0
|
1 #!/usr/bin/env Rscript
|
|
2
|
|
3 args <- commandArgs(trailingOnly = TRUE)
|
|
4
|
|
5 d = read.delim(args[1], header=T, sep="\t", as.is=T, row.names=1)
|
|
6
|
|
7 clusters = read.delim("Clusters", header=T, sep="\t", as.is=T)[,-1]
|
|
8 clusters = data.frame(Bait=colnames(clusters), Cluster=as.numeric(clusters[1,]))
|
|
9 nested.clusters = read.delim("NestedClusters", header=F, sep="\t", as.is=T)[1:dim(d)[1],]
|
|
10 nested.phi = read.delim("NestedMu", header=F, sep="\t", as.is=T)[1:dim(d)[1],]
|
|
11 nested.phi2 = read.delim("NestedSigma2", header=F, sep="\t", as.is=T)[1:dim(d)[1],]
|
|
12 mcmc = read.delim("MCMCparameters", header=F, sep="\t", as.is=T)
|
|
13
|
|
14 ### distance between bait using phi (also reorder cluster names)
|
|
15 ### report nested clusters with positive counts only
|
|
16 ### rearrange rows and columns of the raw data matrix according to the back-tracking algorithm
|
|
17
|
|
18 recursivePaste = function(x) {
|
|
19 n = length(x)
|
|
20 x = x[order(x)]
|
|
21 y = x[1]
|
|
22 if(n > 1) {
|
|
23 for(i in 2:n) y = paste(y, x[i], sep="-")
|
|
24 }
|
|
25 y
|
|
26 }
|
|
27
|
|
28 calcDist = function(x, y) {
|
|
29 if(length(x) != length(y)) stop("different length\n")
|
|
30 else res = sum(abs(x-y))
|
|
31 res
|
|
32 }
|
|
33
|
|
34
|
|
35 #clusters, nested.clusters, nested.phi, d
|
|
36
|
|
37 bcl = clusters
|
|
38 pcl = nested.clusters
|
|
39 phi = nested.phi
|
|
40 phi2 = nested.phi2
|
|
41 dat = d
|
|
42
|
|
43
|
|
44 ## bipartite graph
|
|
45 make.graphlet = function(b,p,s) {
|
|
46 g = NULL
|
|
47 g$b = b
|
|
48 g$p = p
|
|
49 g$s = as.numeric(s)
|
|
50 g
|
|
51 }
|
|
52
|
|
53 make.hub = function(b,p) {
|
|
54 g = NULL
|
|
55 g$b = b
|
|
56 g$p = p
|
|
57 g
|
|
58 }
|
|
59
|
|
60 jaccard = function(x,y) {
|
|
61 j = length(intersect(x,y)) / length(union(x,y))
|
|
62 j
|
|
63 }
|
|
64
|
|
65 merge.graphlets = function(x, y) {
|
|
66 g = NULL
|
|
67 g$b = union(x$b, y$b)
|
|
68 g$p = union(x$p, y$p)
|
|
69 g$s1 = rep(0,length(g$p))
|
|
70 g$s2 = rep(0,length(g$p))
|
|
71 g$s1[match(x$p, g$p)] = x$s
|
|
72 g$s2[match(y$p, g$p)] = y$s
|
|
73 g$s = apply(cbind(g$s1, g$s2), 1, max)
|
|
74 g
|
|
75 }
|
|
76
|
|
77 summarizeDP = function(bcl, pcl, phi, phi2, dat, hub.size=0.5, ...) {
|
|
78 pcl = as.matrix(pcl)
|
|
79 phi = as.matrix(phi)
|
|
80 phi2 = as.matrix(phi2)
|
|
81 dat = as.matrix(dat)
|
|
82 rownames(phi) = rownames(dat)
|
|
83 rownames(phi2) = rownames(dat)
|
|
84
|
|
85 ubcl = unique(as.numeric(bcl$Cluster))
|
|
86 n = length(ubcl)
|
|
87 pcl = pcl[,ubcl]
|
|
88 phi = phi[,ubcl]
|
|
89 phi2 = phi2[,ubcl]
|
|
90 phi[phi < 0.05] = 0
|
|
91
|
|
92 bcl$Cluster = match(as.numeric(bcl$Cluster), ubcl)
|
|
93 colnames(pcl) = colnames(phi) = colnames(phi2) = paste("CL", 1:n, sep="")
|
|
94
|
|
95 ## remove non-reproducible mean values
|
|
96 nprey = dim(dat)[1]; nbait = dim(dat)[2]
|
|
97 preys = rownames(dat); baits = colnames(dat)
|
|
98 n = length(unique(bcl$Cluster))
|
|
99 for(j in 1:n) {
|
|
100 id = c(1:nbait)[bcl$Cluster == j]
|
|
101 for(k in 1:nprey) {
|
|
102 do.it = ifelse(mean(as.numeric(dat[k,id]) > 0) <= 0.5,TRUE,FALSE)
|
|
103 if(do.it) {
|
|
104 phi[k,j] = 0
|
|
105 }
|
|
106 }
|
|
107 }
|
|
108
|
|
109 ## create bipartite graphs (graphlets)
|
|
110 gr = NULL
|
|
111 for(j in 1:n) {
|
|
112 id = c(1:nbait)[bcl$Cluster == j]
|
|
