| 489 | 1 """ | 
|  | 2 Flux sampling and analysis utilities for COBRA models. | 
|  | 3 | 
|  | 4 This script supports two modes: | 
|  | 5 - Mode 1 (model_and_bounds=True): load a base model and apply bounds from | 
|  | 6     separate files before sampling. | 
|  | 7 - Mode 2 (model_and_bounds=False): load complete models and sample directly. | 
|  | 8 | 
|  | 9 Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples | 
|  | 10 and optional analyses (pFBA, FVA, sensitivity), saved as tabular files. | 
|  | 11 """ | 
|  | 12 | 
| 4 | 13 import argparse | 
|  | 14 import utils.general_utils as utils | 
| 489 | 15 from typing import List | 
| 4 | 16 import os | 
| 489 | 17 import pandas as pd | 
| 4 | 18 import numpy as np | 
|  | 19 import cobra | 
|  | 20 import utils.CBS_backend as CBS_backend | 
|  | 21 from joblib import Parallel, delayed, cpu_count | 
|  | 22 from cobra.sampling import OptGPSampler | 
|  | 23 import sys | 
| 489 | 24 import utils.model_utils as model_utils | 
|  | 25 | 
| 4 | 26 | 
|  | 27 ################################# process args ############################### | 
| 489 | 28 def process_args(args: List[str] = None) -> argparse.Namespace: | 
| 4 | 29     """ | 
|  | 30     Processes command-line arguments. | 
| 489 | 31 | 
| 4 | 32     Args: | 
|  | 33         args (list): List of command-line arguments. | 
| 489 | 34 | 
| 4 | 35     Returns: | 
|  | 36         Namespace: An object containing parsed arguments. | 
|  | 37     """ | 
| 489 | 38     parser = argparse.ArgumentParser(usage='%(prog)s [options]', | 
|  | 39                                      description='process some value\'s') | 
|  | 40 | 
|  | 41     parser.add_argument("-mo", "--model_upload", type=str, | 
|  | 42         help="path to input file with custom rules, if provided") | 
|  | 43 | 
|  | 44     parser.add_argument("-mab", "--model_and_bounds", type=str, | 
|  | 45         choices=['True', 'False'], | 
|  | 46         required=True, | 
|  | 47         help="upload mode: True for model+bounds, False for complete models") | 
|  | 48 | 
|  | 49     parser.add_argument("-ens", "--sampling_enabled", type=str, | 
|  | 50         choices=['true', 'false'], | 
|  | 51         required=True, | 
|  | 52         help="enable sampling: 'true' for sampling, 'false' for no sampling") | 
|  | 53 | 
|  | 54     parser.add_argument('-ol', '--out_log', | 
|  | 55                         help="Output log") | 
| 4 | 56 | 
|  | 57     parser.add_argument('-td', '--tool_dir', | 
| 489 | 58                         type=str, | 
|  | 59                         required=True, | 
|  | 60                         help='your tool directory') | 
| 4 | 61 | 
|  | 62     parser.add_argument('-in', '--input', | 
| 489 | 63                         required=True, | 
| 4 | 64                         type=str, | 
| 489 | 65                         help='input bounds files or complete model files') | 
| 4 | 66 | 
| 489 | 67     parser.add_argument('-ni', '--name', | 
|  | 68                         required=True, | 
|  | 69                         type=str, | 
|  | 70                         help='cell names') | 
| 4 | 71 | 
|  | 72     parser.add_argument('-a', '--algorithm', | 
| 489 | 73                         type=str, | 
|  | 74                         choices=['OPTGP', 'CBS'], | 
|  | 75                         required=True, | 
|  | 76                         help='choose sampling algorithm') | 
| 4 | 77 | 
| 489 | 78     parser.add_argument('-th', '--thinning', | 
|  | 79                         type=int, | 
|  | 80                         default=100, | 
|  | 81                         required=True, | 
|  | 82                         help='choose thinning') | 
| 4 | 83 | 
| 489 | 84     parser.add_argument('-ns', '--n_samples', | 
|  | 85                         type=int, | 
|  | 86                         required=True, | 
|  | 87                         help='choose how many samples (set to 0 for optimization only)') | 
|  | 88 | 
|  | 89     parser.add_argument('-sd', '--seed', | 
|  | 90                         type=int, | 
|  | 91                         required=True, | 
|  | 92                         help='seed for random number generation') | 
| 4 | 93 | 
| 489 | 94     parser.add_argument('-nb', '--n_batches', | 
|  | 95                         type=int, | 
|  | 96                         required=True, | 
