comparison COBRAxy/flux_to_map.py @ 244:ccb4ae0e01b3 draft

Uploaded
author francesco_lapi
date Wed, 15 Jan 2025 10:52:04 +0000
parents 5aaf15260ca6
children 58037c24c716
comparison
equal deleted inserted replaced
243:5aaf15260ca6 244:ccb4ae0e01b3
698 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) 698 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data)
699 699
700 # Calculate means and standard deviations 700 # Calculate means and standard deviations
701 mean1 = np.nanmean(dataset1Data) 701 mean1 = np.nanmean(dataset1Data)
702 mean2 = np.nanmean(dataset2Data) 702 mean2 = np.nanmean(dataset2Data)
703 std1 = np.std(dataset1Data, ddof=1) 703 std1 = np.nanstd(dataset1Data, ddof=1)
704 std2 = np.std(dataset2Data, ddof=1) 704 std2 = np.nanstd(dataset2Data, ddof=1)
705 705
706 n1 = len(dataset1Data) 706 n1 = len(dataset1Data)
707 n2 = len(dataset2Data) 707 n2 = len(dataset2Data)
708 708
709 # Calculate Z-score 709 # Calculate Z-score
877 vectors[name] = np.zeros_like(vector) # Sostituisci con un vettore di zeri 877 vectors[name] = np.zeros_like(vector) # Sostituisci con un vettore di zeri
878 878
879 # Riassegna i vettori aggiornati 879 # Riassegna i vettori aggiornati
880 lact_glc, lact_gln, lact_o2, glu_gln = vectors['lact_glc'], vectors['lact_gln'], vectors['lact_o2'], vectors['glu_gln'] 880 lact_glc, lact_gln, lact_o2, glu_gln = vectors['lact_glc'], vectors['lact_gln'], vectors['lact_o2'], vectors['glu_gln']
881 881
882 print(vectors)
882 # Create a DataFrame for the new rows 883 # Create a DataFrame for the new rows
883 new_rows = pd.DataFrame({ 884 new_rows = pd.DataFrame({
884 dataset.index.name: ['LactGlc', 'LactGln','LactO2', 'GluGln'], 885 dataset.index.name: ['LactGlc', 'LactGln','LactO2', 'GluGln'],
885 **{col: [lact_glc[i], lact_gln[i],lact_o2[i], glu_gln[i]] for i, col in enumerate(dataset.columns)} 886 **{col: [lact_glc[i], lact_gln[i],lact_o2[i], glu_gln[i]] for i, col in enumerate(dataset.columns)}
886 }) 887 })