418
|
1 import os
|
|
2 import csv
|
|
3 import cobra
|
|
4 import pickle
|
|
5 import argparse
|
|
6 import pandas as pd
|
|
7 from typing import Optional, Tuple, Union, List, Dict
|
|
8 import utils.general_utils as utils
|
|
9 import utils.rule_parsing as rulesUtils
|
|
10
|
|
11 ################################- DATA GENERATION -################################
|
|
12 ReactionId = str
|
|
13 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
|
|
14 """
|
|
15 Generates a dictionary mapping reaction ids to rules from the model.
|
|
16
|
|
17 Args:
|
|
18 model : the model to derive data from.
|
|
19 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
|
|
20
|
|
21 Returns:
|
|
22 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
|
|
23 Dict[ReactionId, str] : the generated dictionary of raw rules.
|
|
24 """
|
|
25 # Is the below approach convoluted? yes
|
|
26 # Ok but is it inefficient? probably
|
|
27 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
|
|
28 _ruleGetter = lambda reaction : reaction.gene_reaction_rule
|
|
29 ruleExtractor = (lambda reaction :
|
|
30 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
|
|
31
|
|
32 return {
|
|
33 reaction.id : ruleExtractor(reaction)
|
|
34 for reaction in model.reactions
|
|
35 if reaction.gene_reaction_rule }
|
|
36
|
|
37 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
|
|
38 """
|
|
39 Generates a dictionary mapping reaction ids to reaction formulas from the model.
|
|
40
|
|
41 Args:
|
|
42 model : the model to derive data from.
|
|
43 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
|
|
44
|
|
45 Returns:
|
|
46 Dict[ReactionId, str] : the generated dictionary.
|
|
47 """
|
|
48
|
|
49 unparsedReactions = {
|
|
50 reaction.id : reaction.reaction
|
|
51 for reaction in model.reactions
|
|
52 if reaction.reaction
|
|
53 }
|
|
54
|
|
55 if not asParsed: return unparsedReactions
|
|
56
|
|
57 return reactionUtils.create_reaction_dict(unparsedReactions)
|
|
58
|
|
59 def get_medium(model:cobra.Model) -> pd.DataFrame:
|
|
60 trueMedium=[]
|
|
61 for r in model.reactions:
|
|
62 positiveCoeff=0
|
|
63 for m in r.metabolites:
|
|
64 if r.get_coefficient(m.id)>0:
|
|
65 positiveCoeff=1;
|
|
66 if (positiveCoeff==0 and r.lower_bound<0):
|
|
67 trueMedium.append(r.id)
|
|
68
|
|
69 df_medium = pd.DataFrame()
|
|
70 df_medium["reaction"] = trueMedium
|
|
71 return df_medium
|
|
72
|
|
73 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
|
|
74
|
|
75 rxns = []
|
|
76 for reaction in model.reactions:
|
|
77 rxns.append(reaction.id)
|
|
78
|
|
79 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
|
|
80
|
|
81 for reaction in model.reactions:
|
|
82 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
|
|
83 return bounds
|
|
84
|
|
85
|
|
86
|
|
87 def generate_compartments(model: cobra.Model) -> pd.DataFrame:
|
|
88 """
|
|
89 Generates a DataFrame containing compartment information for each reaction.
|
|
90 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
|
|
91
|
|
92 Args:
|
|
93 model: the COBRA model to extract compartment data from.
|
|
94
|
|
95 Returns:
|
|
96 pd.DataFrame: DataFrame with ReactionID and compartment columns
|
|
97 """
|
|
98 pathway_data = []
|
|
99
|
|
100 # First pass: determine the maximum number of pathways any reaction has
|
|
101 max_pathways = 0
|
|
102 reaction_pathways = {}
|
|
103
|
|
104 for reaction in model.reactions:
|
|
105 # Get unique pathways from all metabolites in the reaction
|
|
106 if type(reaction.annotation['pathways']) == list:
|
|
107 reaction_pathways[reaction.id] = reaction.annotation['pathways']
|
|
108 max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
|
|
109 else:
|
|
110 reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
|
|
111
|
|
112 # Create column names for pathways
|
|
113 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
|
|
114
|
|
115 # Second pass: create the data
|
|
116 for reaction_id, pathways in reaction_pathways.items():
|
|
117 row = {"ReactionID": reaction_id}
|
|
118
|
|
119 # Fill pathway columns
|
|
120 for i in range(max_pathways):
|
|
121 col_name = pathway_columns[i]
|
|
122 if i < len(pathways):
|
|
123 row[col_name] = pathways[i]
|
|
124 else:
|
|
125 row[col_name] = None # or "" if you prefer empty strings
|
|
126
|
|
127 pathway_data.append(row)
|
|
128
|
|
129 return pd.DataFrame(pathway_data) |