|  | 97                         help='choose how many batches') | 
| 4 | 98 | 
| 489 | 99     parser.add_argument('-opt', '--perc_opt', | 
|  | 100                         type=float, | 
|  | 101                         default=0.9, | 
|  | 102                         required=False, | 
|  | 103                         help='choose the fraction of optimality for FVA (0-1)') | 
| 4 | 104 | 
| 489 | 105     parser.add_argument('-ot', '--output_type', | 
|  | 106                         type=str, | 
|  | 107                         required=True, | 
|  | 108                         help='output type for sampling results') | 
| 4 | 109 | 
| 489 | 110     parser.add_argument('-ota', '--output_type_analysis', | 
|  | 111                         type=str, | 
|  | 112                         required=False, | 
|  | 113                         help='output type analysis (optimization methods)') | 
| 515 | 114 | 
| 489 | 115     parser.add_argument('-idop', '--output_path', | 
|  | 116                         type=str, | 
| 515 | 117                         default='flux_simulation/', | 
|  | 118                         help = 'output path for fluxes') | 
|  | 119 | 
|  | 120     parser.add_argument('-otm', '--out_mean', | 
|  | 121                     type = str, | 
| 517 | 122                     required=False, | 
| 515 | 123                     help = 'output of mean of fluxes') | 
| 147 | 124 | 
| 515 | 125     parser.add_argument('-otmd', '--out_median', | 
|  | 126                     type = str, | 
| 517 | 127                     required=False, | 
| 515 | 128                     help = 'output of median of fluxes') | 
|  | 129 | 
|  | 130     parser.add_argument('-otq', '--out_quantiles', | 
|  | 131                     type = str, | 
| 517 | 132                     required=False, | 
| 515 | 133                     help = 'output of quantiles of fluxes') | 
|  | 134 | 
|  | 135     parser.add_argument('-otfva', '--out_fva', | 
|  | 136                     type = str, | 
| 517 | 137                     required=False, | 
| 515 | 138                     help = 'output of FVA results') | 
|  | 139     parser.add_argument('-otp', '--out_pfba', | 
|  | 140                     type = str, | 
| 517 | 141                     required=False, | 
| 515 | 142                     help = 'output of pFBA results') | 
|  | 143     parser.add_argument('-ots', '--out_sensitivity', | 
|  | 144                     type = str, | 
| 517 | 145                     required=False, | 
| 515 | 146                     help = 'output of sensitivity results') | 
| 147 | 147     ARGS = parser.parse_args(args) | 
| 4 | 148     return ARGS | 
|  | 149 ########################### warning ########################################### | 
|  | 150 def warning(s :str) -> None: | 
|  | 151     """ | 
|  | 152     Log a warning message to an output log file and print it to the console. | 
|  | 153 | 
|  | 154     Args: | 
|  | 155         s (str): The warning message to be logged and printed. | 
|  | 156 | 
|  | 157     Returns: | 
|  | 158       None | 
|  | 159     """ | 
|  | 160     with open(ARGS.out_log, 'a') as log: | 
|  | 161         log.write(s + "\n\n") | 
|  | 162     print(s) | 
|  | 163 | 
|  | 164 | 
| 519 | 165 def write_to_file(dataset: pd.DataFrame, path: str, keep_index:bool=False, name:str=None)->None: | 
| 489 | 166     """ | 
| 515 | 167     Write a DataFrame to a TSV file under path with a given base name. | 
| 489 | 168 | 
|  | 169     Args: | 
|  | 170         dataset: The DataFrame to write. | 
| 519 | 171         name: Base file name (without extension). If None, 'path' is treated as the full file path. | 
| 515 | 172         path: Directory path where the file will be saved. | 
| 489 | 173         keep_index: Whether to keep the DataFrame index in the file. | 
|  | 174 | 
|  | 175     Returns: | 
|  | 176         None | 
|  | 177     """ | 
| 4 | 178     dataset.index.name = 'Reactions' | 
| 519 | 179     if name: | 
|  | 180         dataset.to_csv(os.path.join(path, name + ".csv"), sep = '\t', index = keep_index) | 
|  | 181     else: | 
|  | 182         dataset.to_csv(path, sep = '\t', index = keep_index) | 
| 4 | 183 | 
|  | 184 ############################ dataset input #################################### | 
|  | 185 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 186     """ | 
|  | 187     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 188 | 
