changeset 411:6b015d3184ab draft

Uploaded
author francesco_lapi
date Mon, 08 Sep 2025 21:07:34 +0000
parents d660c5b03c14
children bdf4630ac1eb
files COBRAxy/custom_data_generator_beta.py COBRAxy/flux_simulation_beta.py COBRAxy/flux_simulation_beta.xml COBRAxy/ras_to_bounds_beta.py COBRAxy/ras_to_bounds_beta.xml COBRAxy/utils/general_utils.py
diffstat 6 files changed, 281 insertions(+), 161 deletions(-) [+]
line wrap: on
line diff
--- a/COBRAxy/custom_data_generator_beta.py	Mon Sep 08 17:33:52 2025 +0000
+++ b/COBRAxy/custom_data_generator_beta.py	Mon Sep 08 21:07:34 2025 +0000
@@ -72,125 +72,7 @@
     raise utils.DataErr(file_path,
         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
 
-################################- DATA GENERATION -################################
-ReactionId = str
-def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
-    """
-    Generates a dictionary mapping reaction ids to rules from the model.
 
-    Args:
-        model : the model to derive data from.
-        asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
-
-    Returns:
-        Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
-        Dict[ReactionId, str] : the generated dictionary of raw rules.
-    """
-    # Is the below approach convoluted? yes
-    # Ok but is it inefficient? probably
-    # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
-    _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule
-    ruleExtractor = (lambda reaction :
-        rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
-
-    return {
-        reaction.id : ruleExtractor(reaction)
-        for reaction in model.reactions
-        if reaction.gene_reaction_rule }
-
-def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
-    """
-    Generates a dictionary mapping reaction ids to reaction formulas from the model.
-
-    Args:
-        model : the model to derive data from.
-        asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
-
-    Returns:
-        Dict[ReactionId, str] : the generated dictionary.
-    """
-
-    unparsedReactions = {
-        reaction.id : reaction.reaction
-        for reaction in model.reactions
-        if reaction.reaction 
-    }
-
-    if not asParsed: return unparsedReactions
-    
-    return reactionUtils.create_reaction_dict(unparsedReactions)
-
-def get_medium(model:cobra.Model) -> pd.DataFrame:
-    trueMedium=[]
-    for r in model.reactions:
-        positiveCoeff=0
-        for m in r.metabolites:
-            if r.get_coefficient(m.id)>0:
-                positiveCoeff=1;
-        if (positiveCoeff==0 and r.lower_bound<0):
-            trueMedium.append(r.id)
-
-    df_medium = pd.DataFrame()
-    df_medium["reaction"] = trueMedium
-    return df_medium
-
-def generate_bounds(model:cobra.Model) -> pd.DataFrame:
-
-    rxns = []
-    for reaction in model.reactions:
-        rxns.append(reaction.id)
-
-    bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
-
-    for reaction in model.reactions:
-        bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
-    return bounds
-
-
-
-def generate_compartments(model: cobra.Model) -> pd.DataFrame:
-    """
-    Generates a DataFrame containing compartment information for each reaction.
-    Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
-    
-    Args:
-        model: the COBRA model to extract compartment data from.
-        
-    Returns:
-        pd.DataFrame: DataFrame with ReactionID and compartment columns
-    """
-    pathway_data = []
-
-    # First pass: determine the maximum number of pathways any reaction has
-    max_pathways = 0
-    reaction_pathways = {}
-
-    for reaction in model.reactions:
-        # Get unique pathways from all metabolites in the reaction
-        if type(reaction.annotation['pathways']) == list:
-            reaction_pathways[reaction.id] = reaction.annotation['pathways']
-            max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
-        else:
-            reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
-
-    # Create column names for pathways
-    pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
-
-    # Second pass: create the data
-    for reaction_id, pathways in reaction_pathways.items():
-        row = {"ReactionID": reaction_id}
-        
-        # Fill pathway columns
-        for i in range(max_pathways):
-            col_name = pathway_columns[i]
-            if i < len(pathways):
-                row[col_name] = pathways[i]
-            else:
-                row[col_name] = None  # or "" if you prefer empty strings
-
-        pathway_data.append(row)
-
-    return pd.DataFrame(pathway_data)
 
