changeset 1:4e02e6e9e77d draft

planemo upload commit 94b0cd1fff0826c6db3e7dc0c91c0c5a8be8bb0c
author cpt
date Mon, 05 Jun 2023 02:51:35 +0000
parents 10d13d0c37d3
children 0a02ef22ce17
files cpt-macros.xml cpt.py cpt_putative_isp/cpt-macros.xml cpt_putative_isp/cpt.py cpt_putative_isp/generate-putative-isp.py cpt_putative_isp/generate-putative-isp.xml cpt_putative_isp/macros.xml cpt_putative_isp/spaninFuncs.py generate-putative-isp.py generate-putative-isp.xml macros.xml spaninFuncs.py
diffstat 12 files changed, 1455 insertions(+), 1387 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cpt-macros.xml	Mon Jun 05 02:51:35 2023 +0000
@@ -0,0 +1,115 @@
+<macros>
+    <xml name="gff_requirements">
+        <requirements>
+            <requirement type="package" version="2.7">python</requirement>
+            <requirement type="package" version="1.65">biopython</requirement>
+            <requirement type="package" version="2.12.1">requests</requirement>
+			<requirement type="package" version="1.2.2">cpt_gffparser</requirement>
+            <yield/>
+        </requirements>
+        <version_command>
+		<![CDATA[
+			cd '$__tool_directory__' && git rev-parse HEAD
+		]]>
+		</version_command>
+    </xml>
+    <xml name="citation/mijalisrasche">
+        <citation type="doi">10.1371/journal.pcbi.1008214</citation>
+        <citation type="bibtex">@unpublished{galaxyTools,
+		author = {E. Mijalis, H. Rasche},
+		title = {CPT Galaxy Tools},
+		year = {2013-2017},
+		note = {https://github.com/tamu-cpt/galaxy-tools/}
+		}
+		</citation>
+    </xml>
+    <xml name="citations">
+        <citations>
+            <citation type="doi">10.1371/journal.pcbi.1008214</citation>
+            <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {E. Mijalis, H. Rasche},
+				title = {CPT Galaxy Tools},
+				year = {2013-2017},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+            <yield/>
+        </citations>
+    </xml>
+    <xml name="citations-crr">
+        <citations>
+            <citation type="doi">10.1371/journal.pcbi.1008214</citation>
+            <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {C. Ross},
+				title = {CPT Galaxy Tools},
+				year = {2020-},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+            <yield/>
+        </citations>
+    </xml>
+    <xml name="citations-2020">
+        <citations>
+            <citation type="doi">10.1371/journal.pcbi.1008214</citation>
+            <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {E. Mijalis, H. Rasche},
+				title = {CPT Galaxy Tools},
+				year = {2013-2017},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+            <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {A. Criscione},
+				title = {CPT Galaxy Tools},
+				year = {2019-2021},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+                        </citation>
+            <yield/>
+        </citations>
+    </xml>
+    <xml name="citations-2020-AJC-solo">
+        <citations>
+            <citation type="doi">10.1371/journal.pcbi.1008214</citation>
+            <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {A. Criscione},
+				title = {CPT Galaxy Tools},
+				year = {2019-2021},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+                        </citation>
+            <yield/>
+        </citations>
+    </xml>
+    <xml name="citations-clm">
+        <citations>
+            <citation type="doi">10.1371/journal.pcbi.1008214</citation>
+            <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {C. Maughmer},
+				title = {CPT Galaxy Tools},
+				year = {2017-2020},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+            <yield/>
+        </citations>
+    </xml>
+    <xml name="sl-citations-clm">
+        <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {C. Maughmer},
+				title = {CPT Galaxy Tools},
+				year = {2017-2020},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+        <yield/>
+    </xml>
+</macros>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cpt.py	Mon Jun 05 02:51:35 2023 +0000
@@ -0,0 +1,341 @@
+#!/usr/bin/env python
+from Bio.Seq import Seq, reverse_complement, translate
+from Bio.SeqRecord import SeqRecord
+from Bio import SeqIO
+from Bio.Data import CodonTable
+import logging
+
+logging.basicConfig()
+log = logging.getLogger()
+
+PHAGE_IN_MIDDLE = re.compile("^(?P<host>.*)\s*phage (?P<phage>.*)$")
+BACTERIOPHAGE_IN_MIDDLE = re.compile("^(?P<host>.*)\s*bacteriophage (?P<phage>.*)$")
