Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
diff train_test_eval.py @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children | 9349ed2749c6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/train_test_eval.py Sat May 01 01:24:32 2021 +0000 @@ -0,0 +1,477 @@ +import argparse +import json +import os +import pickle +import warnings +from itertools import chain + +import joblib +import numpy as np +import pandas as pd +from galaxy_ml.model_validations import train_test_split +from galaxy_ml.utils import (get_module, get_scoring, load_model, + read_columns, SafeEval, try_get_attr) +from scipy.io import mmread +from sklearn import pipeline +from sklearn.metrics.scorer import _check_multimetric_scoring +from sklearn.model_selection import _search, _validation +from sklearn.model_selection._validation import _score +from sklearn.utils import indexable, safe_indexing + +_fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") +setattr(_search, "_fit_and_score", _fit_and_score) +setattr(_validation, "_fit_and_score", _fit_and_score) + +N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) +CACHE_DIR = os.path.join(os.getcwd(), "cached") +del os +NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") +ALLOWED_CALLBACKS = ( + "EarlyStopping", + "TerminateOnNaN", + "ReduceLROnPlateau", + "CSVLogger", + "None", +) + + +def _eval_swap_params(params_builder): + swap_params = {} + + for p in params_builder["param_set"]: + swap_value = p["sp_value"].strip() + if swap_value == "": + continue + + param_name = p["sp_name"] + if param_name.lower().endswith(NON_SEARCHABLE): + warnings.warn( + "Warning: `%s` is not eligible for search and was " + "omitted!" % param_name + ) + continue + + if not swap_value.startswith(":"): + safe_eval = SafeEval(load_scipy=True, load_numpy=True) + ev = safe_eval(swap_value) + else: + # Have `:` before search list, asks for estimator evaluatio + safe_eval_es = SafeEval(load_estimators=True) + swap_value = swap_value[1:].strip() + # TODO maybe add regular express check + ev = safe_eval_es(swap_value) + + swap_params[param_name] = ev + + return swap_params + + +def train_test_split_none(*arrays, **kwargs): + """extend train_test_split to take None arrays + and support split by group names. + """ + nones = [] + new_arrays = [] + for idx, arr in enumerate(arrays): + if arr is None: + nones.append(idx) + else: + new_arrays.append(arr) + + if kwargs["shuffle"] == "None": + kwargs["shuffle"] = None + + group_names = kwargs.pop("group_names", None) + + if group_names is not None and group_names.strip(): + group_names = [name.strip() for name in group_names.split(",")] + new_arrays = indexable(*new_arrays) + groups = kwargs["labels"] + n_samples = new_arrays[0].shape[0] + index_arr = np.arange(n_samples) + test = index_arr[np.isin(groups, group_names)] + train = index_arr[~np.isin(groups, group_names)] + rval = list( + chain.from_iterable( + (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays + ) + ) + else: + rval = train_test_split(*new_arrays, **kwargs) + + for pos in nones: + rval[pos * 2: 2] = [None, None] + + return rval + + +def main( + inputs, + infile_estimator, + infile1, + infile2, + outfile_result, + outfile_object=None, + outfile_weights=None, + groups=None, + ref_seq=None, + intervals=None, + targets=None, + fasta_path=None, +): + """ + Parameter + --------- + inputs : str + File path to galaxy tool parameter + + infile_estimator : str + File path to estimator + + infile1 : str + File path to dataset containing features + + infile2 : str + File path to dataset containing target values + + outfile_result : str + File path to save the results, either cv_results or test result + + outfile_object : str, optional + File path to save searchCV object + + outfile_weights : str, optional + File path to save deep learning model weights + + groups : str + File path to dataset containing groups labels + + ref_seq : str + File path to dataset containing genome sequence file + + intervals : str + File path to dataset containing interval file + + targets : str + File path to dataset compressed target bed file + + fasta_path : str + File path to dataset containing fasta file + """ + warnings.simplefilter("ignore") + + with open(inputs, "r") as param_handler: + params = json.load(param_handler) + + # load estimator + with open(infile_estimator, "rb") as estimator_handler: + estimator = load_model(estimator_handler) + + # swap hyperparameter + swapping = params["experiment_schemes"]["hyperparams_swapping"] + swap_params = _eval_swap_params(swapping) + estimator.set_params(**swap_params) + + estimator_params = estimator.get_params() + + # store read dataframe object + loaded_df = {} + + input_type = params["input_options"]["selected_input"] + # tabular input + if input_type == "tabular": + header = "infer" if params["input_options"]["header1"] else None + column_option = params["input_options"]["column_selector_options_1"][ + "selected_column_selector_option" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["input_options"]["column_selector_options_1"]["col1"] + else: + c = None + + df_key = infile1 + repr(header) + df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) + loaded_df[df_key] = df + + X = read_columns(df, c=c, c_option=column_option).astype(float) + # sparse input + elif input_type == "sparse": + X = mmread(open(infile1, "r")) + + # fasta_file input + elif input_type == "seq_fasta": + pyfaidx = get_module("pyfaidx") + sequences = pyfaidx.Fasta(fasta_path) + n_seqs = len(sequences.keys()) + X = np.arange(n_seqs)[:, np.newaxis] + for param in estimator_params.keys(): + if param.endswith("fasta_path"): + estimator.set_params(**{param: fasta_path}) + break + else: + raise ValueError( + "The selected estimator doesn't support " + "fasta file input! Please consider using " + "KerasGBatchClassifier with " + "FastaDNABatchGenerator/FastaProteinBatchGenerator " + "or having GenomeOneHotEncoder/ProteinOneHotEncoder " + "in pipeline!" + ) + + elif input_type == "refseq_and_interval": + path_params = { + "data_batch_generator__ref_genome_path": ref_seq, + "data_batch_generator__intervals_path": intervals, + "data_batch_generator__target_path": targets, + } + estimator.set_params(**path_params) + n_intervals = sum(1 for line in open(intervals)) + X = np.arange(n_intervals)[:, np.newaxis] + + # Get target y + header = "infer" if params["input_options"]["header2"] else None + column_option = params["input_options"]["column_selector_options_2"][ + "selected_column_selector_option2" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["input_options"]["column_selector_options_2"]["col2"] + else: + c = None + + df_key = infile2 + repr(header) + if df_key in loaded_df: + infile2 = loaded_df[df_key] + else: + infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) + loaded_df[df_key] = infile2 + + y = read_columns( + infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True + ) + if len(y.shape) == 2 and y.shape[1] == 1: + y = y.ravel() + if input_type == "refseq_and_interval": + estimator.set_params(data_batch_generator__features=y.ravel().tolist()) + y = None + # end y + + # load groups + if groups: + groups_selector = ( + params["experiment_schemes"]["test_split"]["split_algos"] + ).pop("groups_selector") + + header = "infer" if groups_selector["header_g"] else None + column_option = groups_selector["column_selector_options_g"][ + "selected_column_selector_option_g" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = groups_selector["column_selector_options_g"]["col_g"] + else: + c = None + + df_key = groups + repr(header) + if df_key in loaded_df: + groups = loaded_df[df_key] + + groups = read_columns( + groups, + c=c, + c_option=column_option, + sep="\t", + header=header, + parse_dates=True, + ) + groups = groups.ravel() + + # del loaded_df + del loaded_df + + # handle memory + memory = joblib.Memory(location=CACHE_DIR, verbose=0) + # cache iraps_core fits could increase search speed significantly + if estimator.__class__.__name__ == "IRAPSClassifier": + estimator.set_params(memory=memory) + else: + # For iraps buried in pipeline + new_params = {} + for p, v in estimator_params.items(): + if p.endswith("memory"): + # for case of `__irapsclassifier__memory` + if len(p) > 8 and p[:-8].endswith("irapsclassifier"): + # cache iraps_core fits could increase search + # speed significantly + new_params[p] = memory + # security reason, we don't want memory being + # modified unexpectedly + elif v: + new_params[p] = None + # handle n_jobs + elif p.endswith("n_jobs"): + # For now, 1 CPU is suggested for iprasclassifier + if len(p) > 8 and p[:-8].endswith("irapsclassifier"): + new_params[p] = 1 + else: + new_params[p] = N_JOBS + # for security reason, types of callback are limited + elif p.endswith("callbacks"): + for cb in v: + cb_type = cb["callback_selection"]["callback_type"] + if cb_type not in ALLOWED_CALLBACKS: + raise ValueError("Prohibited callback type: %s!" % cb_type) + + estimator.set_params(**new_params) + + # handle scorer, convert to scorer dict + # Check if scoring is specified + scoring = params["experiment_schemes"]["metrics"].get("scoring", None) + if scoring is not None: + # get_scoring() expects secondary_scoring to be a comma separated string (not a list) + # Check if secondary_scoring is specified + secondary_scoring = scoring.get("secondary_scoring", None) + if secondary_scoring is not None: + # If secondary_scoring is specified, convert the list into comman separated string + scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) + scorer = get_scoring(scoring) + scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) + + # handle test (first) split + test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] + + if test_split_options["shuffle"] == "group": + test_split_options["labels"] = groups + if test_split_options["shuffle"] == "stratified": + if y is not None: + test_split_options["labels"] = y + else: + raise ValueError( + "Stratified shuffle split is not " "applicable on empty target values!" + ) + + ( + X_train, + X_test, + y_train, + y_test, + groups_train, + _groups_test, + ) = train_test_split_none(X, y, groups, **test_split_options) + + exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] + + # handle validation (second) split + if exp_scheme == "train_val_test": + val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] + + if val_split_options["shuffle"] == "group": + val_split_options["labels"] = groups_train + if val_split_options["shuffle"] == "stratified": + if y_train is not None: + val_split_options["labels"] = y_train + else: + raise ValueError( + "Stratified shuffle split is not " + "applicable on empty target values!" + ) + + ( + X_train, + X_val, + y_train, + y_val, + groups_train, + _groups_val, + ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) + + # train and eval + if hasattr(estimator, "validation_data"): + if exp_scheme == "train_val_test": + estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) + else: + estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) + else: + estimator.fit(X_train, y_train) + + if hasattr(estimator, "evaluate"): + scores = estimator.evaluate( + X_test, y_test=y_test, scorer=scorer, is_multimetric=True + ) + else: + scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) + # handle output + for name, score in scores.items(): + scores[name] = [score] + df = pd.DataFrame(scores) + df = df[sorted(df.columns)] + df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) + + memory.clear(warn=False) + + if outfile_object: + main_est = estimator + if isinstance(estimator, pipeline.Pipeline): + main_est = estimator.steps[-1][-1] + + if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): + if outfile_weights: + main_est.save_weights(outfile_weights) + if getattr(main_est, "model_", None): + del main_est.model_ + if getattr(main_est, "fit_params", None): + del main_est.fit_params + if getattr(main_est, "model_class_", None): + del main_est.model_class_ + if getattr(main_est, "validation_data", None): + del main_est.validation_data + if getattr(main_est, "data_generator_", None): + del main_est.data_generator_ + + with open(outfile_object, "wb") as output_handler: + pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) + + +if __name__ == "__main__": + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-e", "--estimator", dest="infile_estimator") + aparser.add_argument("-X", "--infile1", dest="infile1") + aparser.add_argument("-y", "--infile2", dest="infile2") + aparser.add_argument("-O", "--outfile_result", dest="outfile_result") + aparser.add_argument("-o", "--outfile_object", dest="outfile_object") + aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") + aparser.add_argument("-g", "--groups", dest="groups") + aparser.add_argument("-r", "--ref_seq", dest="ref_seq") + aparser.add_argument("-b", "--intervals", dest="intervals") + aparser.add_argument("-t", "--targets", dest="targets") + aparser.add_argument("-f", "--fasta_path", dest="fasta_path") + args = aparser.parse_args() + + main( + args.inputs, + args.infile_estimator, + args.infile1, + args.infile2, + args.outfile_result, + outfile_object=args.outfile_object, + outfile_weights=args.outfile_weights, + groups=args.groups, + ref_seq=args.ref_seq, + intervals=args.intervals, + targets=args.targets, + fasta_path=args.fasta_path, + )