 
 ###############################- FILE SAVING -################################
@@ -296,12 +178,12 @@
         model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC "))
 
     # generate data
-    rules = generate_rules(model, asParsed = False)
-    reactions = generate_reactions(model, asParsed = False)
-    bounds = generate_bounds(model)
-    medium = get_medium(model)
+    rules = utils.generate_rules(model, asParsed = False)
+    reactions = utils.generate_reactions(model, asParsed = False)
+    bounds = utils.generate_bounds(model)
+    medium = utils.get_medium(model)
     if ARGS.name == "ENGRO2":
-        compartments = generate_compartments(model)
+        compartments = utils.generate_compartments(model)
 
     df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
     df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
@@ -324,10 +206,8 @@
 
     #merged.to_csv(out_file, sep = '\t', index = False)
 
-
     ####
 
-
     if not ARGS.out_tabular:
         raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
     save_as_tabular_df(merged, ARGS.out_tabular)
--- a/COBRAxy/flux_simulation_beta.py	Mon Sep 08 17:33:52 2025 +0000
+++ b/COBRAxy/flux_simulation_beta.py	Mon Sep 08 21:07:34 2025 +0000
@@ -9,6 +9,7 @@
 from joblib import Parallel, delayed, cpu_count
 from cobra.sampling import OptGPSampler
 import sys
+import utils.general_utils as utils
 
 
 ################################# process args ###############################
--- a/COBRAxy/flux_simulation_beta.xml	Mon Sep 08 17:33:52 2025 +0000
+++ b/COBRAxy/flux_simulation_beta.xml	Mon Sep 08 21:07:34 2025 +0000
@@ -42,7 +42,6 @@
          <param name="model_upload" argument="--model_upload" type="data" format="csv,tsv,tabular" 
             label="Model rules file:" help="Upload a CSV/TSV file containing reaction rules generated by the Model Initialization tool." />
 
-
         <param name="inputs" argument="--inputs" multiple="true" type="data" format="tabular, csv, tsv" label="Bound(s):" />
         
         
--- a/COBRAxy/ras_to_bounds_beta.py	Mon Sep 08 17:33:52 2025 +0000
+++ b/COBRAxy/ras_to_bounds_beta.py	Mon Sep 08 21:07:34 2025 +0000
@@ -30,9 +30,6 @@
     
     parser.add_argument("-mo", "--model_upload", type = str,
         help = "path to input file with custom rules, if provided")
-    
-    parser.add_argument("-meo", "--medium", type = str,
-        help = "path to input file with custom medium, if provided")
 
     parser.add_argument('-ol', '--out_log', 
                         help = "Output log")
@@ -65,6 +62,21 @@
         default='ras_to_bounds/',
         help = 'output path for maps')
     
+    parser.add_argument('-sm', '--save_models',
+                    type=utils.Bool("save_models"),
+                    default=False,
+                    help = 'whether to save models with applied bounds')
+    
+    parser.add_argument('-smp', '--save_models_path',
+                        type = str,
+                        default='saved_models/',
+                        help = 'output path for saved models')
+    
+    parser.add_argument('-smf', '--save_models_format',
+                        type = str,
+                        default='csv',
+                        help = 'format for saved models (csv, xml, json, mat, yaml, tabular)')
+
     
     ARGS = parser.parse_args(args)
     return ARGS
@@ -80,8 +92,9 @@
     Returns:
       None
     """
-    with open(ARGS.out_log, 'a') as log:
-        log.write(s + "\n\n")
+    if ARGS.out_log:
+        with open(ARGS.out_log, 'a') as log:
+            log.write(s + "\n\n")
     print(s)
 
 ############################ dataset input ####################################
@@ -136,7 +149,99 @@
                 new_bounds.loc[reaction, "upper_bound"] = valMax
     return new_bounds
 
