| 
457
 | 
     1 """
 | 
| 
 | 
     2 Scripts to generate a tabular file of a metabolic model (built-in or custom).
 | 
| 
 | 
     3 
 | 
| 
 | 
     4 This script loads a COBRA model (built-in or custom), optionally applies
 | 
| 
 | 
     5 medium and gene nomenclature settings, derives reaction-related metadata
 | 
| 
 | 
     6 (GPR rules, formulas, bounds, objective coefficients, medium membership,
 | 
| 
 | 
     7 and compartments for ENGRO2), and writes a tabular summary.
 | 
| 
 | 
     8 """
 | 
| 
 | 
     9 
 | 
| 
 | 
    10 import os
 | 
| 
 | 
    11 import csv
 | 
| 
 | 
    12 import cobra
 | 
| 
 | 
    13 import argparse
 | 
| 
 | 
    14 import pandas as pd
 | 
| 
 | 
    15 import utils.general_utils as utils
 | 
| 
 | 
    16 from typing import Optional, Tuple, List
 | 
| 
 | 
    17 import utils.model_utils as modelUtils
 | 
| 
 | 
    18 import logging
 | 
| 
490
 | 
    19 from pathlib import Path
 | 
| 
 | 
    20 
 | 
| 
457
 | 
    21 
 | 
| 
 | 
    22 ARGS : argparse.Namespace
 | 
| 
 | 
    23 def process_args(args: List[str] = None) -> argparse.Namespace:
 | 
| 
 | 
    24     """
 | 
| 
 | 
    25     Parse command-line arguments for metabolic_model_setting.
 | 
| 
 | 
    26     """
 | 
| 
 | 
    27 
 | 
| 
 | 
    28     parser = argparse.ArgumentParser(
 | 
| 
 | 
    29         usage="%(prog)s [options]",
 | 
| 
 | 
    30         description="Generate custom data from a given model"
 | 
| 
 | 
    31     )
 | 
| 
 | 
    32 
 | 
| 
 | 
    33     parser.add_argument("--out_log", type=str, required=True,
 | 
| 
 | 
    34                         help="Output log file")
 | 
| 
 | 
    35 
 | 
| 
 | 
    36     parser.add_argument("--model", type=str,
 | 
| 
 | 
    37                         help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
 | 
| 
 | 
    38     parser.add_argument("--input", type=str,
 | 
| 
 | 
    39                         help="Custom model file (JSON or XML)")
 | 
| 
 | 
    40     parser.add_argument("--name", type=str, required=True,
 | 
| 
 | 
    41                         help="Model name (default or custom)")
 | 
| 
 | 
    42     
 | 
| 
 | 
    43     parser.add_argument("--medium_selector", type=str, required=True,
 | 
| 
 | 
    44                         help="Medium selection option")
 | 
| 
 | 
    45 
 | 
| 
 | 
    46     parser.add_argument("--gene_format", type=str, default="Default",
 | 
| 
 | 
    47                         help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
 | 
| 
 | 
    48     
 | 
| 
 | 
    49     parser.add_argument("--out_tabular", type=str,
 | 
| 
 | 
    50                         help="Output file for the merged dataset (CSV or XLSX)")
 | 
| 
 | 
    51     
 | 
| 
 | 
    52     parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
 | 
| 
 | 
    53                         help="Tool directory (passed from Galaxy as $__tool_directory__)")
 | 
| 
 | 
    54 
 | 
| 
 | 
    55 
 | 
| 
 | 
    56     return parser.parse_args(args)
 | 
| 
 | 
    57 
 | 
| 
 | 
    58 ################################- INPUT DATA LOADING -################################
 | 
| 
 | 
    59 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
 | 
| 
 | 
    60     """
 | 
| 
 | 
    61     Loads a custom model from a file, either in JSON, XML, MAT, or YML format.
 | 
| 
 | 
    62 
 | 
| 
 | 
    63     Args:
 | 
| 
 | 
    64         file_path : The path to the file containing the custom model.
 | 
| 
 | 
    65         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
 | 
| 
 | 
    66 
 | 
| 
 | 
    67     Raises:
 | 
| 
 | 
    68         DataErr : if the file is in an invalid format or cannot be opened for whatever reason.    
 | 
| 
 | 
    69     
 | 
| 
 | 
    70     Returns:
 | 
| 
 | 
    71         cobra.Model : the model, if successfully opened.