|  | 189     Args: | 
|  | 190         data (str): Path to the CSV file containing the dataset. | 
|  | 191         name (str): Name of the dataset, used in error messages. | 
|  | 192 | 
|  | 193     Returns: | 
|  | 194         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 195 | 
|  | 196     Raises: | 
|  | 197         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 198         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 199     """ | 
|  | 200     try: | 
|  | 201         dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') | 
|  | 202     except pd.errors.EmptyDataError: | 
|  | 203         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 204     if len(dataset.columns) < 2: | 
|  | 205         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 206     return dataset | 
|  | 207 | 
|  | 208 | 
|  | 209 | 
| 489 | 210 def OPTGP_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, thinning: int = 100, n_batches: int = 1, seed: int = 0) -> None: | 
| 4 | 211     """ | 
|  | 212     Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. | 
| 489 | 213 | 
| 4 | 214     Args: | 
|  | 215         model (cobra.Model): The COBRA model to sample from. | 
|  | 216         model_name (str): The name of the model, used in naming output files. | 
|  | 217         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 218         thinning (int, optional): Thinning parameter for the sampler. Default is 100. | 
|  | 219         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 220         seed (int, optional): Random seed for reproducibility. Default is 0. | 
| 489 | 221 | 
| 4 | 222     Returns: | 
|  | 223         None | 
|  | 224     """ | 
| 489 | 225     import numpy as np | 
|  | 226 | 
|  | 227     # Get reaction IDs for consistent column ordering | 
|  | 228     reaction_ids = [rxn.id for rxn in model.reactions] | 
|  | 229 | 
|  | 230     # Sample and save each batch as numpy file | 
|  | 231     for i in range(n_batches): | 
| 4 | 232         optgp = OptGPSampler(model, thinning, seed) | 
|  | 233         samples = optgp.sample(n_samples) | 
| 489 | 234 | 
|  | 235         # Save as numpy array (more memory efficient) | 
|  | 236         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 237         np.save(batch_filename, samples.to_numpy()) | 
|  | 238 | 
|  | 239         seed += 1 | 
|  | 240 | 
|  | 241     # Merge all batches into a single DataFrame | 
|  | 242     all_samples = [] | 
|  | 243 | 
|  | 244     for i in range(n_batches): | 
|  | 245         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 246         batch_data = np.load(batch_filename, allow_pickle=True) | 
|  | 247         all_samples.append(batch_data) | 
|  | 248 | 
|  | 249     # Concatenate all batches | 
|  | 250     samplesTotal_array = np.vstack(all_samples) | 
|  | 251 | 
|  | 252     # Convert back to DataFrame with proper column names | 
|  | 253     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids) | 
|  | 254 | 
|  | 255     # Save the final merged result as CSV | 
| 519 | 256     write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name) | 
| 489 | 257 | 
|  | 258     # Clean up temporary numpy files | 
|  | 259     for i in range(n_batches): | 
|  | 260         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 261         if os.path.exists(batch_filename): | 
|  | 262             os.remove(batch_filename) | 
| 4 | 263 | 
|  | 264 | 
| 489 | 265 def CBS_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, n_batches: int = 1, seed: int = 0) -> None: | 
| 4 | 266     """ | 
|  | 267     Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. | 
| 489 | 268 | 
| 4 | 269     Args: | 
|  | 270         model (cobra.Model): The COBRA model to sample from. | 
|  | 271         model_name (str): The name of the model, used in naming output files. | 
|  | 272         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 273         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 274         seed (int, optional): Random seed for reproducibility. Default is 0. | 
| 489 | 275 | 
| 4 | 276     Returns: | 
|  | 277         None | 
|  | 278     """ | 
| 489 | 279     import numpy as np | 
|  | 280 | 
|  | 281     # Get reaction IDs for consistent column ordering | 
|  | 282     reaction_ids = [reaction.id for reaction in model.reactions] | 
|  | 283 | 