+STARTS_WITH_PHAGE = re.compile(
+    "^(bacterio|vibrio|Bacterio|Vibrio|)?[Pp]hage (?P<phage>.*)$"
+)
+NEW_STYLE_NAMES = re.compile("(?P<phage>v[A-Z]_[A-Z][a-z]{2}_.*)")
+
+
+def phage_name_parser(name):
+    host = None
+    phage = None
+    name = name.replace(", complete genome.", "")
+    name = name.replace(", complete genome", "")
+
+    m = BACTERIOPHAGE_IN_MIDDLE.match(name)
+    if m:
+        host = m.group("host")
+        phage = m.group("phage")
+        return (host, phage)
+
+    m = PHAGE_IN_MIDDLE.match(name)
+    if m:
+        host = m.group("host")
+        phage = m.group("phage")
+        return (host, phage)
+
+    m = STARTS_WITH_PHAGE.match(name)
+    if m:
+        phage = m.group("phage")
+        return (host, phage)
+
+    m = NEW_STYLE_NAMES.match(name)
+    if m:
+        phage = m.group("phage")
+        return (host, phage)
+
+    return (host, phage)
+
+
+class OrfFinder(object):
+    def __init__(self, table, ftype, ends, min_len, strand):
+        self.table = table
+        self.table_obj = CodonTable.ambiguous_generic_by_id[table]
+        self.ends = ends
+        self.ftype = ftype
+        self.min_len = min_len
+        self.starts = sorted(self.table_obj.start_codons)
+        self.stops = sorted(self.table_obj.stop_codons)
+        self.re_starts = re.compile("|".join(self.starts))
+        self.re_stops = re.compile("|".join(self.stops))
+        self.strand = strand
+
+    def locate(self, fasta_file, out_nuc, out_prot, out_bed, out_gff3):
+        seq_format = "fasta"
+        log.debug("Genetic code table %i" % self.table)
+        log.debug("Minimum length %i aa" % self.min_len)
+
+        out_count = 0
+
+        out_gff3.write("##gff-version 3\n")
+
+        for idx, record in enumerate(SeqIO.parse(fasta_file, seq_format)):
+            for i, (f_start, f_end, f_strand, n, t) in enumerate(
+                self.get_all_peptides(str(record.seq).upper())
+            ):
+                out_count += 1
+
+                descr = "length %i aa, %i bp, from %s..%s[%s] of %s" % (
+                    len(t),
+                    len(n),
+                    f_start,
+                    f_end,
+                    f_strand,
+                    record.description,
+                )
+                fid = record.id + "|%s%i" % (self.ftype, i + 1)
+
+                r = SeqRecord(Seq(n), id=fid, name="", description=descr)
+                t = SeqRecord(Seq(t), id=fid, name="", description=descr)
+
+                SeqIO.write(r, out_nuc, "fasta")
+                SeqIO.write(t, out_prot, "fasta")
+
+                nice_strand = "+" if f_strand == +1 else "-"
+
+                out_bed.write(
+                    "\t".join(
+                        map(str, [record.id, f_start, f_end, fid, 0, nice_strand])
+                    )
+                    + "\n"
+                )
+
+                out_gff3.write(
+                    "\t".join(
+                        map(
+                            str,
+                            [
+                                record.id,
+                                "getOrfsOrCds",
+                                "CDS",
+                                f_start + 1,
+                                f_end,
+                                ".",
+                                nice_strand,
+                                0,
+                                "ID=%s.%s.%s" % (self.ftype, idx, i + 1),
+                            ],
+                        )
+                    )
+                    + "\n"
+                )
+        log.info("Found %i %ss", out_count, self.ftype)
+
+    def start_chop_and_trans(self, s, strict=True):
+        """Returns offset, trimmed nuc, protein."""
+        if strict:
+            assert s[-3:] in self.stops, s
+        assert len(s) % 3 == 0
+        for match in self.re_starts.finditer(s, overlapped=True):
+            # Must check the start is in frame
+            start = match.start()
+            if start % 3 == 0:
+                n = s[start:]
+                assert len(n) % 3 == 0, "%s is len %i" % (n, len(n))
+                if strict:
+                    t = translate(n, self.table)
+                else:
+                    # Use when missing stop codon,
+                    t = "M" + translate(n[3:], self.table, to_stop=True)
+                yield start, n, t  # Edited by CPT to be a generator
+
+    def break_up_frame(self, s):
+        """Returns offset, nuc, protein."""