 | 
| 
 | 
    72     """
 | 
| 
 | 
    73     ext = ext if ext else file_path.ext
 | 
| 
 | 
    74     try:
 | 
| 
 | 
    75         if ext is utils.FileFormat.XML:
 | 
| 
 | 
    76             return cobra.io.read_sbml_model(file_path.show())
 | 
| 
 | 
    77         
 | 
| 
 | 
    78         if ext is utils.FileFormat.JSON:
 | 
| 
 | 
    79             return cobra.io.load_json_model(file_path.show())
 | 
| 
 | 
    80 
 | 
| 
 | 
    81         if ext is utils.FileFormat.MAT:
 | 
| 
 | 
    82             return cobra.io.load_matlab_model(file_path.show())
 | 
| 
 | 
    83 
 | 
| 
 | 
    84         if ext is utils.FileFormat.YML:
 | 
| 
 | 
    85             return cobra.io.load_yaml_model(file_path.show())
 | 
| 
 | 
    86 
 | 
| 
 | 
    87     except Exception as e: raise utils.DataErr(file_path, e.__str__())
 | 
| 
 | 
    88     raise utils.DataErr(
 | 
| 
 | 
    89         file_path,
 | 
| 
 | 
    90         f"Unrecognized format '{file_path.ext}'. Only JSON, XML, MAT, YML are supported."
 | 
| 
 | 
    91     )
 | 
| 
 | 
    92 
 | 
| 
 | 
    93 
 | 
| 
 | 
    94 ###############################- FILE SAVING -################################
 | 
| 
 | 
    95 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
 | 
| 
 | 
    96     """
 | 
| 
 | 
    97     Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
 | 
| 
 | 
    98 
 | 
| 
 | 
    99     Args:
 | 
| 
 | 
   100         data : the data to be written to the file.
 | 
| 
 | 
   101         file_path : the path to the .csv file.
 | 
| 
 | 
   102         fieldNames : the names of the fields (columns) in the .csv file.
 | 
| 
 | 
   103     
 | 
| 
 | 
   104     Returns:
 | 
| 
 | 
   105         None
 | 
| 
 | 
   106     """
 | 
| 
 | 
   107     with open(file_path.show(), 'w', newline='') as csvfile:
 | 
| 
 | 
   108         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
 | 
| 
 | 
   109         writer.writeheader()
 | 
| 
 | 
   110 
 | 
| 
 | 
   111         for key, value in data.items():
 | 
| 
 | 
   112             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
 | 
| 
 | 
   113 
 | 
| 
 | 
   114 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
 | 
| 
 | 
   115     """
 | 
| 
 | 
   116     Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
 | 
| 
 | 
   117 
 | 
| 
 | 
   118     Args:
 | 
| 
 | 
   119         data : the data to be written to the file.
 | 
| 
 | 
   120         file_path : the path to the .csv file.
 | 
| 
 | 
   121         fieldNames : the names of the fields (columns) in the .csv file.
 | 
| 
 | 
   122     
 | 
| 
 | 
   123     Returns:
 | 
| 
 | 
   124         None
 | 
| 
 | 
   125     """
 | 
| 
 | 
   126     with open(file_path, 'w', newline='') as csvfile:
 | 
| 
 | 
   127         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
 | 
| 
 | 
   128         writer.writeheader()
 | 
| 
 | 
   129 
 | 
| 
 | 
   130         for key, value in data.items():
 | 
| 
 | 
   131             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
 | 
| 
 | 
   132 
 | 
| 
 | 
   133 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
 | 
| 
 | 
   134     """
 | 
| 
 | 
   135     Save a pandas DataFrame as a tab-separated file, creating directories as needed.
 | 
| 
 | 
   136 
 | 
| 
 | 
   137     Args:
 | 
| 
 | 
   138         df: The DataFrame to write.
 | 
| 
 | 
   139         path: Destination file path (will be written as TSV).
 | 
| 
 | 
   140 
 | 
| 
 | 
   141     Raises:
 | 
| 
 | 
   142         DataErr: If writing the output fails for any reason.
 | 
| 
 | 
   143 
 | 
| 
 | 
   144     Returns:
 | 
| 
 | 
   145         None
 | 
| 
 | 
   146     """
 | 
| 
 | 
   147     try:
 | 
| 
 | 
   148         os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
 | 
| 
 | 
   149         df.to_csv(path, sep="\t", index=False)
 | 
| 
 | 
   150     except Exception as e:
 | 
| 
 | 
   151         raise utils.DataErr(path, f"failed writing tabular output: {e}")
 | 
| 
490
 | 
   152     
 | 
| 
 | 
   153 def is_placeholder(gid) -> bool:
 | 
| 
 | 
   154     """Return True if the gene id looks like a placeholder (e.g., 0/NA/NAN/empty)."""
