|
492
|
1 # Tutorials
|
|
|
2
|
|
542
|
3 Learn COBRAxy through hands-on tutorials for web-based analysis.
|
|
492
|
4
|
|
550
|
5 To set up Galaxy and start using it for web-based analyses, see the [Galaxy Setup](tutorials/galaxy-setup)
|
|
|
6
|
|
|
7 ## Available Workflows
|
|
|
8
|
|
|
9 This is a collection of GALAXY workflows illustrating different applications of the tool.
|
|
|
10 The general repository is at the following link: [Galaxy workflows](http://marea4galaxy.cloud.ba.infn.it/galaxy/workflows/list_published).
|
|
|
11
|
|
|
12 To use a workflow, click the "Import" button, and it will be added to your personal workflow page.
|
|
492
|
13
|
|
551
|
14 | Tutorial | Description | 🌐 Galaxy Workflow | 📘 Documentation |
|
|
|
15 |-----------|-------------|--------------------|------------------|
|
|
|
16 | **Flux Enrichment Analysis (Sampling Mean) — Separated Datasets** | Generate flux maps highlighting differences between two conditions. | [🔗 Open](http://marea4galaxy.cloud.ba.infn.it/galaxy/published/workflow?id=16e792953f5b45db) | [📄 See section](#flux-enrichment-analysis-sampling-mean--separated-datasets) |
|
|
|
17 | **Flux Clustering (Sampling Mean) + Flux Enrichment Analysis** | Cluster fluxes and identify condition-specific differences. | [🔗 Open](http://marea4galaxy.cloud.ba.infn.it/galaxy/published/workflow?id=c851ab275e52f8af) | [📄 See section](#flux-clustering-sampling-mean--flux-enrichment-analysis) |
|
|
|
18 | **Flux Enrichment Analysis (pFBA) — Separated Datasets** | Compare fluxes between two conditions using pFBA simulations. | [🔗 Open](http://marea4galaxy.cloud.ba.infn.it/galaxy/published/workflow?id=bf0806da5b28c6d9) | [📄 See section](#flux-enrichment-analysis-pfba--separated-datasets) |
|
|
|
19 | **Flux Clustering (pFBA) + Flux Enrichment Analysis** | Cluster pFBA-derived fluxes and analyze enriched pathways. | [🔗 Open](http://marea4galaxy.cloud.ba.infn.it/galaxy/published/workflow?id=be0a27b9edd0db03) | [📄 See section](#flux-clustering-pfba--flux-enrichment-analysis) |
|
|
|
20 | **RAS Clustering + Reaction Enrichment Analysis** | Cluster RAS profiles and identify significantly enriched reactions. | [🔗 Open](http://marea4galaxy.cloud.ba.infn.it/galaxy/published/workflow?id=81991b32733a4fc4) | [📄 See section](#ras-clustering--reaction-enrichment-analysis) |
|
|
|
21 | **Reaction Enrichment Analysis — Unified Datasets** | Compare RAS profiles between classes within one dataset. | [🔗 Open](http://marea4galaxy.cloud.ba.infn.it/galaxy/published/workflow?id=0d16186aaff7cbfd) | [📄 See section](#reaction-enrichment-analysis--unified-datasets) |
|
|
|
22 | **Reaction Enrichment Analysis — Separated Datasets** | Analyze RAS differences between two distinct datasets. | [🔗 Open](http://marea4galaxy.cloud.ba.infn.it/galaxy/published/workflow?id=290670ee50ab85f0) | [📄 See section](#reaction-enrichment-analysis--separated-datasets) |
|
|
|
23
|
|
550
|
24
|
|
|
25 A more detailed description of the tools is available on the corresponding GALAXY page.
|
|
492
|
26
|
|
551
|
27 ### Flux Enrichment Analysis (Sampling Mean) — Separated Datasets
|
|
|
28
|
|
|
29 #### Goal
|
|
|
30 Perform a **statistical analysis of fluxes** from two different datasets derived from flux simulations using the **sampling mean** method.