+        start = 0
+        for match in self.re_stops.finditer(s, overlapped=True):
+            index = match.start() + 3
+            if index % 3 != 0:
+                continue
+            n = s[start:index]
+            for (offset, n, t) in self.start_chop_and_trans(n):
+                if n and len(t) >= self.min_len:
+                    yield start + offset, n, t
+            start = index
+
+    def putative_genes_in_sequence(self, nuc_seq):
+        """Returns start, end, strand, nucleotides, protein.
+        Co-ordinates are Python style zero-based.
+        """
+        nuc_seq = nuc_seq.upper()
+        # TODO - Refactor to use a generator function (in start order)
+        # rather than making a list and sorting?
+        answer = []
+        full_len = len(nuc_seq)
+
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
+                start = frame + offset  # zero based
+                answer.append((start, start + len(n), +1, n, t))
+
+        rc = reverse_complement(nuc_seq)
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(rc[frame:]):
+                start = full_len - frame - offset  # zero based
+                answer.append((start, start - len(n), -1, n, t))
+        answer.sort()
+        return answer
+
+    def get_all_peptides(self, nuc_seq):
+        """Returns start, end, strand, nucleotides, protein.
+
+        Co-ordinates are Python style zero-based.
+        """
+        # Refactored into generator by CPT
+        full_len = len(nuc_seq)
+        if self.strand != "reverse":
+            for frame in range(0, 3):
+                for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
+                    start = frame + offset  # zero based
+                    yield (start, start + len(n), +1, n, t)
+        if self.strand != "forward":
+            rc = reverse_complement(nuc_seq)
+            for frame in range(0, 3):
+                for offset, n, t in self.break_up_frame(rc[frame:]):
+                    start = full_len - frame - offset  # zero based
+                    yield (start - len(n), start, -1, n, t)
+
+
+class MGAFinder(object):
+    def __init__(self, table, ftype, ends, min_len):
+        self.table = table
+        self.table_obj = CodonTable.ambiguous_generic_by_id[table]
+        self.ends = ends
+        self.ftype = ftype
+        self.min_len = min_len
+        self.starts = sorted(self.table_obj.start_codons)
+        self.stops = sorted(self.table_obj.stop_codons)
+        self.re_starts = re.compile("|".join(self.starts))
+        self.re_stops = re.compile("|".join(self.stops))
+
+    def locate(self, fasta_file, out_nuc, out_prot, out_bed, out_gff3):
+        seq_format = "fasta"
+        log.debug("Genetic code table %i" % self.table)
+        log.debug("Minimum length %i aa" % self.min_len)
+
+        out_count = 0
+
+        out_gff3.write("##gff-version 3\n")
+
+        for idx, record in enumerate(SeqIO.parse(fasta_file, seq_format)):
+            for i, (f_start, f_end, f_strand, n, t) in enumerate(
+                self.get_all_peptides(str(record.seq).upper())
+            ):
+                out_count += 1
+
+                descr = "length %i aa, %i bp, from %s..%s[%s] of %s" % (
+                    len(t),
+                    len(n),
+                    f_start,
+                    f_end,
+                    f_strand,
+                    record.description,
+                )
+                fid = record.id + "|%s%i" % (self.ftype, i + 1)
+
+                r = SeqRecord(Seq(n), id=fid, name="", description=descr)
+                t = SeqRecord(Seq(t), id=fid, name="", description=descr)
+
+                SeqIO.write(r, out_nuc, "fasta")
+                SeqIO.write(t, out_prot, "fasta")
+
+                nice_strand = "+" if f_strand == +1 else "-"
+
+                out_bed.write(
+                    "\t".join(
+                        map(str, [record.id, f_start, f_end, fid, 0, nice_strand])
+                    )
+                    + "\n"
+                )
+
+                out_gff3.write(
+                    "\t".join(
+                        map(
+                            str,
+                            [
+                                record.id,
+                                "getOrfsOrCds",
+                                "CDS",
+                                f_start + 1,
+                                f_end,
+                                ".",
+                                nice_strand,
+                                0,
+                                "ID=%s.%s.%s" % (self.ftype, idx, i + 1),
+                            ],
+                        )
+                    )
+                    + "\n"
+                )
+        log.info("Found %i %ss", out_count, self.ftype)
+
+    def start_chop_and_trans(self, s, strict=True):
+        """Returns offset, trimmed nuc, protein."""