 | 
| 
 | 
   155     if gid is None:
 | 
| 
 | 
   156         return True
 | 
| 
 | 
   157     s = str(gid).strip().lower()
 | 
| 
 | 
   158     return s in {"0", "", "na", "nan"}  # lowercase for simple matching
 | 
| 
 | 
   159 
 | 
| 
 | 
   160 def sample_valid_gene_ids(genes, limit=10):
 | 
| 
 | 
   161     """Yield up to `limit` valid gene IDs, skipping placeholders (e.g., the first 0 in RECON)."""
 | 
| 
 | 
   162     out = []
 | 
| 
 | 
   163     for g in genes:
 | 
| 
 | 
   164         gid = getattr(g, "id", getattr(g, "gene_id", g))
 | 
| 
 | 
   165         if not is_placeholder(gid):
 | 
| 
 | 
   166             out.append(str(gid))
 | 
| 
 | 
   167             if len(out) >= limit:
 | 
| 
 | 
   168                 break
 | 
| 
 | 
   169     return out
 | 
| 
457
 | 
   170 
 | 
| 
 | 
   171 
 | 
| 
 | 
   172 ###############################- ENTRY POINT -################################
 | 
| 
 | 
   173 def main(args:List[str] = None) -> None:
 | 
| 
 | 
   174     """
 | 
| 
 | 
   175     Initialize and generate custom data based on the frontend input arguments.
 | 
| 
 | 
   176     
 | 
| 
 | 
   177     Returns:
 | 
| 
 | 
   178         None
 | 
| 
 | 
   179     """
 | 
| 
 | 
   180     # Parse args from frontend (Galaxy XML)
 | 
| 
 | 
   181     global ARGS
 | 
| 
 | 
   182     ARGS = process_args(args)
 | 
| 
 | 
   183 
 | 
| 
 | 
   184 
 | 
| 
 | 
   185     if ARGS.input:
 | 
| 
 | 
   186         # Load a custom model from file
 | 
| 
 | 
   187         model = load_custom_model(
 | 
| 
 | 
   188             utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext)
 | 
| 
 | 
   189     else:
 | 
| 
 | 
   190         # Load a built-in model
 | 
| 
 | 
   191 
 | 
| 
 | 
   192         try:
 | 
| 
 | 
   193             model_enum = utils.Model[ARGS.model]  # e.g., Model['ENGRO2']
 | 
| 
 | 
   194         except KeyError:
 | 
| 
 | 
   195             raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
 | 
| 
 | 
   196 
 | 
| 
 | 
   197         # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
 | 
| 
 | 
   198         try:
 | 
| 
 | 
   199             model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
 | 
| 
 | 
   200         except Exception as e:
 | 
| 
 | 
   201             # Wrap/normalize load errors as DataErr for consistency
 | 
| 
 | 
   202             raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
 | 
| 
 | 
   203 
 | 
| 
 | 
   204     # Determine final model name: explicit --name overrides, otherwise use the model id
 | 
| 
 | 
   205     
 | 
| 
 | 
   206     model_name = ARGS.name if ARGS.name else ARGS.model
 | 
| 
 | 
   207     
 | 
| 
 | 
   208     if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
 | 
| 
 | 
   209         df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
 | 
| 
 | 
   210         ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
 | 
| 
 | 
   211         medium = df_mediums[[ARGS.medium_selector]]
 | 
| 
 | 
   212         medium = medium[ARGS.medium_selector].to_dict()
 | 
| 
 | 
   213 
 | 
| 
 | 
   214         # Reset all medium reactions lower bound to zero
 | 
| 
 | 
   215         for rxn_id, _ in model.medium.items():
 | 
| 
 | 
   216             model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
 | 
| 
 | 
   217         
 | 
| 
 | 
   218         # Apply selected medium uptake bounds (negative for uptake)
 | 
| 
 | 
   219         for reaction, value in medium.items():
 | 
| 
 | 
   220             if value is not None:
 | 
| 
 | 
   221                 model.reactions.get_by_id(reaction).lower_bound = -float(value)
 | 
| 
 | 
   222 
 | 
| 
490
 | 
   223     # Initialize translation_issues dictionary
 | 
| 
 | 
   224     translation_issues = {}
 | 
| 
 | 
   225     
 | 
| 
457
 | 
   226     if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default":
 | 
| 
 | 
   227         logging.basicConfig(level=logging.INFO)
 | 
| 
 | 
   228         logger = logging.getLogger(__name__)
 | 
| 
 | 
   229 
 | 
| 
490
 | 
   230         model, translation_issues = modelUtils.translate_model_genes(
 | 
| 
457
 | 
   231             model=model,
 | 
| 
 | 
   232             mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
 | 
| 
 | 
   233             target_nomenclature=ARGS.gene_format,
 | 
| 
 | 
   234             source_nomenclature='HGNC_symbol',
 | 
| 
 | 
   235             logger=logger
 | 
| 
 | 
   236         )
 | 
| 
 | 
   237 
 | 
| 
490
 | 
   238     if ARGS.name == "Custom_model" and ARGS.gene_format != "Default":
 | 
| 
 | 
   239         logging.basicConfig(level=logging.INFO)
 | 
| 
 | 
   240         logger = logging.getLogger(__name__)
 | 
| 
 | 
   241 
 | 
| 
 | 
   242         tmp_check = []
 | 
| 
 | 
   243         for g in model.genes[1:5]:  # check first 3 genes only
 | 
| 
 | 
   244             tmp_check.append(modelUtils.gene_type(g.id, "Custom_model"))
 | 
| 
 | 
   245         
 | 
| 
 | 
   246         if len(set(tmp_check)) > 1:
 | 
| 
 | 
   247             raise utils.DataErr("Custom_model", "The custom model contains genes with mixed or unrecognized nomenclature. Please ensure all genes use the same recognized nomenclature before applying gene_format conversion.")