|  | 284     # Perform FVA analysis once for all batches | 
|  | 285     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0).round(6) | 
|  | 286 | 
|  | 287     # Generate random objective functions for all samples across all batches | 
|  | 288     df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples * n_batches, df_FVA, seed=seed) | 
| 4 | 289 | 
| 489 | 290     # Sample and save each batch as numpy file | 
|  | 291     for i in range(n_batches): | 
|  | 292         samples = pd.DataFrame(columns=reaction_ids, index=range(n_samples)) | 
|  | 293 | 
| 4 | 294         try: | 
| 489 | 295             CBS_backend.randomObjectiveFunctionSampling( | 
|  | 296                 model, | 
|  | 297                 n_samples, | 
|  | 298                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], | 
|  | 299                 samples | 
|  | 300             ) | 
| 4 | 301         except Exception as e: | 
|  | 302             utils.logWarning( | 
| 489 | 303                 f"Warning: GLPK solver has failed for {model_name}. Trying with COBRA interface. Error: {str(e)}", | 
|  | 304                 ARGS.out_log | 
|  | 305             ) | 
|  | 306             CBS_backend.randomObjectiveFunctionSampling_cobrapy( | 
|  | 307                 model, | 
|  | 308                 n_samples, | 
|  | 309                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], | 
|  | 310                 samples | 
|  | 311             ) | 
|  | 312 | 
|  | 313         # Save as numpy array (more memory efficient) | 
|  | 314         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 315         utils.logWarning(batch_filename, ARGS.out_log) | 
|  | 316         np.save(batch_filename, samples.to_numpy()) | 
|  | 317 | 
|  | 318     # Merge all batches into a single DataFrame | 
|  | 319     all_samples = [] | 
|  | 320 | 
|  | 321     for i in range(n_batches): | 
|  | 322         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 323         batch_data = np.load(batch_filename, allow_pickle=True) | 
|  | 324         all_samples.append(batch_data) | 
|  | 325 | 
|  | 326     # Concatenate all batches | 
|  | 327     samplesTotal_array = np.vstack(all_samples) | 
|  | 328 | 
|  | 329     # Convert back to DataFrame with proper column namesq | 
|  | 330     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids) | 
|  | 331 | 
|  | 332     # Save the final merged result as CSV | 
| 519 | 333     write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name) | 
| 489 | 334 | 
|  | 335     # Clean up temporary numpy files | 
|  | 336     for i in range(n_batches): | 
|  | 337         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 338         if os.path.exists(batch_filename): | 
|  | 339             os.remove(batch_filename) | 
| 4 | 340 | 
|  | 341 | 
| 489 | 342 | 
|  | 343 def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]: | 
| 4 | 344     """ | 
| 489 | 345     MODE 1: Prepares the model with bounds from separate bounds file and performs sampling. | 
| 4 | 346 | 
|  | 347     Args: | 
|  | 348         model_input_original (cobra.Model): The original COBRA model. | 
|  | 349         bounds_path (str): Path to the CSV file containing the bounds dataset. | 
|  | 350         cell_name (str): Name of the cell, used to generate filenames for output. | 
|  | 351 | 
|  | 352     Returns: | 
|  | 353         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 354     """ | 
|  | 355 | 
|  | 356     model_input = model_input_original.copy() | 
|  | 357     bounds_df = read_dataset(bounds_path, "bounds dataset") | 
|  | 358 | 
| 489 | 359     # Apply bounds to model | 
|  | 360     for rxn_index, row in bounds_df.iterrows(): | 
|  | 361         try: | 
|  | 362             model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound | 
|  | 363             model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound | 
|  | 364         except KeyError: | 
|  | 365             warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.") | 
| 4 | 366 | 
| 489 | 367     return perform_sampling_and_analysis(model_input, cell_name) | 
|  | 368 | 
| 4 | 369 | 
| 489 | 370 def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]: | 
|  | 371     """ | 
|  | 372     Common function to perform sampling and analysis on a prepared model. | 
| 4 | 373 | 
| 489 | 374     Args: | 
