changeset 546:01147e83f43c draft default tip

Uploaded
author luca_milaz
date Mon, 27 Oct 2025 12:33:08 +0000
parents 5a73d813b1db
children
files COBRAxy/src/flux_simulation.py
diffstat 1 files changed, 645 insertions(+), 641 deletions(-) [+]
line wrap: on
line diff
--- a/COBRAxy/src/flux_simulation.py	Mon Oct 27 12:32:48 2025 +0000
+++ b/COBRAxy/src/flux_simulation.py	Mon Oct 27 12:33:08 2025 +0000
@@ -1,642 +1,646 @@
-"""
-Flux sampling and analysis utilities for COBRA models.
-
-This script supports two modes:
-- Mode 1 (model_and_bounds=True): load a base model and apply bounds from
-    separate files before sampling.
-- Mode 2 (model_and_bounds=False): load complete models and sample directly.
-
-Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples
-and optional analyses (pFBA, FVA, sensitivity), saved as tabular files.
-"""
-
-import argparse
-from typing import List
-import os
-import pandas as pd
-import numpy as np
-import cobra
-from joblib import Parallel, delayed, cpu_count
-from cobra.sampling import OptGPSampler
-import sys
-
-try:
-    from .utils import general_utils as utils
-    from .utils import CBS_backend
-    from .utils import model_utils
-except:
-    import utils.general_utils as utils
-    import utils.CBS_backend as CBS_backend
-    import utils.model_utils as model_utils
-
-
-################################# process args ###############################
-def process_args(args: List[str] = None) -> argparse.Namespace:
-    """
-    Processes command-line arguments.
-    
-    Args:
-        args (list): List of command-line arguments.
-    
-    Returns:
-        Namespace: An object containing parsed arguments.
-    """
-    parser = argparse.ArgumentParser(usage='%(prog)s [options]',
-                                     description='process some value\'s')
-    
-    parser.add_argument("-mo", "--model_upload", type=str,
-        help="path to input file with custom rules, if provided")
-    
-    parser.add_argument("-mab", "--model_and_bounds", type=str,
-        choices=['True', 'False'],
-        required=True,
-        help="upload mode: True for model+bounds, False for complete models")
-    
-    parser.add_argument("-ens", "--sampling_enabled", type=str,
-        choices=['true', 'false'],
-        required=True,
-        help="enable sampling: 'true' for sampling, 'false' for no sampling")
-    
-    parser.add_argument('-ol', '--out_log',
-                        help="Output log")
-    
-    parser.add_argument('-td', '--tool_dir',
-                        type=str,
-                        default=os.path.dirname(os.path.abspath(__file__)),
-                        help='your tool directory (default: auto-detected package location)')
-    
-    parser.add_argument('-in', '--input',
-                        required=True,
-                        type=str,
-                        help='input bounds files or complete model files')
-    
-    parser.add_argument('-ni', '--name',
-                        required=True,
-                        type=str,
-                        help='cell names')
-    
-    parser.add_argument('-a', '--algorithm',
-                        type=str,
-                        choices=['OPTGP', 'CBS'],
-                        required=True,
-                        help='choose sampling algorithm')
-    
-    parser.add_argument('-th', '--thinning',
-                        type=int,
-                        default=100,
-                        required=True,
-                        help='choose thinning')
-    
-    parser.add_argument('-ns', '--n_samples',
-                        type=int,
-                        required=True,
-                        help='choose how many samples (set to 0 for optimization only)')
-    
-    parser.add_argument('-sd', '--seed',
-                        type=int,
-                        required=True,
-                        help='seed for random number generation')
-    
-    parser.add_argument('-nb', '--n_batches',
-                        type=int,
-                        required=True,
-                        help='choose how many batches')
-    
-    parser.add_argument('-opt', '--perc_opt',
-                        type=float,
-                        default=0.9,
-                        required=False,
-                        help='choose the fraction of optimality for FVA (0-1)')
-    
-    parser.add_argument('-ot', '--output_type',
-                        type=str,
-                        required=True,
-                        help='output type for sampling results')
-    
-    parser.add_argument('-ota', '--output_type_analysis',
-                        type=str,
-                        required=False,
-                        help='output type analysis (optimization methods)')
-
-    parser.add_argument('-idop', '--output_path',
-                        type=str,
-                        default='flux_simulation/',
-                        help = 'output path for fluxes')
-    
-    parser.add_argument('-otm', '--out_mean',
-                    type = str,
-                    required=False,
-                    help = 'output of mean of fluxes')
-    
-    parser.add_argument('-otmd', '--out_median',
-                    type = str,
-                    required=False,
-                    help = 'output of median of fluxes')
-
-    parser.add_argument('-otq', '--out_quantiles',
-                    type = str,
-                    required=False,
-                    help = 'output of quantiles of fluxes')
-    
-    parser.add_argument('-otfva', '--out_fva',
-                    type = str, 
-                    required=False,
-                    help = 'output of FVA results')
-    parser.add_argument('-otp', '--out_pfba',
-                    type = str,
-                    required=False,
-                    help = 'output of pFBA results')
-    parser.add_argument('-ots', '--out_sensitivity',
-                    type = str,
-                    required=False,
-                    help = 'output of sensitivity results')
-    ARGS = parser.parse_args(args)
-    return ARGS
-########################### warning ###########################################
-def warning(s :str) -> None:
-    """
-    Log a warning message to an output log file and print it to the console.
