4
|
1 ################################################################################
|
|
2 # This program will read in a SAINT 'list.txt' file and the interactions from
|
|
3 # the consensus path db database and return all the interactions that we saw in
|
|
4 # our experiment in a format suitable for cytoscape. This allows us to filter
|
|
5 # before getting PPIs so that it doesn't affect our SAINT score or include
|
|
6 # interactions that don't score well
|
|
7 ################################################################################
|
|
8 import urllib2
|
|
9 import itertools
|
|
10 import sys
|
10
|
11 import os
|
4
|
12 ################################################################################
|
|
13 ## REQUIRED INPUT ##
|
|
14
|
|
15 # 1) listfile: SAINTexpress output
|
|
16 # 2) SAINT_cutoff: Saint score cutoff for import (between 0 and 1)
|
|
17 # 3) Int_conf: Confidence of PPI from CPDB to include
|
|
18 # - low: no filtering
|
|
19 # - medium: >0.5
|
|
20 # - high: >0.7
|
|
21 # - very high: >0.9
|
|
22 # 4) Species: Human, Yeast, or Mouse
|
|
23 ###############################################################################
|
|
24 listfile = sys.argv[1]
|
|
25 SAINT_cutoff = sys.argv[2]
|
|
26 Int_conf = sys.argv[3]
|
|
27 Species = sys.argv[4]
|
|
28 cyto_file = sys.argv[5]
|
9
|
29 db_path = sys.argv[6]
|
4
|
30 ###############################################################################
|
|
31 class ReturnValue1(object):
|
|
32 def __init__(self, uniprot_acc, gene, swissprot):
|
|
33 self.up = uniprot_acc
|
|
34 self.gn = gene
|
|
35 self.sp = swissprot
|
|
36 class ReturnValue2(object):
|
|
37 def __init__(self, getdata, getproteins, getheader):
|
|
38 self.data = getdata
|
|
39 self.proteins = getproteins
|
|
40 self.header = getheader
|
|
41 def main(listfile, SAINT_cutoff, Int_conf, Species):
|
|
42 cytoscape(dd_network(listfile, SAINT_cutoff, Int_conf), listfile, SAINT_cutoff)
|
|
43 def readtab(infile):
|
|
44 with open(infile,'r') as x: # read in tab-delim text
|
|
45 output = []
|
|
46 for line in x:
|
|
47 line = line.strip()
|
|
48 temp = line.split('\t')
|
|
49 output.append(temp)
|
|
50 return output
|
|
51 def read_listfile(listfile): # Get data, proteins and header from scaffold output
|
|
52 dupes = readtab(listfile)
|
|
53 header = dupes[0]
|
|
54 prot_start = header.index("PreyGene")-1
|
|
55 data = dupes[1:] # cut off blank line and END OF FILE
|
|
56 proteins = []
|
|
57 for protein in data:
|
|
58 proteins.append(protein[prot_start])
|
|
59 return ReturnValue2(data, proteins, header)
|
|
60
|
|
61 def get_info(uniprot_accession_in): #get aa lengths and gene name
|
|
62 error = open('error proteins.txt', 'a+')
|
|
63 i=0
|
|
64 while i==0:
|
|
65 try:
|
|
66 data = urllib2.urlopen("http://www.uniprot.org/uniprot/" + uniprot_accession_in + ".fasta")
|
|
67 break
|
|
68 except urllib2.HTTPError, err:
|
|
69 i = i + 1
|
|
70 if i == 50:
|
|
71 sys.exit("More than 50 errors. Check your file or try again later.")
|
|
72 if err.code == 404:
|
|
73 error.write(uniprot_accession_in + '\t' + "Invalid URL. Check protein" + '\n')
|
|
74 seqlength = 'NA'
|
|
75 genename = 'NA'
|
|
76 return ReturnValue1(seqlength, genename)
|
|
77 elif err.code == 302:
|
|
78 sys.exit("Request timed out. Check connection and try again.")