|  | 375         model_input (cobra.Model): The prepared COBRA model with bounds applied. | 
|  | 376         cell_name (str): Name of the cell, used to generate filenames for output. | 
| 4 | 377 | 
| 489 | 378     Returns: | 
|  | 379         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 380     """ | 
| 4 | 381 | 
|  | 382     returnList = [] | 
| 489 | 383 | 
|  | 384     if ARGS.sampling_enabled == "true": | 
|  | 385 | 
|  | 386         if ARGS.algorithm == 'OPTGP': | 
|  | 387             OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | 
|  | 388         elif ARGS.algorithm == 'CBS': | 
|  | 389             CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | 
|  | 390 | 
|  | 391         df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types) | 
|  | 392 | 
|  | 393         if("fluxes" not in ARGS.output_types): | 
|  | 394             os.remove(ARGS.output_path + "/" + cell_name + '.csv') | 
|  | 395 | 
|  | 396         returnList = [df_mean, df_median, df_quantiles] | 
| 4 | 397 | 
| 210 | 398     df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis) | 
| 4 | 399 | 
|  | 400     if("pFBA" in ARGS.output_type_analysis): | 
|  | 401         returnList.append(df_pFBA) | 
|  | 402     if("FVA" in ARGS.output_type_analysis): | 
|  | 403         returnList.append(df_FVA) | 
|  | 404     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 405         returnList.append(df_sensitivity) | 
|  | 406 | 
|  | 407     return returnList | 
|  | 408 | 
|  | 409 def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]: | 
|  | 410     """ | 
|  | 411     Computes statistics (mean, median, quantiles) for the fluxes. | 
|  | 412 | 
|  | 413     Args: | 
|  | 414         model_name (str): Name of the model, used in filename for input. | 
|  | 415         output_types (List[str]): Types of statistics to compute (mean, median, quantiles). | 
|  | 416 | 
|  | 417     Returns: | 
|  | 418         List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. | 
|  | 419     """ | 
|  | 420 | 
|  | 421     df_mean = pd.DataFrame() | 
|  | 422     df_median= pd.DataFrame() | 
|  | 423     df_quantiles= pd.DataFrame() | 
|  | 424 | 
| 161 | 425     df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T | 
| 4 | 426     df_samples = df_samples.round(8) | 
|  | 427 | 
|  | 428     for output_type in output_types: | 
|  | 429         if(output_type == "mean"): | 
|  | 430             df_mean = df_samples.mean() | 
|  | 431             df_mean = df_mean.to_frame().T | 
|  | 432             df_mean = df_mean.reset_index(drop=True) | 
|  | 433             df_mean.index = [model_name] | 
|  | 434         elif(output_type == "median"): | 
|  | 435             df_median = df_samples.median() | 
|  | 436             df_median = df_median.to_frame().T | 
|  | 437             df_median = df_median.reset_index(drop=True) | 
|  | 438             df_median.index = [model_name] | 
|  | 439         elif(output_type == "quantiles"): | 
|  | 440             newRow = [] | 
|  | 441             cols = [] | 
|  | 442             for rxn in df_samples.columns: | 
|  | 443                 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) | 
|  | 444                 newRow.append(quantiles[0.25]) | 
|  | 445                 cols.append(rxn + "_q1") | 
|  | 446                 newRow.append(quantiles[0.5]) | 
|  | 447                 cols.append(rxn + "_q2") | 
|  | 448                 newRow.append(quantiles[0.75]) | 
|  | 449                 cols.append(rxn + "_q3") | 
|  | 450             df_quantiles = pd.DataFrame(columns=cols) | 
|  | 451             df_quantiles.loc[0] = newRow | 
|  | 452             df_quantiles = df_quantiles.reset_index(drop=True) | 
|  | 453             df_quantiles.index = [model_name] | 
|  | 454 | 
|  | 455     return df_mean, df_median, df_quantiles | 
|  | 456 | 
|  | 457 def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]: | 
|  | 458     """ | 
| 489 | 459     Performs flux analysis including pFBA, FVA, and sensitivity analysis. The objective function | 
|  | 460     is assumed to be already set in the model. | 
| 4 | 461 | 
|  | 462     Args: | 
|  | 463         model (cobra.Model): The COBRA model to analyze. | 
|  | 464         model_name (str): Name of the model, used in filenames for output. | 
|  | 465         output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). | 
|  | 466 | 