 | 
| 
 | 
   248         else:
 | 
| 
 | 
   249             source_nomenclature = tmp_check[0]
 | 
| 
 | 
   250 
 | 
| 
 | 
   251         if source_nomenclature != ARGS.gene_format:
 | 
| 
 | 
   252             model, translation_issues = modelUtils.translate_model_genes(
 | 
| 
 | 
   253                 model=model,
 | 
| 
 | 
   254                 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
 | 
| 
 | 
   255                 target_nomenclature=ARGS.gene_format,
 | 
| 
 | 
   256                 source_nomenclature=source_nomenclature,
 | 
| 
 | 
   257                 logger=logger
 | 
| 
 | 
   258             )
 | 
| 
 | 
   259 
 | 
| 
 | 
   260 
 | 
| 
 | 
   261 
 | 
| 
 | 
   262 
 | 
| 
 | 
   263     if ARGS.name == "Custom_model" and ARGS.gene_format != "Default":
 | 
| 
 | 
   264         logger = logging.getLogger(__name__)
 | 
| 
 | 
   265 
 | 
| 
 | 
   266         # Take a small, clean sample of gene IDs (skipping placeholders like 0)
 | 
| 
 | 
   267         ids_sample = sample_valid_gene_ids(model.genes, limit=10)
 | 
| 
 | 
   268         if not ids_sample:
 | 
| 
 | 
   269             raise utils.DataErr(
 | 
| 
 | 
   270                 "Custom_model",
 | 
| 
 | 
   271                 "No valid gene IDs found (many may be placeholders like 0)."
 | 
| 
 | 
   272             )
 | 
| 
 | 
   273 
 | 
| 
 | 
   274         # Detect source nomenclature on the sample
 | 
| 
 | 
   275         types = []
 | 
| 
 | 
   276         for gid in ids_sample:
 | 
| 
 | 
   277             try:
 | 
| 
 | 
   278                 t = modelUtils.gene_type(gid, "Custom_model")
 | 
| 
 | 
   279             except Exception as e:
 | 
| 
 | 
   280                 # Keep it simple: skip problematic IDs
 | 
| 
 | 
   281                 logger.debug(f"gene_type failed for {gid}: {e}")
 | 
| 
 | 
   282                 t = None
 | 
| 
 | 
   283             if t:
 | 
| 
 | 
   284                 types.append(t)
 | 
| 
 | 
   285 
 | 
| 
 | 
   286         if not types:
 | 
| 
 | 
   287             raise utils.DataErr(
 | 
| 
 | 
   288                 "Custom_model",
 | 
| 
 | 
   289                 "Could not detect a known gene nomenclature from the sample."
 | 
| 
 | 
   290             )
 | 
| 
 | 
   291 
 | 
| 
 | 
   292         unique_types = set(types)
 | 
| 
 | 
   293         if len(unique_types) > 1:
 | 
| 
 | 
   294             raise utils.DataErr(
 | 
| 
 | 
   295                 "Custom_model",
 | 
| 
 | 
   296                 "Mixed or inconsistent gene nomenclatures detected. "
 | 
| 
 | 
   297                 "Please unify them before converting."