+        if strict:
+            assert s[-3:] in self.stops, s
+        assert len(s) % 3 == 0
+        for match in self.re_starts.finditer(s, overlapped=True):
+            # Must check the start is in frame
+            start = match.start()
+            if start % 3 == 0:
+                n = s[start:]
+                assert len(n) % 3 == 0, "%s is len %i" % (n, len(n))
+                if strict:
+                    t = translate(n, self.table)
+                else:
+                    # Use when missing stop codon,
+                    t = "M" + translate(n[3:], self.table, to_stop=True)
+                yield start, n, t
+
+    def break_up_frame(self, s):
+        """Returns offset, nuc, protein."""
+        start = 0
+        for match in self.re_stops.finditer(s, overlapped=True):
+            index = match.start() + 3
+            if index % 3 != 0:
+                continue
+            n = s[start:index]
+            for (offset, n, t) in self.start_chop_and_trans(n):
+                if n and len(t) >= self.min_len:
+                    yield start + offset, n, t
+            start = index
+
+    def putative_genes_in_sequence(self, nuc_seq):
+        """Returns start, end, strand, nucleotides, protein.
+        Co-ordinates are Python style zero-based.
+        """
+        nuc_seq = nuc_seq.upper()
+        # TODO - Refactor to use a generator function (in start order)
+        # rather than making a list and sorting?
+        answer = []
+        full_len = len(nuc_seq)
+
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
+                start = frame + offset  # zero based
+                answer.append((start, start + len(n), +1, n, t))
+
+        rc = reverse_complement(nuc_seq)
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(rc[frame:]):
+                start = full_len - frame - offset  # zero based
+                answer.append((start, start - len(n), -1, n, t))
+        answer.sort()
+        return answer
+
+    def get_all_peptides(self, nuc_seq):
+        """Returns start, end, strand, nucleotides, protein.
+
+        Co-ordinates are Python style zero-based.
+        """
+        # Refactored into generator by CPT
+
+        full_len = len(nuc_seq)
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
+                start = frame + offset  # zero based
+                yield (start, start + len(n), +1, n, t)
+        rc = reverse_complement(nuc_seq)
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(rc[frame:]):
+                start = full_len - frame - offset  # zero based
+                yield (start - len(n), start, -1, n, t)
--- a/cpt_putative_isp/cpt-macros.xml	Fri Jun 17 13:07:15 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,115 +0,0 @@
-<?xml version="1.0"?>
-<macros>
-	<xml name="gff_requirements">
-		<requirements>
-			<requirement type="package" version="2.7">python</requirement>
-			<requirement type="package" version="1.65">biopython</requirement>
-			<requirement type="package" version="2.12.1">requests</requirement>
-			<yield/>
-		</requirements>
-		<version_command>
-		<![CDATA[
-			cd $__tool_directory__ && git rev-parse HEAD
-		]]>
-		</version_command>
-	</xml>
-	<xml name="citation/mijalisrasche">
-		<citation type="doi">10.1371/journal.pcbi.1008214</citation>
-		<citation type="bibtex">@unpublished{galaxyTools,
-		author = {E. Mijalis, H. Rasche},
-		title = {CPT Galaxy Tools},
-		year = {2013-2017},
-		note = {https://github.com/tamu-cpt/galaxy-tools/}
-		}
-		</citation>
-	</xml>
-	<xml name="citations">
-		<citations>
-			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
-			<citation type="bibtex">
-			@unpublished{galaxyTools,
-				author = {E. Mijalis, H. Rasche},
-				title = {CPT Galaxy Tools},
-				year = {2013-2017},
-				note = {https://github.com/tamu-cpt/galaxy-tools/}
-			}
-			</citation> 
-		<yield/>
-		</citations>
-	</xml>
-    	<xml name="citations-crr">
-		<citations>
-			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
-			<citation type="bibtex">
-			@unpublished{galaxyTools,
-				author = {C. Ross},
-				title = {CPT Galaxy Tools},
-				year = {2020-},
-				note = {https://github.com/tamu-cpt/galaxy-tools/}
-			}
-			</citation>
-		<yield/>
-		</citations>
-	</xml>
-        <xml name="citations-2020">
-		<citations>