|
|
|
31
|
|
|
32 #### Scenario
|
|
|
33 You have **one gene expression dataset per condition** (e.g., *Cancer vs Normal*).
|
|
|
34
|
|
|
35 #### 1. Import Metabolic Model
|
|
|
36 - Load the metabolic model.
|
|
|
37 - Define the **medium** and the **gene nomenclature format**.
|
|
|
38
|
|
|
39 #### 2. Expression to RAS
|
|
|
40 - Transform a **gene expression file** into a **RAS dataset**.
|
|
|
41 - This step must be applied **individually for each dataset**.
|
|
|
42
|
|
|
43 #### 3. RAS to Bounds
|
|
|
44 - Use the **two RAS datasets** (one per condition) as input.
|
|
|
45 - Generate the corresponding **flux bounds**.
|
|
|
46
|
|
|
47 #### 4. Flux Simulation
|
|
|
48 - Use the **output from the RAS to Bounds** step as input.
|
|
|
49 - Select **sampling mean (mean)** as the simulation method.
|
|
|
50
|
|
|
51 #### 5. Metabolic Flux Enrichment Analysis
|
|
|
52 - Create a **map of significant differences** between fluxes from the two datasets.
|
|
|
53 - Use the **flux simulation output** together with the **RASToBounds results** to identify enriched pathways or reactions.
|
|
|
54
|
|
|
55
|
|
|
56 ### Flux Clustering (Sampling Mean) + Flux Enrichment Analysis
|
|
|
57
|
|
|
58 #### Goal
|
|
|
59 Creation of **flux maps** from two different datasets and **clustering** based on flux simulations using the **sampling mean** method.
|
|
|
60
|
|
|
61 #### Scenario
|
|
|
62 You have **one gene expression dataset**.
|
|
|
63
|
|
|
64 #### 1. Import Metabolic Model
|
|
|
65 - Load the metabolic model.
|
|
|
66 - Define the **medium** and the **gene nomenclature format**.
|
|
|
67
|
|
|
68 #### 2. Expression to RAS
|
|
|
69 - Transform a **gene expression file** into a **RAS dataset**.
|
|
|
70 - This step must be applied **for each dataset**.
|
|
|
71
|
|
|
72 #### 3. RAS to Bounds
|
|
|
73 - Use **two different RAS datasets** as input.
|
|
|
74 - Generate the corresponding **flux bounds**.
|
|
|
75
|
|
|
76 #### 4. Flux Simulation
|
|
|
77 - Use the **output from the RAS to Bounds** step as input.
|
|
|
78 - Select **sampling mean (mean)** as the simulation method.
|
|
|
79
|
|
|
80 #### 5. Cluster Analysis
|
|
|
81 - Perform **clustering** on the **flux dataset** obtained from the simulation.
|
|
|
82 - Identify patterns or groups within the flux profiles.
|
|
|
83
|
|
|
84 #### 6. Metabolic Flux Enrichment Analysis
|
|
|
85 - Create **flux maps** showing **significant differences** between clusters.
|
|
|
86 - Use:
|
|
|
87 - The **clusters** as the *sample group specification*.
|
|
|
88 - The **mean of each sample** from flux sampling as the *input flux data*.
|
|
|
89
|
|
|
90
|
|
|
91 ### Flux Enrichment Analysis (pFBA) — Separated Datasets
|
|
|
92
|
|
|
93 #### Goal
|
|
|
94 Perform a **statistical analysis of fluxes** from two different datasets obtained from flux simulations using **pFBA** (parsimonious Flux Balance Analysis).
|
|
|
95
|
|
|
96 #### Scenario
|
|
|
97 You have **one gene expression dataset per condition** (e.g., *Cancer vs Normal*).
|
|
|
98
|
|
|
99 #### 1. Import Metabolic Model
|
|
|
100 - Load the metabolic model.
|
|
|
101 - Define the **medium** and the **gene nomenclature format**.
|
|
|
102
|
|
|
103 #### 2. Expression to RAS
|
|
|
104 - Transform a **gene expression file** into a **RAS dataset**.
|
|
|
105 - This step must be applied **individually for each dataset**.
|
|
|
106
|
|
|
107 #### 3. RAS to Bounds
|
|
|
108 - Use the **two RAS datasets** (one per condition) as input.