-
-    Args:
-        s (str): The warning message to be logged and printed.
-    
-    Returns:
-      None
-    """
-    with open(ARGS.out_log, 'a') as log:
-        log.write(s + "\n\n")
-    print(s)
-
-
-def write_to_file(dataset: pd.DataFrame, path: str, keep_index:bool=False, name:str=None)->None:
-    """
-    Write a DataFrame to a TSV file under path with a given base name.
-
-    Args:
-        dataset: The DataFrame to write.
-        name: Base file name (without extension). If None, 'path' is treated as the full file path.
-        path: Directory path where the file will be saved.
-        keep_index: Whether to keep the DataFrame index in the file.
-
-    Returns:
-        None
-    """
-    dataset.index.name = 'Reactions'
-    if name:
-        dataset.to_csv(os.path.join(path, name + ".csv"), sep = '\t', index = keep_index)
-    else:
-        dataset.to_csv(path, sep = '\t', index = keep_index)
-
-############################ dataset input ####################################
-def read_dataset(data :str, name :str) -> pd.DataFrame:
-    """
-    Read a dataset from a CSV file and return it as a pandas DataFrame.
-
-    Args:
-        data (str): Path to the CSV file containing the dataset.
-        name (str): Name of the dataset, used in error messages.
-
-    Returns:
-        pandas.DataFrame: DataFrame containing the dataset.
-
-    Raises:
-        pd.errors.EmptyDataError: If the CSV file is empty.
-        sys.exit: If the CSV file has the wrong format, the execution is aborted.
-    """
-    try:
-        dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python')
-    except pd.errors.EmptyDataError:
-        sys.exit('Execution aborted: wrong format of ' + name + '\n')
-    if len(dataset.columns) < 2:
-        sys.exit('Execution aborted: wrong format of ' + name + '\n')
-    return dataset
-
-
-
-def OPTGP_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, thinning: int = 100, n_batches: int = 1, seed: int = 0) -> None:
-    """
-    Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files.
-    
-    Args:
-        model (cobra.Model): The COBRA model to sample from.
-        model_name (str): The name of the model, used in naming output files.
-        n_samples (int, optional): Number of samples per batch. Default is 1000.
-        thinning (int, optional): Thinning parameter for the sampler. Default is 100.
-        n_batches (int, optional): Number of batches to run. Default is 1.
-        seed (int, optional): Random seed for reproducibility. Default is 0.
-        
-    Returns:
-        None
-    """
-    import numpy as np
-    
-    # Get reaction IDs for consistent column ordering
-    reaction_ids = [rxn.id for rxn in model.reactions]
-    
-    # Sample and save each batch as numpy file
-    for i in range(n_batches):
-        optgp = OptGPSampler(model, thinning, seed)
-        samples = optgp.sample(n_samples)
-        
-        # Save as numpy array (more memory efficient)
-        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
-        np.save(batch_filename, samples.to_numpy())
-        
-        seed += 1
-    
-    # Merge all batches into a single DataFrame
-    all_samples = []
-    
-    for i in range(n_batches):
-        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
-        batch_data = np.load(batch_filename, allow_pickle=True)
-        all_samples.append(batch_data)
-    
-    # Concatenate all batches
-    samplesTotal_array = np.vstack(all_samples)
-    
-    # Convert back to DataFrame with proper column names
-    samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids)
-    
-    # Save the final merged result as CSV
-    write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name)
-    
-    # Clean up temporary numpy files
-    for i in range(n_batches):
-        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
-        if os.path.exists(batch_filename):
-            os.remove(batch_filename)
-
-
-def CBS_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, n_batches: int = 1, seed: int = 0) -> None:
-    """
-    Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files.
-    
-    Args:
-        model (cobra.Model): The COBRA model to sample from.
-        model_name (str): The name of the model, used in naming output files.
-        n_samples (int, optional): Number of samples per batch. Default is 1000.
-        n_batches (int, optional): Number of batches to run. Default is 1.
-        seed (int, optional): Random seed for reproducibility. Default is 0.
-        
-    Returns:
-        None
-    """
-    import numpy as np
-    
-    # Get reaction IDs for consistent column ordering
-    reaction_ids = [reaction.id for reaction in model.reactions]
-    
-    # Perform FVA analysis once for all batches
-    df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0).round(6)
-    
-    # Generate random objective functions for all samples across all batches
-    df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples * n_batches, df_FVA, seed=seed)
-    
-    # Sample and save each batch as numpy file
-    for i in range(n_batches):
-        samples = pd.DataFrame(columns=reaction_ids, index=range(n_samples))
-        
-        try:
-            CBS_backend.randomObjectiveFunctionSampling(
-                model, 
-                n_samples, 
-                df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], 
-                samples
-            )
-        except Exception as e:
-            utils.logWarning(
-                f"Warning: GLPK solver has failed for {model_name}. Trying with COBRA interface. Error: {str(e)}",
-                ARGS.out_log
-            )
-            CBS_backend.randomObjectiveFunctionSampling_cobrapy(
-                model, 
-                n_samples, 
-                df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples],
-                samples
-            )
-        
-        # Save as numpy array (more memory efficient)
-        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
-        utils.logWarning(batch_filename, ARGS.out_log)
-        np.save(batch_filename, samples.to_numpy())
-    
-    # Merge all batches into a single DataFrame
-    all_samples = []
-    
-    for i in range(n_batches):
-        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
-        batch_data = np.load(batch_filename, allow_pickle=True)
-        all_samples.append(batch_data)
-    
-    # Concatenate all batches
-    samplesTotal_array = np.vstack(all_samples)
-    
-    # Convert back to DataFrame with proper column namesq
-    samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids)
-    
-    # Save the final merged result as CSV
-    write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name)
-    
-    # Clean up temporary numpy files
-    for i in range(n_batches):
-        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
-        if os.path.exists(batch_filename):
-            os.remove(batch_filename)
-
-
-
-def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]:
-    """
-    MODE 1: Prepares the model with bounds from separate bounds file and performs sampling.