-def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder):
+def save_model(model, filename, output_folder, file_format='csv'):
+    """
+    Save a COBRA model to file in the specified format.
+    
+    Args:
+        model (cobra.Model): The model to save.
+        filename (str): Base filename (without extension).
+        output_folder (str): Output directory.
+        file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv').
+    
+    Returns:
+        None
+    """
+    if not os.path.exists(output_folder):
+        os.makedirs(output_folder)
+    
+    try:
+        if file_format == 'tabular' or file_format == 'csv':
+            # Special handling for tabular format using utils functions
+            filepath = os.path.join(output_folder, f"{filename}.csv")
+            
+            rules = utils.generate_rules(model, asParsed = False)
+            reactions = utils.generate_reactions(model, asParsed = False)
+            bounds = utils.generate_bounds(model)
+            medium = utils.get_medium(model)
+            
+            try:
+                compartments = utils.generate_compartments(model)
+            except:
+                compartments = None
+
+            df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
+            df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
+            df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
+            df_medium = medium.rename(columns = {"reaction": "ReactionID"})
+            df_medium["InMedium"] = True # flag per indicare la presenza nel medium
+
+            merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
+            merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
+            
+            # Add compartments only if they exist and model name is ENGRO2
+            if compartments is not None and hasattr(ARGS, 'name') and ARGS.name == "ENGRO2": 
+                merged = merged.merge(compartments, on = "ReactionID", how = "outer")
+            
+            merged = merged.merge(df_medium, on = "ReactionID", how = "left")
+            merged["InMedium"] = merged["InMedium"].fillna(False)
+            merged = merged.sort_values(by = "InMedium", ascending = False)
+            
+            merged.to_csv(filepath, sep="\t", index=False)
+            
+        else:
+            # Standard COBRA formats
+            filepath = os.path.join(output_folder, f"{filename}.{file_format}")
+            
+            if file_format == 'xml':
+                cobra.io.write_sbml_model(model, filepath)
+            elif file_format == 'json':
+                cobra.io.save_json_model(model, filepath)
+            elif file_format == 'mat':
+                cobra.io.save_matlab_model(model, filepath)
+            elif file_format == 'yaml':
+                cobra.io.save_yaml_model(model, filepath)
+            else:
+                raise ValueError(f"Unsupported format: {file_format}")
+        
+        print(f"Model saved: {filepath}")
+        
+    except Exception as e:
+        warning(f"Error saving model {filename}: {str(e)}")
+
+def apply_bounds_to_model(model, bounds):
+    """
+    Apply bounds from a DataFrame to a COBRA model.
+    
+    Args:
+        model (cobra.Model): The metabolic model to modify.
+        bounds (pd.DataFrame): DataFrame with reaction bounds.
+    
+    Returns:
+        cobra.Model: Modified model with new bounds.
+    """
+    model_copy = model.copy()
+    for reaction_id in bounds.index:
+        try:
+            reaction = model_copy.reactions.get_by_id(reaction_id)
+            reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"]
+            reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"]
+        except KeyError:
+            # Reaction not found in model, skip
+            continue
+    return model_copy
+
+def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'):
     """
     Process a single RAS cell, apply bounds, and save the bounds to a CSV file.
 
@@ -146,6 +251,9 @@
         model (cobra.Model): The metabolic model to be modified.
         rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
         output_folder (str): Folder path where the output CSV file will be saved.
+        save_models (bool): Whether to save models with applied bounds.
+        save_models_path (str): Path where to save models.
+        save_models_format (str): Format for saved models.
     
     Returns:
         None
@@ -153,17 +261,25 @@
     bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
     new_bounds = apply_ras_bounds(bounds, ras_row)
     new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
+    
+    # Save model if requested
+    if save_models:
+        modified_model = apply_bounds_to_model(model, new_bounds)
+        save_model(modified_model, cellName, save_models_path, save_models_format)
+    
     pass
 
-def generate_bounds(model: cobra.Model, ras=None, output_folder='output/') -> pd.DataFrame:
+def generate_bounds(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame:
     """
     Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
     
     Args:
         model (cobra.Model): The metabolic model for which bounds will be generated.
-        medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions.
         ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None.
         output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'.
+        save_models (bool): Whether to save models with applied bounds.
+        save_models_path (str): Path where to save models.
+        save_models_format (str): Format for saved models.
 
