratified": | |
384 if y_train is not None: | |
385 val_split_options["labels"] = y_train | |
386 else: | |
387 raise ValueError( | |
388 "Stratified shuffle split is not " | |
389 "applicable on empty target values!" | |
390 ) | |
391 | |
392 ( | |
393 X_train, | |
394 X_val, | |
395 y_train, | |
396 y_val, | |
397 groups_train, | |
398 _groups_val, | |
399 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | |
400 | |
401 # train and eval | |
402 if hasattr(estimator, "validation_data"): | |
403 if exp_scheme == "train_val_test": | |
404 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) | |
405 else: | |
406 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) | |
407 else: | |
408 estimator.fit(X_train, y_train) | |
409 | |
410 if hasattr(estimator, "evaluate"): | |
411 scores = estimator.evaluate( | |
412 X_test, y_test=y_test, scorer=scorer, is_multimetric=True | |
413 ) | |
414 else: | |
415 scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) | |
416 # handle output | |
417 for name, score in scores.items(): | |
418 scores[name] = [score] | |
419 df = pd.DataFrame(scores) | |
420 df = df[sorted(df.columns)] | |
421 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | |
422 | |
423 memory.clear(warn=False) | |
424 | |
425 if outfile_object: | |
426 main_est = estimator | |
427 if isinstance(estimator, pipeline.Pipeline): | |
428 main_est = estimator.steps[-1][-1] | |
429 | |
430 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | |
431 if outfile_weights: | |
432 main_est.save_weights(outfile_weights) | |
433 if getattr(main_est, "model_", None): | |
434 del main_est.model_ | |
435 if getattr(main_est, "fit_params", None): | |
436 del main_est.fit_params | |
437 if getattr(main_est, "model_class_", None): | |
438 del main_est.model_class_ | |
439 if getattr(main_est, "validation_data", None): | |
440 del main_est.validation_data | |
441 if getattr(main_est, "data_generator_", None): | |
442 del main_est.data_generator_ | |
443 | |
444 with open(outfile_object, "wb") as output_handler: | |
445 pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) | |
446 | |
447 | |
448 if __name__ == "__main__": | |
449 aparser = argparse.ArgumentParser() | |
450 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
451 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
452 aparser.add_argument("-X", "--infile1", dest="infile1") | |
453 aparser.add_argument("-y", "--infile2", dest="infile2") | |
454 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
455 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
456 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
457 aparser.add_argument("-g", "--groups", dest="groups") | |
458 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
459 aparser.add_argument("-b", "--intervals", dest="intervals") | |
460 aparser.add_argument("-t", "--targets", dest="targets") | |
461 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
462 args = aparser.parse_args() | |
463 | |
464 main( | |
465 args.inputs, | |
466 args.infile_estimator, | |
467 args.infile1, | |
468 args.infile2, | |
469 args.outfile_result, | |
470 outfile_object=args.outfile_object, | |
471 outfile_weights=args.outfile_weights, | |
472 groups=args.groups, | |
473 ref_seq=args.ref_seq, | |
474 intervals=args.intervals, | |
475 targets=args.targets, | |
476 fasta_path=args.fasta_path, | |
477 ) |