-
-    Args:
-        model_input_original (cobra.Model): The original COBRA model.
-        bounds_path (str): Path to the CSV file containing the bounds dataset.
-        cell_name (str): Name of the cell, used to generate filenames for output.
-
-    Returns:
-        List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
-    """
-
-    model_input = model_input_original.copy()
-    bounds_df = read_dataset(bounds_path, "bounds dataset")
-    
-    # Apply bounds to model
-    for rxn_index, row in bounds_df.iterrows():
-        try:
-            model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound
-            model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound
-        except KeyError:
-            warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.")
-    
-    return perform_sampling_and_analysis(model_input, cell_name)
-
-
-def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]:
-    """
-    Common function to perform sampling and analysis on a prepared model.
-
-    Args:
-        model_input (cobra.Model): The prepared COBRA model with bounds applied.
-        cell_name (str): Name of the cell, used to generate filenames for output.
-
-    Returns:
-        List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
-    """
-
-    returnList = []
-
-    if ARGS.sampling_enabled == "true":
-    
-        if ARGS.algorithm == 'OPTGP':
-            OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed)
-        elif ARGS.algorithm == 'CBS':
-            CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed)
-
-        df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types)
-
-        if("fluxes" not in ARGS.output_types):
-            os.remove(ARGS.output_path + "/" + cell_name + '.csv')
-
-        returnList = [df_mean, df_median, df_quantiles]
-
-    df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis)
-
-    if("pFBA" in ARGS.output_type_analysis):
-        returnList.append(df_pFBA)
-    if("FVA" in ARGS.output_type_analysis):
-        returnList.append(df_FVA)
-    if("sensitivity" in ARGS.output_type_analysis):
-        returnList.append(df_sensitivity)
-
-    return returnList
-
-def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]:
-    """
-    Computes statistics (mean, median, quantiles) for the fluxes.
-
-    Args:
-        model_name (str): Name of the model, used in filename for input.
-        output_types (List[str]): Types of statistics to compute (mean, median, quantiles).
-
-    Returns:
-        List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics.
-    """
-
-    df_mean = pd.DataFrame()
-    df_median= pd.DataFrame()
-    df_quantiles= pd.DataFrame()
-
-    df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T
-    df_samples = df_samples.round(8)
-
-    for output_type in output_types:
-        if(output_type == "mean"):
-            df_mean = df_samples.mean()
-            df_mean = df_mean.to_frame().T
-            df_mean = df_mean.reset_index(drop=True)
-            df_mean.index = [model_name]
-        elif(output_type == "median"):
-            df_median = df_samples.median()
-            df_median = df_median.to_frame().T
-            df_median = df_median.reset_index(drop=True)
-            df_median.index = [model_name]
-        elif(output_type == "quantiles"):
-            newRow = []
-            cols = []
-            for rxn in df_samples.columns:
-                quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75])
-                newRow.append(quantiles[0.25])
-                cols.append(rxn + "_q1")
-                newRow.append(quantiles[0.5])
-                cols.append(rxn + "_q2")
-                newRow.append(quantiles[0.75])
-                cols.append(rxn + "_q3")
-            df_quantiles = pd.DataFrame(columns=cols)
-            df_quantiles.loc[0] = newRow
-            df_quantiles = df_quantiles.reset_index(drop=True)
-            df_quantiles.index = [model_name]
-    
-    return df_mean, df_median, df_quantiles
-
-def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]:
-    """
-    Performs flux analysis including pFBA, FVA, and sensitivity analysis. The objective function
-    is assumed to be already set in the model.
-
-    Args:
-        model (cobra.Model): The COBRA model to analyze.
-        model_name (str): Name of the model, used in filenames for output.
-        output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity).
-
-    Returns:
-        List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results.