 | 
| 
 | 
   298             )
 | 
| 
 | 
   299 
 | 
| 
 | 
   300         source_nomenclature = types[0]
 | 
| 
 | 
   301 
 | 
| 
 | 
   302         # Convert only if needed
 | 
| 
 | 
   303         if source_nomenclature != ARGS.gene_format:
 | 
| 
 | 
   304             model, translation_issues = modelUtils.translate_model_genes(
 | 
| 
 | 
   305                 model=model,
 | 
| 
 | 
   306                 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
 | 
| 
 | 
   307                 target_nomenclature=ARGS.gene_format,
 | 
| 
 | 
   308                 source_nomenclature=source_nomenclature,
 | 
| 
 | 
   309                 logger=logger
 | 
| 
 | 
   310             )
 | 
| 
 | 
   311 
 | 
| 
457
 | 
   312     # generate data
 | 
| 
 | 
   313     rules = modelUtils.generate_rules(model, asParsed = False)
 | 
| 
 | 
   314     reactions = modelUtils.generate_reactions(model, asParsed = False)
 | 
| 
 | 
   315     bounds = modelUtils.generate_bounds(model)
 | 
| 
 | 
   316     medium = modelUtils.get_medium(model)
 | 
| 
 | 
   317     objective_function = modelUtils.extract_objective_coefficients(model)
 | 
| 
 | 
   318     
 | 
| 
 | 
   319     if ARGS.name == "ENGRO2":
 | 
| 
 | 
   320         compartments = modelUtils.generate_compartments(model)
 | 
| 
 | 
   321 
 | 
| 
 | 
   322     df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "GPR"])
 | 
| 
 | 
   323     df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Formula"])
 | 
| 
 | 
   324 
 | 
| 
490
 | 
   325     # Create DataFrame for translation issues
 | 
| 
 | 
   326     df_translation_issues = pd.DataFrame([
 | 
| 
 | 
   327         {"ReactionID": rxn_id, "TranslationIssues": issues}
 | 
| 
 | 
   328         for rxn_id, issues in translation_issues.items()
 | 
| 
 | 
   329     ])
 | 
| 
 | 
   330     
 | 
| 
457
 | 
   331     df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
 | 
| 
 | 
   332     df_medium = medium.rename(columns = {"reaction": "ReactionID"})
 | 
| 
 | 
   333     df_medium["InMedium"] = True
 | 
| 
 | 
   334 
 | 
| 
 | 
   335     merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
 | 
| 
 | 
   336     merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
 | 
| 
 | 
   337     merged = merged.merge(objective_function, on = "ReactionID", how = "outer")
 | 
| 
 | 
   338     if ARGS.name == "ENGRO2": 
 | 
| 
 | 
   339         merged = merged.merge(compartments, on = "ReactionID", how = "outer")
 | 
| 
 | 
   340     merged = merged.merge(df_medium, on = "ReactionID", how = "left")
 | 
| 
490
 | 
   341     
 | 
| 
 | 
   342     # Add translation issues column
 | 
| 
 | 
   343     if not df_translation_issues.empty:
 | 
| 
 | 
   344         merged = merged.merge(df_translation_issues, on = "ReactionID", how = "left")
 | 
| 
 | 
   345         merged["TranslationIssues"] = merged["TranslationIssues"].fillna("")
 | 
| 
 | 
   346     else:
 | 
| 
 | 
   347         # Add empty TranslationIssues column if no issues found
 | 
| 
 | 
   348         #merged["TranslationIssues"] = ""
 | 
| 
 | 
   349         pass
 | 
| 
457
 | 
   350 
 | 
| 
 | 
   351     merged["InMedium"] = merged["InMedium"].fillna(False)
 | 
| 
 | 
   352 
 | 
| 
 | 
   353     merged = merged.sort_values(by = "InMedium", ascending = False)
 | 
| 
 | 
   354 
 | 
| 
 | 
   355     if not ARGS.out_tabular:
 | 
| 
 | 
   356         raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
 | 
| 
 | 
   357     save_as_tabular_df(merged, ARGS.out_tabular)
 | 
| 
 | 
   358     expected = ARGS.out_tabular
 | 
| 
 | 
   359 
 | 
| 
 | 
   360     # verify output exists and non-empty
 | 
| 
 | 
   361     if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
 | 
| 
 | 
   362         raise utils.DataErr(expected, "Output not created or empty")
 | 
| 
 | 
   363 
 | 
| 
 | 
   364     print("Metabolic_model_setting: completed successfully")
 | 
| 
 | 
   365 
 | 
| 
 | 
   366 if __name__ == '__main__':
 | 
| 
 | 
   367 
 | 
| 
 | 
   368     main()
 |