|  | 467     Returns: | 
|  | 468         List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. | 
|  | 469     """ | 
|  | 470 | 
|  | 471     df_pFBA = pd.DataFrame() | 
|  | 472     df_FVA= pd.DataFrame() | 
|  | 473     df_sensitivity= pd.DataFrame() | 
|  | 474 | 
|  | 475     for output_type in output_types: | 
|  | 476         if(output_type == "pFBA"): | 
|  | 477             solution = cobra.flux_analysis.pfba(model) | 
|  | 478             fluxes = solution.fluxes | 
| 489 | 479             df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist() | 
| 4 | 480             df_pFBA = df_pFBA.reset_index(drop=True) | 
|  | 481             df_pFBA.index = [model_name] | 
|  | 482             df_pFBA = df_pFBA.astype(float).round(6) | 
|  | 483         elif(output_type == "FVA"): | 
| 489 | 484             fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8) | 
| 4 | 485             columns = [] | 
|  | 486             for rxn in fva.index.to_list(): | 
|  | 487                 columns.append(rxn + "_min") | 
|  | 488                 columns.append(rxn + "_max") | 
|  | 489             df_FVA= pd.DataFrame(columns = columns) | 
|  | 490             for index_rxn, row in fva.iterrows(): | 
|  | 491                 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] | 
|  | 492                 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] | 
|  | 493             df_FVA = df_FVA.reset_index(drop=True) | 
|  | 494             df_FVA.index = [model_name] | 
|  | 495             df_FVA = df_FVA.astype(float).round(6) | 
|  | 496         elif(output_type == "sensitivity"): | 
|  | 497             solution_original = model.optimize().objective_value | 
|  | 498             reactions = model.reactions | 
|  | 499             single = cobra.flux_analysis.single_reaction_deletion(model) | 
|  | 500             newRow = [] | 
|  | 501             df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) | 
|  | 502             for rxn in reactions: | 
|  | 503                 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) | 
|  | 504             df_sensitivity.loc[model_name] = newRow | 
|  | 505             df_sensitivity = df_sensitivity.astype(float).round(6) | 
|  | 506     return df_pFBA, df_FVA, df_sensitivity | 
|  | 507 | 
|  | 508 ############################# main ########################################### | 
| 489 | 509 def main(args: List[str] = None) -> None: | 
| 4 | 510     """ | 
| 489 | 511     Initialize and run sampling/analysis based on the frontend input arguments. | 
| 4 | 512 | 
|  | 513     Returns: | 
|  | 514         None | 
|  | 515     """ | 
|  | 516 | 
| 489 | 517     num_processors = max(1, cpu_count() - 1) | 
| 4 | 518 | 
|  | 519     global ARGS | 
| 147 | 520     ARGS = process_args(args) | 
| 158 | 521 | 
| 515 | 522     if not os.path.exists('flux_simulation'): | 
|  | 523         os.makedirs('flux_simulation') | 
| 489 | 524 | 
|  | 525     # --- Normalize inputs (the tool may pass comma-separated --input and either --name or --names) --- | 
|  | 526     ARGS.input_files = ARGS.input.split(",") if ARGS.input else [] | 
|  | 527     ARGS.file_names = ARGS.name.split(",") | 
|  | 528     # output types (required) -> list | 
|  | 529     ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else [] | 
|  | 530     # optional analysis output types -> list or empty | 
|  | 531     ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else [] | 
|  | 532 | 
|  | 533     # Determine if sampling should be performed | 
|  | 534     if ARGS.sampling_enabled == "true": | 
|  | 535         perform_sampling = True | 
| 4 | 536     else: | 
| 489 | 537         perform_sampling = False | 
| 334 | 538 | 
| 489 | 539     print("=== INPUT FILES ===") | 
|  | 540     print(f"{ARGS.input_files}") | 
|  | 541     print(f"{ARGS.file_names}") | 
|  | 542     print(f"{ARGS.output_type}") | 
|  | 543     print(f"{ARGS.output_types}") | 
|  | 544     print(f"{ARGS.output_type_analysis}") | 
|  | 545     print(f"Sampling enabled: {perform_sampling} (n_samples: {ARGS.n_samples})") | 
| 4 | 546 | 
| 489 | 547     if ARGS.model_and_bounds == "True": | 
|  | 548         # MODE 1: Model + bounds (separate files) | 
|  | 549         print("=== MODE 1: Model + Bounds (separate files) ===") | 
|  | 550 | 
|  | 551         # Load base model | 
|  | 552         if not ARGS.model_upload: | 