-    """
-
-    df_pFBA = pd.DataFrame()
-    df_FVA= pd.DataFrame()
-    df_sensitivity= pd.DataFrame()
-
-    for output_type in output_types:
-        if(output_type == "pFBA"):
-            solution = cobra.flux_analysis.pfba(model)
-            fluxes = solution.fluxes
-            df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist()
-            df_pFBA = df_pFBA.reset_index(drop=True)
-            df_pFBA.index = [model_name]
-            df_pFBA = df_pFBA.astype(float).round(6)
-        elif(output_type == "FVA"):
-            fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8)
-            columns = []
-            for rxn in fva.index.to_list():
-                columns.append(rxn + "_min")
-                columns.append(rxn + "_max")
-            df_FVA= pd.DataFrame(columns = columns)
-            for index_rxn, row in fva.iterrows():
-                df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"]
-                df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"]
-            df_FVA = df_FVA.reset_index(drop=True)
-            df_FVA.index = [model_name]
-            df_FVA = df_FVA.astype(float).round(6)
-        elif(output_type == "sensitivity"):
-            solution_original = model.optimize().objective_value
-            reactions = model.reactions
-            single = cobra.flux_analysis.single_reaction_deletion(model)
-            newRow = []
-            df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name])
-            for rxn in reactions:
-                newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original)
-            df_sensitivity.loc[model_name] = newRow
-            df_sensitivity = df_sensitivity.astype(float).round(6)
-    return df_pFBA, df_FVA, df_sensitivity
-
-############################# main ###########################################
-def main(args: List[str] = None) -> None:
-    """
-    Initialize and run sampling/analysis based on the frontend input arguments.
-
-    Returns:
-        None
-    """
-
-    num_processors = max(1, cpu_count() - 1)
-
-    global ARGS
-    ARGS = process_args(args)
-
-    if not os.path.exists('flux_simulation'):
-        os.makedirs('flux_simulation')
-
-    # --- Normalize inputs (the tool may pass comma-separated --input and either --name or --names) ---
-    ARGS.input_files = ARGS.input.split(",") if ARGS.input else []
-    ARGS.file_names = ARGS.name.split(",")
-    # output types (required) -> list
-    ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else []
-    # optional analysis output types -> list or empty
-    ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else []
-
-    # Determine if sampling should be performed
-    if ARGS.sampling_enabled == "true":
-        perform_sampling = True
-    else:
-        perform_sampling = False
-
-    print("=== INPUT FILES ===")
-    print(f"{ARGS.input_files}")
-    print(f"{ARGS.file_names}")
-    print(f"{ARGS.output_type}")
-    print(f"{ARGS.output_types}")
-    print(f"{ARGS.output_type_analysis}")
-    print(f"Sampling enabled: {perform_sampling} (n_samples: {ARGS.n_samples})")
-    
-    if ARGS.model_and_bounds == "True":
-        # MODE 1: Model + bounds (separate files)
-        print("=== MODE 1: Model + Bounds (separate files) ===")
-        
-        # Load base model
-        if not ARGS.model_upload:
-            sys.exit("Error: model_upload is required for Mode 1")
-
-        base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload)
-
-        validation = model_utils.validate_model(base_model)
-
-        print("\n=== MODEL VALIDATION ===")
-        for key, value in validation.items():
-            print(f"{key}: {value}")
-
-        # Set solver verbosity to 1 to see warning and error messages only.
-        base_model.solver.configuration.verbosity = 1
-
-        # Process each bounds file with the base model
-        results = Parallel(n_jobs=num_processors)(
-            delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) 
-            for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
-        )
-
-    else:
-        # MODE 2: Multiple complete models
-        print("=== MODE 2: Multiple complete models ===")
-        
-        # Process each complete model file
-        results = Parallel(n_jobs=num_processors)(
-            delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) 
-            for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
-        )
-
-    # Handle sampling outputs (only if sampling was performed)
-    if perform_sampling:
-        print("=== PROCESSING SAMPLING RESULTS ===")
-        
-        all_mean = pd.concat([result[0] for result in results], ignore_index=False)
-        all_median = pd.concat([result[1] for result in results], ignore_index=False)
-        all_quantiles = pd.concat([result[2] for result in results], ignore_index=False)
-
-        if "mean" in ARGS.output_types:
-            all_mean = all_mean.fillna(0.0)
-            all_mean = all_mean.sort_index()
-            write_to_file(all_mean.T, ARGS.out_mean, True)
-
-        if "median" in ARGS.output_types:
-            all_median = all_median.fillna(0.0)
-            all_median = all_median.sort_index()
-            write_to_file(all_median.T, ARGS.out_median, True)
-        
-        if "quantiles" in ARGS.output_types:
-            all_quantiles = all_quantiles.fillna(0.0)
-            all_quantiles = all_quantiles.sort_index()
-            write_to_file(all_quantiles.T, ARGS.out_quantiles, True)
-    else:
-        print("=== SAMPLING SKIPPED (n_samples = 0 or sampling disabled) ===")
-
-    # Handle optimization analysis outputs (always available)
-    print("=== PROCESSING OPTIMIZATION RESULTS ===")
-    
-    # Determine the starting index for optimization results
-    # If sampling was performed, optimization results start at index 3
-    # If no sampling, optimization results start at index 0
-    index_result = 3 if perform_sampling else 0
-    
-    if "pFBA" in ARGS.output_type_analysis:
-        all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False)
-        all_pFBA = all_pFBA.sort_index()
-        write_to_file(all_pFBA.T, ARGS.out_pfba, True)
-        index_result += 1
-        
-    if "FVA" in ARGS.output_type_analysis:
-        all_FVA = pd.concat([result[index_result] for result in results], ignore_index=False)
-        all_FVA = all_FVA.sort_index()
-        write_to_file(all_FVA.T, ARGS.out_fva, True)
-        index_result += 1
-        
-    if "sensitivity" in ARGS.output_type_analysis:
-        all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False)
-        all_sensitivity = all_sensitivity.sort_index()
-        write_to_file(all_sensitivity.T, ARGS.out_sensitivity, True)
-
-    return
-        
-##############################################################################
-if __name__ == "__main__":
+"""
+Flux sampling and analysis utilities for COBRA models.