     Returns:
         pd.DataFrame: DataFrame containing the bounds of reactions in the model.
@@ -179,11 +295,20 @@
         model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"])
 
     if ras is not None:
-        Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows())
+        Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(
+            cellName, ras_row, model, rxns_ids, output_folder, 
+            save_models, save_models_path, save_models_format
+        ) for cellName, ras_row in ras.iterrows())
     else:
         bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
         newBounds = apply_ras_bounds(bounds, pd.Series([1]*len(rxns_ids), index=rxns_ids))
         newBounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True)
+
+        # Save model if requested
+        if save_models:
+            modified_model = apply_bounds_to_model(model, newBounds)
+            save_model(modified_model, "model_with_bounds", save_models_path, save_models_format)
+    
     pass
 
 ############################# main ###########################################
@@ -197,7 +322,6 @@
     if not os.path.exists('ras_to_bounds'):
         os.makedirs('ras_to_bounds')
 
-
     global ARGS
     ARGS = process_args(args)
 
@@ -236,16 +360,6 @@
         ras_combined = ras_combined.div(ras_combined.max(axis=0))
         ras_combined.dropna(axis=1, how='all', inplace=True)
 
-
-    
-    #model_type :utils.Model = ARGS.model_selector
-    #if model_type is utils.Model.Custom:
-    #    model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext)
-    #else:
-    #    model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir)
-
-    # TODO LOAD MODEL FROM UPLOAD
-
     model = utils.build_cobra_model_from_csv(ARGS.model_upload)
 
     validation = utils.validate_model(model)
@@ -254,22 +368,15 @@
     for key, value in validation.items():
         print(f"{key}: {value}")
 
-    #if(ARGS.medium_selector == "Custom"):
-    #    medium = read_dataset(ARGS.medium, "medium dataset")
-    #    medium.set_index(medium.columns[0], inplace=True)
-    #    medium = medium.astype(float)
-    #    medium = medium[medium.columns[0]].to_dict()
-    #else:
-    #    df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
-    #    ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
-    #    medium = df_mediums[[ARGS.medium_selector]]
-    #    medium = medium[ARGS.medium_selector].to_dict()
-
     if(ARGS.ras_selector == True):
-        generate_bounds(model, ras = ras_combined, output_folder=ARGS.output_path)
-        class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False)
+        generate_bounds(model, ras=ras_combined, output_folder=ARGS.output_path,
+                       save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
+                       save_models_format=ARGS.save_models_format)
+        class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False)
     else:
-        generate_bounds(model, output_folder=ARGS.output_path)
+        generate_bounds(model, output_folder=ARGS.output_path,
+                       save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
+                       save_models_format=ARGS.save_models_format)
 
     pass
         
--- a/COBRAxy/ras_to_bounds_beta.xml	Mon Sep 08 17:33:52 2025 +0000
+++ b/COBRAxy/ras_to_bounds_beta.xml	Mon Sep 08 21:07:34 2025 +0000
@@ -26,6 +26,8 @@
                 #set $names = $names + $input_temp.element_identifier + ","
             #end for
         #end if
+        --save_models $save_models
+        --save_models_path saved_models/
         --name "$names"
         --out_log $log
         ]]>
@@ -45,6 +47,11 @@
             </when>
         </conditional>  
 
+        <param name="save_models" argument="--save_models" type="select" label="Save models with applied bounds?">
+            <option value="False" selected="true">No</option>
+            <option value="True">Yes</option>
+        </param>
+
     </inputs>
 
     <outputs>
@@ -53,7 +60,10 @@
         <collection name="ras_to_bounds" type="list" label="Ras to Bounds">
             <discover_datasets name = "collection" pattern="__name_and_ext__" directory="ras_to_bounds"/>
         </collection>
-
+        <collection name="saved_models" type="list" label="Saved Models (Tabular Format)">
+            <filter>save_models == "True"</filter>
+            <discover_datasets name = "saved_models_collection" pattern="__name_and_ext__" directory="saved_models"/>
+        </collection>
     </outputs>
 