113 id2 = c(1:nprey)[phi[,j] > 0]
|
|
114 gr[[j]] = make.graphlet(baits[id], preys[id2], phi[id2,j])
|
|
115 }
|
|
116
|
|
117 ## intersecting preys between graphlets
|
|
118 gr2 = NULL
|
|
119 cur = 1
|
|
120 for(i in 1:n) {
|
|
121 for(j in 1:n) {
|
|
122 if(i != j) {
|
|
123 combine = jaccard(gr[[i]]$p, gr[[j]]$p) >= 0.75
|
|
124 if(combine) {
|
|
125 gr2[[cur]] = merge.graphlets(gr[[i]], gr[[j]])
|
|
126 cur = cur + 1
|
|
127 }
|
|
128 }
|
|
129 }
|
|
130 }
|
|
131
|
|
132 old.phi = phi
|
|
133 phi = phi[, bcl$Cluster]
|
|
134 phi2 = phi2[, bcl$Cluster]
|
|
135 ## find hub preys
|
|
136 proceed = apply(old.phi, 1, function(x) sum(x>0) >= 2)
|
|
137 h = NULL
|
|
138 cur = 1
|
|
139 for(k in 1:nprey) {
|
|
140 if(proceed[k]) {
|
|
141 id = as.numeric(phi[k,]) > 0
|
|
142 if(mean(id) >= hub.size) {
|
|
143 h[[cur]] = make.hub(baits[id], preys[k])
|
|
144 cur = cur + 1
|
|
145 }
|
|
146 }
|
|
147 }
|
|
148 nhub = cur - 1
|
|
149
|
|
150 res = list(data=dat, baitCL=bcl, phi=phi, phi2=phi2, gr = gr, gr2 = gr2, hub = h)
|
|
151 res
|
|
152 }
|
|
153
|
|
154 res = summarizeDP(clusters, nested.clusters, nested.phi, nested.phi2, d)
|
|
155
|
|
156 write.table(res$baitCL[order(res$baitCL$Cluster),], "baitClusters", sep="\t", quote=F, row.names=F)
|
|
157 write.table(res$data, "clusteredData", sep="\t", quote=F)
|
|
158
|
|
159 ##### SOFT
|
|
160 library(gplots)
|
|
161 tmpd = res$data
|
|
162 tmpm = res$phi
|
|
163 colnames(tmpm) = paste(colnames(res$data), colnames(tmpm))
|
|
164
|
|
165 pdf("estimated.pdf", height=25, width=8)
|
|
166 my.hclust<-hclust(dist(tmpd))
|
|
167 my.dend<-as.dendrogram(my.hclust)
|
|
168 tmp.res = heatmap.2(tmpm, Rowv=my.dend, Colv=T, trace="n", col=rev(heat.colors(10)), breaks=seq(0,.5,by=0.05), margins=c(10,10), keysize=0.8, cexRow=0.4)
|
|
169 #tmp.res = heatmap.2(tmpm, Rowv=T, Colv=T, trace="n", col=rev(heat.colors(10)), breaks=seq(0,.5,by=0.05), margins=c(10,10), keysize=0.8, cexRow=0.4)
|
|
170 tmpd = tmpd[rev(tmp.res$rowInd),tmp.res$colInd]
|
|
171 write.table(tmpd, "clustered_matrix.txt", sep="\t", quote=F)
|
|
172 heatmap.2(tmpd, Rowv=F, Colv=F, trace="n", col=rev(heat.colors(10)), breaks=seq(0,.5,by=0.05), margins=c(10,10), keysize=0.8, cexRow=0.4)
|
|
173 dev.off()
|
|
174
|
|
175
|
|
176 ### Statistical Plots
|
|
177 dd = dist(1-cor((res$phi), method="pearson"))
|
|
178 dend = as.dendrogram(hclust(dd, "ave"))
|
|
179 #plot(dend)
|
|
180
|
|
181 pdf("bait2bait.pdf")
|
|
182 tmp = res$phi
|
|
183 colnames(tmp) = paste(colnames(res$phi), res$baitCL$Bait, sep="_")
|
|
184
|
|
185 ###dd = cor(tmp[,-26]) ### This line is only for Chris' data (one bait has all zeros in the estimated parameters)
|
|
186 dd = cor(tmp) ### This line is only for Chris' data (one bait has all zeros in the estimated parameters)
|
|
187
|
|
188 write.table(dd, "bait2bait_matrix.txt", sep="\t", quote=F)
|
|
189 heatmap.2(as.matrix(dd), trace="n", breaks=seq(-1,1,by=0.1), col=(greenred(20)), cexRow=0.7, cexCol=0.7)
|
|
190 dev.off()
|
|
191
|
|
192 tmp = mcmc[,2]
|
|
193 ymax = max(tmp)
|
|
194 ymin = min(tmp)
|
|
195 pdf("stats.pdf", height=12, width=12)
|
|
196
|
|
197 plot(mcmc[mcmc[,4]=="G",3], type="s", xlab="Iterations", ylab="Number of Clusters", main="")
|
|
198 plot(mcmc[,2], type="l", xlab="Iterations", ylab="Log-Likelihood", main="", ylim=c(ymin,ymax))
|
|
199
|
|
200 dev.off()
|
|
201
|