+
+This script supports two modes:
+- Mode 1 (model_and_bounds=True): load a base model and apply bounds from
+    separate files before sampling.
+- Mode 2 (model_and_bounds=False): load complete models and sample directly.
+
+Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples
+and optional analyses (pFBA, FVA, sensitivity), saved as tabular files.
+"""
+
+import argparse
+from typing import List
+import os
+import pandas as pd
+import numpy as np
+import cobra
+from joblib import Parallel, delayed, cpu_count
+from cobra.sampling import OptGPSampler
+import sys
+
+try:
+    from .utils import general_utils as utils
+    from .utils import CBS_backend
+    from .utils import model_utils
+except:
+    import utils.general_utils as utils
+    import utils.CBS_backend as CBS_backend
+    import utils.model_utils as model_utils
+
+
+################################# process args ###############################
+def process_args(args: List[str] = None) -> argparse.Namespace:
+    """
+    Processes command-line arguments.
+    
+    Args:
+        args (list): List of command-line arguments.
+    
+    Returns:
+        Namespace: An object containing parsed arguments.
+    """
+    parser = argparse.ArgumentParser(usage='%(prog)s [options]',
+                                     description='process some value\'s')
+    
+    parser.add_argument("-mo", "--model_upload", type=str,
+        help="path to input file with custom rules, if provided")
+    
+    parser.add_argument("-mab", "--model_and_bounds", type=str,
+        choices=['True', 'False'],
+        required=True,
+        help="upload mode: True for model+bounds, False for complete models")
+    
+    parser.add_argument("-ens", "--sampling_enabled", type=str,
+        choices=['true', 'false'],
+        required=True,
+        help="enable sampling: 'true' for sampling, 'false' for no sampling")
+    
+    parser.add_argument('-ol', '--out_log',
+                        help="Output log")
+    
+    parser.add_argument('-td', '--tool_dir',
+                        type=str,
+                        default=os.path.dirname(os.path.abspath(__file__)),
+                        help='your tool directory (default: auto-detected package location)')
+    
+    parser.add_argument('-inf', '--input_file',
+                        required=True,
+                        type=str,
+                        help='path to file containing list of input bounds files or complete model files (one per line)')
+    
+    parser.add_argument('-nif', '--name_file',
+                        required=True,
+                        type=str,
+                        help='path to file containing list of cell names (one per line)')
+    
+    parser.add_argument('-a', '--algorithm',
+                        type=str,
+                        choices=['OPTGP', 'CBS'],
+                        required=True,
+                        help='choose sampling algorithm')
+    
+    parser.add_argument('-th', '--thinning',
+                        type=int,
+                        default=100,
+                        required=True,
+                        help='choose thinning')
+    
+    parser.add_argument('-ns', '--n_samples',
+                        type=int,
+                        required=True,
+                        help='choose how many samples (set to 0 for optimization only)')
+    
+    parser.add_argument('-sd', '--seed',
+                        type=int,
+                        required=True,
+                        help='seed for random number generation')
+    
+    parser.add_argument('-nb', '--n_batches',
+                        type=int,
+                        required=True,
+                        help='choose how many batches')
+    
+    parser.add_argument('-opt', '--perc_opt',
+                        type=float,
+                        default=0.9,
+                        required=False,
+                        help='choose the fraction of optimality for FVA (0-1)')
+    
+    parser.add_argument('-ot', '--output_type',
+                        type=str,
+                        required=True,
+                        help='output type for sampling results')
+    
+    parser.add_argument('-ota', '--output_type_analysis',
+                        type=str,
+                        required=False,
+                        help='output type analysis (optimization methods)')
+
+    parser.add_argument('-idop', '--output_path',
+                        type=str,
+                        default='flux_simulation/',
+                        help = 'output path for fluxes')
+    
+    parser.add_argument('-otm', '--out_mean',
+                    type = str,
+                    required=False,
+                    help = 'output of mean of fluxes')
+    
+    parser.add_argument('-otmd', '--out_median',
+                    type = str,
+                    required=False,
+                    help = 'output of median of fluxes')
+
+    parser.add_argument('-otq', '--out_quantiles',
+                    type = str,
+                    required=False,
+                    help = 'output of quantiles of fluxes')
+    
+    parser.add_argument('-otfva', '--out_fva',
+                    type = str, 
+                    required=False,
+                    help = 'output of FVA results')
+    parser.add_argument('-otp', '--out_pfba',
+                    type = str,
+                    required=False,
+                    help = 'output of pFBA results')
+    parser.add_argument('-ots', '--out_sensitivity',
+                    type = str,
+                    required=False,
+                    help = 'output of sensitivity results')
+    ARGS = parser.parse_args(args)
+    return ARGS
+########################### warning ###########################################
+def warning(s :str) -> None:
+    """
+    Log a warning message to an output log file and print it to the console.
+
+    Args:
+        s (str): The warning message to be logged and printed.