     <help>
--- a/COBRAxy/utils/general_utils.py	Mon Sep 08 17:33:52 2025 +0000
+++ b/COBRAxy/utils/general_utils.py	Mon Sep 08 21:07:34 2025 +0000
@@ -17,6 +17,8 @@
 import gzip
 import bz2
 from io import StringIO
+import rule_parsing  as rulesUtils
+import reaction_parsing as reactionUtils
 
 
 
@@ -981,3 +983,124 @@
         validation['status'] = f"Error: {e}"
     
     return validation
+
+
+################################- DATA GENERATION -################################
+ReactionId = str
+def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
+    """
+    Generates a dictionary mapping reaction ids to rules from the model.
+
+    Args:
+        model : the model to derive data from.
+        asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
+
+    Returns:
+        Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
+        Dict[ReactionId, str] : the generated dictionary of raw rules.
+    """
+    # Is the below approach convoluted? yes
+    # Ok but is it inefficient? probably
+    # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
+    _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule
+    ruleExtractor = (lambda reaction :
+        rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
+
+    return {
+        reaction.id : ruleExtractor(reaction)
+        for reaction in model.reactions
+        if reaction.gene_reaction_rule }
+
+def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
+    """
+    Generates a dictionary mapping reaction ids to reaction formulas from the model.
+
+    Args:
+        model : the model to derive data from.
+        asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
+
+    Returns:
+        Dict[ReactionId, str] : the generated dictionary.
+    """
+
+    unparsedReactions = {
+        reaction.id : reaction.reaction
+        for reaction in model.reactions
+        if reaction.reaction 
+    }
+
+    if not asParsed: return unparsedReactions
+    
+    return reactionUtils.create_reaction_dict(unparsedReactions)
+
+def get_medium(model:cobra.Model) -> pd.DataFrame:
+    trueMedium=[]
+    for r in model.reactions:
+        positiveCoeff=0
+        for m in r.metabolites:
+            if r.get_coefficient(m.id)>0:
+                positiveCoeff=1;
+        if (positiveCoeff==0 and r.lower_bound<0):
+            trueMedium.append(r.id)
+
+    df_medium = pd.DataFrame()
+    df_medium["reaction"] = trueMedium
+    return df_medium
+
+def generate_bounds(model:cobra.Model) -> pd.DataFrame:
+
+    rxns = []
+    for reaction in model.reactions:
+        rxns.append(reaction.id)
+
+    bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
+
+    for reaction in model.reactions:
+        bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
+    return bounds
+
+
+
+def generate_compartments(model: cobra.Model) -> pd.DataFrame:
+    """
+    Generates a DataFrame containing compartment information for each reaction.
+    Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
+    
+    Args:
+        model: the COBRA model to extract compartment data from.
+        
+    Returns:
+        pd.DataFrame: DataFrame with ReactionID and compartment columns
+    """
+    pathway_data = []
+
+    # First pass: determine the maximum number of pathways any reaction has
+    max_pathways = 0
+    reaction_pathways = {}
+
+    for reaction in model.reactions:
+        # Get unique pathways from all metabolites in the reaction
+        if type(reaction.annotation['pathways']) == list:
+            reaction_pathways[reaction.id] = reaction.annotation['pathways']
+            max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
+        else:
+            reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
+
+    # Create column names for pathways
+    pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
+
+    # Second pass: create the data
+    for reaction_id, pathways in reaction_pathways.items():
+        row = {"ReactionID": reaction_id}
+        
+        # Fill pathway columns
+        for i in range(max_pathways):
+            col_name = pathway_columns[i]
+            if i < len(pathways):
+                row[col_name] = pathways[i]
+            else:
+                row[col_name] = None  # or "" if you prefer empty strings
+
+        pathway_data.append(row)
+
+    return pd.DataFrame(pathway_data)
\ No newline at end of file