|  | 553             sys.exit("Error: model_upload is required for Mode 1") | 
| 4 | 554 | 
| 489 | 555         base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload) | 
| 4 | 556 | 
| 489 | 557         validation = model_utils.validate_model(base_model) | 
|  | 558 | 
|  | 559         print("\n=== MODEL VALIDATION ===") | 
|  | 560         for key, value in validation.items(): | 
|  | 561             print(f"{key}: {value}") | 
|  | 562 | 
|  | 563         # Set solver verbosity to 1 to see warning and error messages only. | 
|  | 564         base_model.solver.configuration.verbosity = 1 | 
| 4 | 565 | 
| 489 | 566         # Process each bounds file with the base model | 
|  | 567         results = Parallel(n_jobs=num_processors)( | 
|  | 568             delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) | 
|  | 569             for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names) | 
|  | 570         ) | 
| 4 | 571 | 
| 489 | 572     else: | 
|  | 573         # MODE 2: Multiple complete models | 
|  | 574         print("=== MODE 2: Multiple complete models ===") | 
|  | 575 | 
|  | 576         # Process each complete model file | 
|  | 577         results = Parallel(n_jobs=num_processors)( | 
|  | 578             delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) | 
|  | 579             for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names) | 
|  | 580         ) | 
|  | 581 | 
|  | 582     # Handle sampling outputs (only if sampling was performed) | 
|  | 583     if perform_sampling: | 
|  | 584         print("=== PROCESSING SAMPLING RESULTS ===") | 
|  | 585 | 
|  | 586         all_mean = pd.concat([result[0] for result in results], ignore_index=False) | 
|  | 587         all_median = pd.concat([result[1] for result in results], ignore_index=False) | 
|  | 588         all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) | 
| 4 | 589 | 
| 489 | 590         if "mean" in ARGS.output_types: | 
|  | 591             all_mean = all_mean.fillna(0.0) | 
|  | 592             all_mean = all_mean.sort_index() | 
| 519 | 593             write_to_file(all_mean.T, ARGS.out_mean, True) | 
| 489 | 594 | 
|  | 595         if "median" in ARGS.output_types: | 
|  | 596             all_median = all_median.fillna(0.0) | 
|  | 597             all_median = all_median.sort_index() | 
| 519 | 598             write_to_file(all_median.T, ARGS.out_median, True) | 
| 489 | 599 | 
|  | 600         if "quantiles" in ARGS.output_types: | 
|  | 601             all_quantiles = all_quantiles.fillna(0.0) | 
|  | 602             all_quantiles = all_quantiles.sort_index() | 
| 519 | 603             write_to_file(all_quantiles.T, ARGS.out_quantiles, True) | 
| 489 | 604     else: | 
|  | 605         print("=== SAMPLING SKIPPED (n_samples = 0 or sampling disabled) ===") | 
|  | 606 | 
|  | 607     # Handle optimization analysis outputs (always available) | 
|  | 608     print("=== PROCESSING OPTIMIZATION RESULTS ===") | 
| 4 | 609 | 
| 489 | 610     # Determine the starting index for optimization results | 
|  | 611     # If sampling was performed, optimization results start at index 3 | 
|  | 612     # If no sampling, optimization results start at index 0 | 
|  | 613     index_result = 3 if perform_sampling else 0 | 
|  | 614 | 
|  | 615     if "pFBA" in ARGS.output_type_analysis: | 
| 4 | 616         all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 617         all_pFBA = all_pFBA.sort_index() | 
| 519 | 618         write_to_file(all_pFBA.T, ARGS.out_pfba, True) | 
| 489 | 619         index_result += 1 | 
|  | 620 | 
|  | 621     if "FVA" in ARGS.output_type_analysis: | 
|  | 622         all_FVA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
| 4 | 623         all_FVA = all_FVA.sort_index() | 
| 519 | 624         write_to_file(all_FVA.T, ARGS.out_fva, True) | 
| 489 | 625         index_result += 1 | 
|  | 626 | 
|  | 627     if "sensitivity" in ARGS.output_type_analysis: | 
| 4 | 628         all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 629         all_sensitivity = all_sensitivity.sort_index() | 
| 519 | 630         write_to_file(all_sensitivity.T, ARGS.out_sensitivity, True) | 
| 4 | 631 | 
| 489 | 632     return | 
| 4 | 633 | 
|  | 634 ############################################################################## | 
|  | 635 if __name__ == "__main__": | 
|  | 636     main() |