+    
+    Returns:
+      None
+    """
+    with open(ARGS.out_log, 'a') as log:
+        log.write(s + "\n\n")
+    print(s)
+
+
+def write_to_file(dataset: pd.DataFrame, path: str, keep_index:bool=False, name:str=None)->None:
+    """
+    Write a DataFrame to a TSV file under path with a given base name.
+
+    Args:
+        dataset: The DataFrame to write.
+        name: Base file name (without extension). If None, 'path' is treated as the full file path.
+        path: Directory path where the file will be saved.
+        keep_index: Whether to keep the DataFrame index in the file.
+
+    Returns:
+        None
+    """
+    dataset.index.name = 'Reactions'
+    if name:
+        dataset.to_csv(os.path.join(path, name + ".csv"), sep = '\t', index = keep_index)
+    else:
+        dataset.to_csv(path, sep = '\t', index = keep_index)
+
+############################ dataset input ####################################
+def read_dataset(data :str, name :str) -> pd.DataFrame:
+    """
+    Read a dataset from a CSV file and return it as a pandas DataFrame.
+
+    Args:
+        data (str): Path to the CSV file containing the dataset.
+        name (str): Name of the dataset, used in error messages.
+
+    Returns:
+        pandas.DataFrame: DataFrame containing the dataset.
+
+    Raises:
+        pd.errors.EmptyDataError: If the CSV file is empty.
+        sys.exit: If the CSV file has the wrong format, the execution is aborted.
+    """
+    try:
+        dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python')
+    except pd.errors.EmptyDataError:
+        sys.exit('Execution aborted: wrong format of ' + name + '\n')
+    if len(dataset.columns) < 2:
+        sys.exit('Execution aborted: wrong format of ' + name + '\n')
+    return dataset
+
+
+
+def OPTGP_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, thinning: int = 100, n_batches: int = 1, seed: int = 0) -> None:
+    """
+    Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files.
+    
+    Args:
+        model (cobra.Model): The COBRA model to sample from.
+        model_name (str): The name of the model, used in naming output files.
+        n_samples (int, optional): Number of samples per batch. Default is 1000.
+        thinning (int, optional): Thinning parameter for the sampler. Default is 100.
+        n_batches (int, optional): Number of batches to run. Default is 1.
+        seed (int, optional): Random seed for reproducibility. Default is 0.
+        
+    Returns:
+        None
+    """
+    import numpy as np
+    
+    # Get reaction IDs for consistent column ordering
+    reaction_ids = [rxn.id for rxn in model.reactions]
+    
+    # Sample and save each batch as numpy file
+    for i in range(n_batches):
+        optgp = OptGPSampler(model, thinning, seed)
+        samples = optgp.sample(n_samples)
+        
+        # Save as numpy array (more memory efficient)
+        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
+        np.save(batch_filename, samples.to_numpy())
+        
+        seed += 1
+    
+    # Merge all batches into a single DataFrame
+    all_samples = []
+    
+    for i in range(n_batches):
+        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
+        batch_data = np.load(batch_filename, allow_pickle=True)
+        all_samples.append(batch_data)
+    
+    # Concatenate all batches
+    samplesTotal_array = np.vstack(all_samples)
+    
+    # Convert back to DataFrame with proper column names
+    samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids)
+    
+    # Save the final merged result as CSV
+    write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name)
+    
+    # Clean up temporary numpy files
+    for i in range(n_batches):
+        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
+        if os.path.exists(batch_filename):
+            os.remove(batch_filename)
+
+
+def CBS_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, n_batches: int = 1, seed: int = 0) -> None:
+    """
+    Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files.
+    
+    Args:
+        model (cobra.Model): The COBRA model to sample from.
+        model_name (str): The name of the model, used in naming output files.
+        n_samples (int, optional): Number of samples per batch. Default is 1000.
+        n_batches (int, optional): Number of batches to run. Default is 1.
+        seed (int, optional): Random seed for reproducibility. Default is 0.
+        
+    Returns:
+        None
+    """
+    import numpy as np
+    
+    # Get reaction IDs for consistent column ordering
+    reaction_ids = [reaction.id for reaction in model.reactions]
+    
+    # Perform FVA analysis once for all batches
+    df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0).round(6)
+    
+    # Generate random objective functions for all samples across all batches
+    df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples * n_batches, df_FVA, seed=seed)
+    
+    # Sample and save each batch as numpy file
+    for i in range(n_batches):
+        samples = pd.DataFrame(columns=reaction_ids, index=range(n_samples))
+        
+        try:
+            CBS_backend.randomObjectiveFunctionSampling(
+                model, 
+                n_samples, 
+                df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], 
+                samples
+            )
+        except Exception as e:
+            utils.logWarning(
+                f"Warning: GLPK solver has failed for {model_name}. Trying with COBRA interface. Error: {str(e)}",
+                ARGS.out_log
+            )
+            CBS_backend.randomObjectiveFunctionSampling_cobrapy(
+                model, 
+                n_samples, 
+                df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples],
+                samples
+            )
+        
+        # Save as numpy array (more memory efficient)
+        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
+        utils.logWarning(batch_filename, ARGS.out_log)
+        np.save(batch_filename, samples.to_numpy())
+    
+    # Merge all batches into a single DataFrame
+    all_samples = []
+    
+    for i in range(n_batches):
+        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
+        batch_data = np.load(batch_filename, allow_pickle=True)
+        all_samples.append(batch_data)
+    
+    # Concatenate all batches
+    samplesTotal_array = np.vstack(all_samples)
+    
+    # Convert back to DataFrame with proper column namesq
+    samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids)
+    
+    # Save the final merged result as CSV
+    write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name)
+    
+    # Clean up temporary numpy files
+    for i in range(n_batches):
+        batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
+        if os.path.exists(batch_filename):
+            os.remove(batch_filename)
+
+
+
+def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]:
+    """
+    MODE 1: Prepares the model with bounds from separate bounds file and performs sampling.
