Mercurial > repos > bimib > cobraxy
diff COBRAxy/ras_to_bounds_beta.py @ 411:6b015d3184ab draft
Uploaded
author | francesco_lapi |
---|---|
date | Mon, 08 Sep 2025 21:07:34 +0000 |
parents | f413b78d61bf |
children | 5086145cfb96 |
line wrap: on
line diff
--- a/COBRAxy/ras_to_bounds_beta.py Mon Sep 08 17:33:52 2025 +0000 +++ b/COBRAxy/ras_to_bounds_beta.py Mon Sep 08 21:07:34 2025 +0000 @@ -30,9 +30,6 @@ parser.add_argument("-mo", "--model_upload", type = str, help = "path to input file with custom rules, if provided") - - parser.add_argument("-meo", "--medium", type = str, - help = "path to input file with custom medium, if provided") parser.add_argument('-ol', '--out_log', help = "Output log") @@ -65,6 +62,21 @@ default='ras_to_bounds/', help = 'output path for maps') + parser.add_argument('-sm', '--save_models', + type=utils.Bool("save_models"), + default=False, + help = 'whether to save models with applied bounds') + + parser.add_argument('-smp', '--save_models_path', + type = str, + default='saved_models/', + help = 'output path for saved models') + + parser.add_argument('-smf', '--save_models_format', + type = str, + default='csv', + help = 'format for saved models (csv, xml, json, mat, yaml, tabular)') + ARGS = parser.parse_args(args) return ARGS @@ -80,8 +92,9 @@ Returns: None """ - with open(ARGS.out_log, 'a') as log: - log.write(s + "\n\n") + if ARGS.out_log: + with open(ARGS.out_log, 'a') as log: + log.write(s + "\n\n") print(s) ############################ dataset input #################################### @@ -136,7 +149,99 @@ new_bounds.loc[reaction, "upper_bound"] = valMax return new_bounds -def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): +def save_model(model, filename, output_folder, file_format='csv'): + """ + Save a COBRA model to file in the specified format. + + Args: + model (cobra.Model): The model to save. + filename (str): Base filename (without extension). + output_folder (str): Output directory. + file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv'). + + Returns: + None + """ + if not os.path.exists(output_folder): + os.makedirs(output_folder) + + try: + if file_format == 'tabular' or file_format == 'csv': + # Special handling for tabular format using utils functions + filepath = os.path.join(output_folder, f"{filename}.csv") + + rules = utils.generate_rules(model, asParsed = False) + reactions = utils.generate_reactions(model, asParsed = False) + bounds = utils.generate_bounds(model) + medium = utils.get_medium(model) + + try: + compartments = utils.generate_compartments(model) + except: + compartments = None + + df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) + df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) + df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) + df_medium = medium.rename(columns = {"reaction": "ReactionID"}) + df_medium["InMedium"] = True # flag per indicare la presenza nel medium + + merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") + merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") + + # Add compartments only if they exist and model name is ENGRO2 + if compartments is not None and hasattr(ARGS, 'name') and ARGS.name == "ENGRO2": + merged = merged.merge(compartments, on = "ReactionID", how = "outer") + + merged = merged.merge(df_medium, on = "ReactionID", how = "left") + merged["InMedium"] = merged["InMedium"].fillna(False) + merged = merged.sort_values(by = "InMedium", ascending = False) + + merged.to_csv(filepath, sep="\t", index=False) + + else: + # Standard COBRA formats + filepath = os.path.join(output_folder, f"{filename}.{file_format}") + + if file_format == 'xml': + cobra.io.write_sbml_model(model, filepath) + elif file_format == 'json': + cobra.io.save_json_model(model, filepath) + elif file_format == 'mat': + cobra.io.save_matlab_model(model, filepath) + elif file_format == 'yaml': + cobra.io.save_yaml_model(model, filepath) + else: + raise ValueError(f"Unsupported format: {file_format}") + + print(f"Model saved: {filepath}") + + except Exception as e: + warning(f"Error saving model {filename}: {str(e)}") + +def apply_bounds_to_model(model, bounds): + """ + Apply bounds from a DataFrame to a COBRA model. + + Args: + model (cobra.Model): The metabolic model to modify. + bounds (pd.DataFrame): DataFrame with reaction bounds. + + Returns: + cobra.Model: Modified model with new bounds. + """ + model_copy = model.copy() + for reaction_id in bounds.index: + try: + reaction = model_copy.reactions.get_by_id(reaction_id) + reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"] + reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"] + except KeyError: + # Reaction not found in model, skip + continue + return model_copy + +def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'): """ Process a single RAS cell, apply bounds, and save the bounds to a CSV file. @@ -146,6 +251,9 @@ model (cobra.Model): The metabolic model to be modified. rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. output_folder (str): Folder path where the output CSV file will be saved. + save_models (bool): Whether to save models with applied bounds. + save_models_path (str): Path where to save models. + save_models_format (str): Format for saved models. Returns: None @@ -153,17 +261,25 @@ bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) new_bounds = apply_ras_bounds(bounds, ras_row) new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) + + # Save model if requested + if save_models: + modified_model = apply_bounds_to_model(model, new_bounds) + save_model(modified_model, cellName, save_models_path, save_models_format) + pass -def generate_bounds(model: cobra.Model, ras=None, output_folder='output/') -> pd.DataFrame: +def generate_bounds(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame: """ Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. Args: model (cobra.Model): The metabolic model for which bounds will be generated. - medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. + save_models (bool): Whether to save models with applied bounds. + save_models_path (str): Path where to save models. + save_models_format (str): Format for saved models. Returns: pd.DataFrame: DataFrame containing the bounds of reactions in the model. @@ -179,11 +295,20 @@ model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) if ras is not None: - Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) + Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)( + cellName, ras_row, model, rxns_ids, output_folder, + save_models, save_models_path, save_models_format + ) for cellName, ras_row in ras.iterrows()) else: bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) newBounds = apply_ras_bounds(bounds, pd.Series([1]*len(rxns_ids), index=rxns_ids)) newBounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) + + # Save model if requested + if save_models: + modified_model = apply_bounds_to_model(model, newBounds) + save_model(modified_model, "model_with_bounds", save_models_path, save_models_format) + pass ############################# main ########################################### @@ -197,7 +322,6 @@ if not os.path.exists('ras_to_bounds'): os.makedirs('ras_to_bounds') - global ARGS ARGS = process_args(args) @@ -236,16 +360,6 @@ ras_combined = ras_combined.div(ras_combined.max(axis=0)) ras_combined.dropna(axis=1, how='all', inplace=True) - - - #model_type :utils.Model = ARGS.model_selector - #if model_type is utils.Model.Custom: - # model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) - #else: - # model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) - - # TODO LOAD MODEL FROM UPLOAD - model = utils.build_cobra_model_from_csv(ARGS.model_upload) validation = utils.validate_model(model) @@ -254,22 +368,15 @@ for key, value in validation.items(): print(f"{key}: {value}") - #if(ARGS.medium_selector == "Custom"): - # medium = read_dataset(ARGS.medium, "medium dataset") - # medium.set_index(medium.columns[0], inplace=True) - # medium = medium.astype(float) - # medium = medium[medium.columns[0]].to_dict() - #else: - # df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) - # ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") - # medium = df_mediums[[ARGS.medium_selector]] - # medium = medium[ARGS.medium_selector].to_dict() - if(ARGS.ras_selector == True): - generate_bounds(model, ras = ras_combined, output_folder=ARGS.output_path) - class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) + generate_bounds(model, ras=ras_combined, output_folder=ARGS.output_path, + save_models=ARGS.save_models, save_models_path=ARGS.save_models_path, + save_models_format=ARGS.save_models_format) + class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False) else: - generate_bounds(model, output_folder=ARGS.output_path) + generate_bounds(model, output_folder=ARGS.output_path, + save_models=ARGS.save_models, save_models_path=ARGS.save_models_path, + save_models_format=ARGS.save_models_format) pass