|
|
|
109 - Generate the corresponding **flux bounds**.
|
|
|
110
|
|
|
111 #### 4. Flux Simulation
|
|
|
112 - Use the **output from the RAS to Bounds** step as input.
|
|
|
113 - Select **pFBA** as the simulation method.
|
|
|
114
|
|
|
115 #### 5. Metabolic Flux Enrichment Analysis
|
|
|
116 - Perform **analysis and visualization** of **significant differences** between fluxes of the two groups (e.g., *Normal* vs *Cancer*).
|
|
|
117 - Use the **flux simulation output** together with the **RASToBounds results** to identify enriched or altered metabolic pathways.
|
|
|
118
|
|
|
119
|
|
|
120 ### Flux Clustering (pFBA) + Flux Enrichment Analysis
|
|
|
121
|
|
|
122 #### Goal
|
|
|
123 Perform a **statistical analysis of fluxes** from two datasets using **clusters derived from flux simulations** with **pFBA** (parsimonious Flux Balance Analysis).
|
|
|
124
|
|
|
125 #### Scenario
|
|
|
126 You have **two gene expression datasets**.
|
|
|
127
|
|
|
128 #### 1. Import Metabolic Model
|
|
|
129 - Load the metabolic model.
|
|
|
130 - Define the **medium** and the **gene nomenclature format**.
|
|
|
131
|
|
|
132 #### 2. Expression to RAS
|
|
|
133 - Transform each **gene expression file** into a **RAS dataset**.
|
|
|
134 - This step must be applied **for each dataset**.
|
|
|
135
|
|
|
136 #### 3. RAS to Bounds
|
|
|
137 - Use the **two RAS datasets** as input.
|
|
|
138 - Generate the corresponding **flux bounds**.
|
|
|
139
|
|
|
140 #### 4. Flux Simulation
|
|
|
141 - Use the **output from the RAS to Bounds** step as input.
|
|
|
142 - Select **pFBA** as the simulation method.
|
|
|
143
|
|
|
144 #### 5. Cluster Analysis
|
|
|
145 - Perform **clustering** on the **flux dataset** obtained from the pFBA simulation.
|
|
|
146 - Identify clusters or groups within the flux profiles.
|
|
|
147
|
|
|
148 #### 6. Metabolic Flux Enrichment Analysis
|
|
|
149 - Perform **analysis and visualization** of **significant differences** between fluxes of different clusters.
|
|
|
150 - Use:
|
|
|
151 - The **clusters** as the *sample group specification*.
|
|
|
152 - The **output from the pFBA flux simulation** as the *input flux data*.
|
|
|
153 - Optionally, specify **p-value** and **fold change** thresholds to refine the analysis.
|
|
|
154
|
|
|
155
|
|
|
156 ### RAS Clustering + Reaction Enrichment Analysis
|
|
|
157
|
|
|
158 #### Goal
|
|
|
159 Perform **RAS statistical analysis** using the **MaREA** tool.
|
|
|
160 Compare **RAS clusters** obtained from a **single gene expression dataset**.
|
|
|
161
|
|
|
162 #### Scenario
|
|
|
163 You have **one gene expression dataset**.
|
|
|
164
|
|
|
165 #### 1. Import Metabolic Model
|
|
|
166 - Load the metabolic model.
|
|
|
167 - Define the **medium** and the **gene nomenclature format**.
|
|
|
168
|
|
|
169 #### 2. Expression to RAS
|
|
|
170 - Transform the **gene expression file** into a **RAS dataset**.
|
|
|
171
|
|
|
172 #### 3. Cluster Analysis
|
|
|
173 - Perform **clustering** on the **RAS dataset**.
|
|
|
174 - Identify distinct clusters or groups within the data.
|
|
|
175
|
|
|
176 #### 4. Metabolic Reaction Enrichment Analysis (MaREA)
|
|
|
177 - Perform **analysis and visualization** of **significant differences** between RAS values of different clusters.
|
|
|
178 - Use **MaREA** to detect enriched reactions and metabolic changes.
|
|
|
179 - Optionally, specify **p-value** and **fold change** thresholds to refine the analysis.