+
+    Args:
+        model_input_original (cobra.Model): The original COBRA model.
+        bounds_path (str): Path to the CSV file containing the bounds dataset.
+        cell_name (str): Name of the cell, used to generate filenames for output.
+
+    Returns:
+        List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
+    """
+
+    model_input = model_input_original.copy()
+    bounds_df = read_dataset(bounds_path, "bounds dataset")
+    
+    # Apply bounds to model
+    for rxn_index, row in bounds_df.iterrows():
+        try:
+            model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound
+            model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound
+        except KeyError:
+            warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.")
+    
+    return perform_sampling_and_analysis(model_input, cell_name)
+
+
+def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]:
+    """
+    Common function to perform sampling and analysis on a prepared model.
+
+    Args:
+        model_input (cobra.Model): The prepared COBRA model with bounds applied.
+        cell_name (str): Name of the cell, used to generate filenames for output.
+
+    Returns:
+        List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
+    """
+
+    returnList = []
+
+    if ARGS.sampling_enabled == "true":
+    
+        if ARGS.algorithm == 'OPTGP':
+            OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed)
+        elif ARGS.algorithm == 'CBS':
+            CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed)
+
+        df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types)
+
+        if("fluxes" not in ARGS.output_types):
+            os.remove(ARGS.output_path + "/" + cell_name + '.csv')
+
+        returnList = [df_mean, df_median, df_quantiles]
+
+    df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis)
+
+    if("pFBA" in ARGS.output_type_analysis):
+        returnList.append(df_pFBA)
+    if("FVA" in ARGS.output_type_analysis):
+        returnList.append(df_FVA)
+    if("sensitivity" in ARGS.output_type_analysis):
+        returnList.append(df_sensitivity)
+
+    return returnList
+
+def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]:
+    """
+    Computes statistics (mean, median, quantiles) for the fluxes.
+
+    Args:
+        model_name (str): Name of the model, used in filename for input.
+        output_types (List[str]): Types of statistics to compute (mean, median, quantiles).
+
+    Returns:
+        List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics.
+    """
+
+    df_mean = pd.DataFrame()
+    df_median= pd.DataFrame()
+    df_quantiles= pd.DataFrame()
+
+    df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T
+    df_samples = df_samples.round(8)
+
+    for output_type in output_types:
+        if(output_type == "mean"):
+            df_mean = df_samples.mean()
+            df_mean = df_mean.to_frame().T
+            df_mean = df_mean.reset_index(drop=True)
+            df_mean.index = [model_name]
+        elif(output_type == "median"):
+            df_median = df_samples.median()
+            df_median = df_median.to_frame().T
+            df_median = df_median.reset_index(drop=True)
+            df_median.index = [model_name]
+        elif(output_type == "quantiles"):
+            newRow = []
+            cols = []
+            for rxn in df_samples.columns:
+                quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75])
+                newRow.append(quantiles[0.25])
+                cols.append(rxn + "_q1")
+                newRow.append(quantiles[0.5])
+                cols.append(rxn + "_q2")
+                newRow.append(quantiles[0.75])
+                cols.append(rxn + "_q3")
+            df_quantiles = pd.DataFrame(columns=cols)
+            df_quantiles.loc[0] = newRow
+            df_quantiles = df_quantiles.reset_index(drop=True)
+            df_quantiles.index = [model_name]
+    
+    return df_mean, df_median, df_quantiles
+
+def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]:
+    """
+    Performs flux analysis including pFBA, FVA, and sensitivity analysis. The objective function
+    is assumed to be already set in the model.
+
+    Args:
+        model (cobra.Model): The COBRA model to analyze.
+        model_name (str): Name of the model, used in filenames for output.
+        output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity).
+
+    Returns:
+        List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results.
+    """
+
+    df_pFBA = pd.DataFrame()
+    df_FVA= pd.DataFrame()
+    df_sensitivity= pd.DataFrame()
+
+    for output_type in output_types:
+        if(output_type == "pFBA"):
+            solution = cobra.flux_analysis.pfba(model)
+            fluxes = solution.fluxes
+            df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist()
+            df_pFBA = df_pFBA.reset_index(drop=True)
+            df_pFBA.index = [model_name]
+            df_pFBA = df_pFBA.astype(float).round(6)
+        elif(output_type == "FVA"):
+            fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8)
+            columns = []
+            for rxn in fva.index.to_list():
+                columns.append(rxn + "_min")
+                columns.append(rxn + "_max")
+            df_FVA= pd.DataFrame(columns = columns)
+            for index_rxn, row in fva.iterrows():
+                df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"]
+                df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"]
+            df_FVA = df_FVA.reset_index(drop=True)
+            df_FVA.index = [model_name]
+            df_FVA = df_FVA.astype(float).round(6)
+        elif(output_type == "sensitivity"):
+            solution_original = model.optimize().objective_value
+            reactions = model.reactions
+            single = cobra.flux_analysis.single_reaction_deletion(model)
+            newRow = []
+            df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name])
+            for rxn in reactions:
+                newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original)
+            df_sensitivity.loc[model_name] = newRow
+            df_sensitivity = df_sensitivity.astype(float).round(6)
+    return df_pFBA, df_FVA, df_sensitivity
+
+############################# main ###########################################
+def main(args: List[str] = None) -> None:
+    """
+    Initialize and run sampling/analysis based on the frontend input arguments.