|
|
79 else:
|
|
80 sys.exit("Uniprot had some other error")
|
|
81 lines = data.readlines()
|
|
82 header = lines[0]
|
|
83 lst = header.split('|')
|
|
84 lst2 = lst[2].split(' ')
|
|
85 swissprot = lst2[0]
|
|
86 uniprot_acc = lst[1]
|
|
87 if lines == []:
|
|
88 error.write(uniprot_accession_in + '\t' + "Blank Fasta" + '\n')
|
|
89 error.close
|
|
90 uniprot_acc = 'NA'
|
|
91 genename = 'NA'
|
|
92 return ReturnValue1(uniprot_acc, genename, swissprot)
|
|
93 if lines != []:
|
|
94 seqlength = 0
|
|
95 header = lines[0]
|
|
96 if 'GN=' in header:
|
|
97 lst = header.split('GN=')
|
|
98 lst2 = lst[1].split(' ')
|
|
99 genename = lst2[0]
|
|
100 error.close
|
|
101 return ReturnValue1(uniprot_acc, genename, swissprot)
|
|
102 if 'GN=' not in header:
|
|
103 genename = 'NA'
|
|
104 error.close
|
|
105 return ReturnValue1(uniprot_acc, genename, swissprot)
|
|
106
|
|
107 def dd_network(listfile, SAINTscore, CPDB_filter): ## Filter by SS and CPDB
|
|
108 data = read_listfile(listfile).data # change to filtered list
|
|
109 SS = (read_listfile(listfile).header).index("SaintScore")
|
|
110 filt_data = []
|
|
111 for i in data:
|
|
112 if i[SS] >= SAINTscore:
|
|
113 filt_data.append(i)
|
|
114 accessions = []
|
|
115 for i in filt_data:
|
|
116 accessions.append(get_info(i[1]).sp)
|
|
117 GO=[]
|
|
118 for i in CPDB[2:]:
|
|
119 if i[3] >= CPDB_filter: # filter interaction confidence
|
|
120 GO.append(i[2]) # all known interactions
|
|
121 GO2 = []
|
|
122 for i in GO:
|
|
123 GO2.append(i.split(',')) # make interactions list friendly
|
|
124 unfiltered_network = {}
|
|
125 for i in accessions:
|
|
126 interactions = []
|
|
127 for j in GO2:
|
|
128 if i in j: # find the interactions
|
|
129 if j not in interactions:# dont add duplicate interactions
|
|
130 interactions.append(j)
|
|
131 merged = list(itertools.chain(*interactions)) # flatten list of lists
|
|
132 unfiltered_network[i]=merged # assign all possible interactions to protein in a dictionary
|
|
133 dd_network = {} #data dependent network
|
|
134 for i in unfiltered_network:
|
|
135 temp = []
|
|
136 for j in unfiltered_network[i]:
|
|
137 if j in accessions:
|
|
138 if j not in temp:
|
|
139 if j != i:
|
|
140 temp.append(j)
|
|
141 dd_network[i]=temp
|
|
142 return dd_network
|
|
143 def cytoscape(dd_network, listfile, SAINTscore):
|
|
144 with open('network.sif','wt') as y:
|
|
145 data = read_listfile(listfile).data
|
|
146 SS = (read_listfile(listfile).header).index("SaintScore")
|
|
147 filt_data = []
|
|
148 for i in data:
|
|
149 if i[SS] >= SAINTscore:
|
|
150 filt_data.append(i)
|
|
151 header = ["Prey", "Interactions"]
|
|
152 header = '\t'.join(header)
|
|
153 y.write(header + '\n')
|
|
154 for i in filt_data:
|
|
155 if dd_network[i[1]] != []:
|
|
156 lst = []
|
|
157 #x='\t'.join(i)
|
|
158 for j in dd_network[i[1]]:
|
|
159 lst.append(j)
|
|
160 for j in lst:
|
|
161 y.write(i[1]+'\t'+'pp'+'\t' + j+'\n')
|
|
162 if Species == "Human":
|
|
163 CPDB = readtab(str(db_path) + 'ConsensusPathDB_human_PPI.txt')
|
|
164 if Species == "Yeast":
|
|
165 CPDB = readtab(str(db_path) + 'ConsensusPathDB_yeast_PPI.txt')
|
|
166 if Species == "Mouse":
|
|
167 CPDB = readtab(str(db_path) +'ConsensusPathDB_mouse_PPI.txt')
|
|
168 if __name__ == '__main__':
|
|
169 main(listfile, SAINT_cutoff, Int_conf, Species)
|
|
170 #main("Crizo_list.txt", 0.7, 0.7, 'Human')
|
|
171 os.rename('network.sif', str(cyto_file))
|