|
|
|
180
|
|
|
181 ### Reaction Enrichment Analysis — Unified Datasets
|
|
|
182
|
|
|
183 #### Goal
|
|
|
184 Perform **RAS statistical analysis** using the **MaREA** tool.
|
|
|
185 Compare **groups within the same gene expression dataset**.
|
|
|
186
|
|
|
187 #### Scenario
|
|
|
188 You have **one gene expression dataset** along with the **corresponding class labels** (e.g., *Normal* vs *Cancer*).
|
|
|
189
|
|
|
190 #### 1. Import Metabolic Model
|
|
|
191 - Load the metabolic model.
|
|
|
192 - Define the **medium** and the **gene nomenclature format**.
|
|
|
193
|
|
|
194 #### 2. Expression to RAS
|
|
|
195 - Transform the **gene expression file** into a **RAS dataset**.
|
|
|
196
|
|
|
197 #### 3. Metabolic Reaction Enrichment Analysis (MaREA)
|
|
|
198 - Perform **analysis and visualization** of **significant differences** between RAS values of different groups (e.g., *Normal* vs *Cancer*).
|
|
|
199 - The **classes** are provided as input and used for **sample group specification** in the tool.
|
|
|
200 - Optionally, specify **p-value** and **fold change** thresholds to refine the analysis.
|
|
|
201
|
|
|
202 ### Reaction Enrichment Analysis — Separated Datasets
|
|
|
203
|
|
|
204 #### Goal
|
|
|
205 Perform **RAS statistical analysis** using the **MaREA** tool with **different gene expression datasets**.
|
|
|
206
|
|
|
207 #### Scenario
|
|
|
208 You have **one gene expression dataset per condition** (e.g., *Cancer* vs *Normal*).
|
|
|
209
|
|
|
210 #### 1. Import Metabolic Model
|
|
|
211 - Load the metabolic model.
|
|
|
212 - Define the **medium** and the **gene nomenclature format**.
|
|
|
213
|
|
|
214 #### 2. Expression to RAS
|
|
|
215 - Transform each **gene expression file** into a **RAS dataset**.
|
|
|
216 - This step must be applied **individually for each dataset**.
|
|
|
217
|
|
|
218 #### 3. Metabolic Reaction Enrichment Analysis (MaREA)
|
|
|
219 - Perform **analysis and visualization** of **significant differences** between RAS values from two different datasets.
|
|
|
220 - In this scenario, the **two RAS datasets** are provided as **separate inputs**.
|
|
|
221 - Optionally, specify **p-value** and **fold change** thresholds to refine the analysis.
|
|
|
222
|
|
|
223
|
|
492
|
224 ## Tutorial Data
|
|
|
225
|
|
|
226 Download example datasets used in tutorials:
|
|
|
227
|
|
|
228 ```bash
|
|
|
229 # Download tutorial data
|
|
547
|
230 wget https://github.com/CompBtBs/COBRAxy/blob/main/data_tutorial/data_tutorial.zip
|
|
492
|
231 unzip tutorial_data.zip
|
|
|
232 ```
|
|
|
233
|
|
547
|
234 The tutorial data includes Sample gene expression datasets (Cancer.txt and Normal.txt)
|
|
492
|
235
|
|
|
236 ## Getting Help
|
|
|
237
|
|
|
238 If you encounter issues during tutorials:
|
|
|
239
|
|
|
240 1. Check the specific tutorial's troubleshooting section
|
|
547
|
241 2. Refer to the main [Troubleshooting Guide](troubleshooting)
|
|
492
|
242
|
|
|
243 ## Contributing
|
|
|
244
|
|
|
245 Found an error or want to improve a tutorial?
|
|
|
246
|
|
|
247 - [Edit on GitHub](https://github.com/CompBtBs/COBRAxy/tree/main/docs/tutorials)
|
|
|
248 - [Report issues](https://github.com/CompBtBs/COBRAxy/issues)
|
|
|
249 - Suggest new tutorial topics
|
|
|
250
|
|
547
|
251 Ready to start? Pick your first tutorial above! 🚀
|