+
+    Returns:
+        None
+    """
+
+    num_processors = max(1, cpu_count() - 1)
+
+    global ARGS
+    ARGS = process_args(args)
+
+    if not os.path.exists('flux_simulation'):
+        os.makedirs('flux_simulation')
+
+    # --- Read input files and names from the provided file paths ---
+    with open(ARGS.input_file, 'r') as f:
+        ARGS.input_files = [line.strip() for line in f if line.strip()]
+    
+    with open(ARGS.name_file, 'r') as f:
+        ARGS.file_names = [line.strip() for line in f if line.strip()]
+    
+    # output types (required) -> list
+    ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else []
+    # optional analysis output types -> list or empty
+    ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else []
+
+    # Determine if sampling should be performed
+    if ARGS.sampling_enabled == "true":
+        perform_sampling = True
+    else:
+        perform_sampling = False
+
+    print("=== INPUT FILES ===")
+    print(f"{ARGS.input_files}")
+    print(f"{ARGS.file_names}")
+    print(f"{ARGS.output_type}")
+    print(f"{ARGS.output_types}")
+    print(f"{ARGS.output_type_analysis}")
+    print(f"Sampling enabled: {perform_sampling} (n_samples: {ARGS.n_samples})")
+    
+    if ARGS.model_and_bounds == "True":
+        # MODE 1: Model + bounds (separate files)
+        print("=== MODE 1: Model + Bounds (separate files) ===")
+        
+        # Load base model
+        if not ARGS.model_upload:
+            sys.exit("Error: model_upload is required for Mode 1")
+
+        base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload)
+
+        validation = model_utils.validate_model(base_model)
+
+        print("\n=== MODEL VALIDATION ===")
+        for key, value in validation.items():
+            print(f"{key}: {value}")
+
+        # Set solver verbosity to 1 to see warning and error messages only.
+        base_model.solver.configuration.verbosity = 1
+
+        # Process each bounds file with the base model
+        results = Parallel(n_jobs=num_processors)(
+            delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) 
+            for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
+        )
+
+    else:
+        # MODE 2: Multiple complete models
+        print("=== MODE 2: Multiple complete models ===")
+        
+        # Process each complete model file
+        results = Parallel(n_jobs=num_processors)(
+            delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) 
+            for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
+        )
+
+    # Handle sampling outputs (only if sampling was performed)
+    if perform_sampling:
+        print("=== PROCESSING SAMPLING RESULTS ===")
+        
+        all_mean = pd.concat([result[0] for result in results], ignore_index=False)
+        all_median = pd.concat([result[1] for result in results], ignore_index=False)
+        all_quantiles = pd.concat([result[2] for result in results], ignore_index=False)
+
+        if "mean" in ARGS.output_types:
+            all_mean = all_mean.fillna(0.0)
+            all_mean = all_mean.sort_index()
+            write_to_file(all_mean.T, ARGS.out_mean, True)
+
+        if "median" in ARGS.output_types:
+            all_median = all_median.fillna(0.0)
+            all_median = all_median.sort_index()
+            write_to_file(all_median.T, ARGS.out_median, True)
+        
+        if "quantiles" in ARGS.output_types:
+            all_quantiles = all_quantiles.fillna(0.0)
+            all_quantiles = all_quantiles.sort_index()
+            write_to_file(all_quantiles.T, ARGS.out_quantiles, True)
+    else:
+        print("=== SAMPLING SKIPPED (n_samples = 0 or sampling disabled) ===")
+
+    # Handle optimization analysis outputs (always available)
+    print("=== PROCESSING OPTIMIZATION RESULTS ===")
+    
+    # Determine the starting index for optimization results
+    # If sampling was performed, optimization results start at index 3
+    # If no sampling, optimization results start at index 0
+    index_result = 3 if perform_sampling else 0
+    
+    if "pFBA" in ARGS.output_type_analysis:
+        all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False)
+        all_pFBA = all_pFBA.sort_index()
+        write_to_file(all_pFBA.T, ARGS.out_pfba, True)
+        index_result += 1
+        
+    if "FVA" in ARGS.output_type_analysis:
+        all_FVA = pd.concat([result[index_result] for result in results], ignore_index=False)
+        all_FVA = all_FVA.sort_index()
+        write_to_file(all_FVA.T, ARGS.out_fva, True)
+        index_result += 1
+        
+    if "sensitivity" in ARGS.output_type_analysis:
+        all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False)
+        all_sensitivity = all_sensitivity.sort_index()
+        write_to_file(all_sensitivity.T, ARGS.out_sensitivity, True)
+
+    return
+        
+##############################################################################
+if __name__ == "__main__":
     main()
\ No newline at end of file