-			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
-			<citation type="bibtex">
-			@unpublished{galaxyTools,
-				author = {E. Mijalis, H. Rasche},
-				title = {CPT Galaxy Tools},
-				year = {2013-2017},
-				note = {https://github.com/tamu-cpt/galaxy-tools/}
-			}
-			</citation>
-                        <citation type="bibtex">
-			@unpublished{galaxyTools,
-				author = {A. Criscione},
-				title = {CPT Galaxy Tools},
-				year = {2019-2021},
-				note = {https://github.com/tamu-cpt/galaxy-tools/}
-			}
-                        </citation>
-                        <yield/>
-		</citations>
-	</xml>
-        <xml name="citations-2020-AJC-solo">
-		<citations>
-			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
-                        <citation type="bibtex">
-			@unpublished{galaxyTools,
-				author = {A. Criscione},
-				title = {CPT Galaxy Tools},
-				year = {2019-2021},
-				note = {https://github.com/tamu-cpt/galaxy-tools/}
-			}
-                        </citation>
-                        <yield/>
-		</citations>
-	</xml>
-        <xml name="citations-clm">
-		<citations>
-			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
-			<citation type="bibtex">
-			@unpublished{galaxyTools,
-				author = {C. Maughmer},
-				title = {CPT Galaxy Tools},
-				year = {2017-2020},
-				note = {https://github.com/tamu-cpt/galaxy-tools/}
-			}
-			</citation>
-                        <yield/>
-		</citations>
-	</xml>
-        <xml name="sl-citations-clm">
-			<citation type="bibtex">
-			@unpublished{galaxyTools,
-				author = {C. Maughmer},
-				title = {CPT Galaxy Tools},
-				year = {2017-2020},
-				note = {https://github.com/tamu-cpt/galaxy-tools/}
-			}
-			</citation>
-                        <yield/>
-	</xml>
-</macros>
--- a/cpt_putative_isp/cpt.py	Fri Jun 17 13:07:15 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,341 +0,0 @@
-#!/usr/bin/env python
-from Bio.Seq import Seq, reverse_complement, translate
-from Bio.SeqRecord import SeqRecord
-from Bio import SeqIO
-from Bio.Data import CodonTable
-import logging
-
-logging.basicConfig()
-log = logging.getLogger()
-
-PHAGE_IN_MIDDLE = re.compile("^(?P<host>.*)\s*phage (?P<phage>.*)$")
-BACTERIOPHAGE_IN_MIDDLE = re.compile("^(?P<host>.*)\s*bacteriophage (?P<phage>.*)$")
-STARTS_WITH_PHAGE = re.compile(
-    "^(bacterio|vibrio|Bacterio|Vibrio|)?[Pp]hage (?P<phage>.*)$"
-)
-NEW_STYLE_NAMES = re.compile("(?P<phage>v[A-Z]_[A-Z][a-z]{2}_.*)")
-
-
-def phage_name_parser(name):
-    host = None
-    phage = None
-    name = name.replace(", complete genome.", "")
-    name = name.replace(", complete genome", "")
-
-    m = BACTERIOPHAGE_IN_MIDDLE.match(name)
-    if m:
-        host = m.group("host")
-        phage = m.group("phage")
-        return (host, phage)
-
-    m = PHAGE_IN_MIDDLE.match(name)
-    if m:
-        host = m.group("host")
-        phage = m.group("phage")
-        return (host, phage)
-
-    m = STARTS_WITH_PHAGE.match(name)
-    if m:
-        phage = m.group("phage")
-        return (host, phage)
-
-    m = NEW_STYLE_NAMES.match(name)
-    if m:
-        phage = m.group("phage")
-        return (host, phage)
-
-    return (host, phage)
-
-
-class OrfFinder(object):
-    def __init__(self, table, ftype, ends, min_len, strand):
-        self.table = table
-        self.table_obj = CodonTable.ambiguous_generic_by_id[table]
-        self.ends = ends
-        self.ftype = ftype
-        self.min_len = min_len
-        self.starts = sorted(self.table_obj.start_codons)
-        self.stops = sorted(self.table_obj.stop_codons)
-        self.re_starts = re.compile("|".join(self.starts))
-        self.re_stops = re.compile("|".join(self.stops))
-        self.strand = strand
-
-    def locate(self, fasta_file, out_nuc, out_prot, out_bed, out_gff3):
-        seq_format = "fasta"
-        log.debug("Genetic code table %i" % self.table)
-        log.debug("Minimum length %i aa" % self.min_len)
-
-        out_count = 0
-
-        out_gff3.write("##gff-version 3\n")
-
-        for idx, record in enumerate(SeqIO.parse(fasta_file, seq_format)):
-            for i, (f_start, f_end, f_strand, n, t) in enumerate(
-                self.get_all_peptides(str(record.seq).upper())
-            ):
-                out_count += 1
-
-                descr = "length %i aa, %i bp, from %s..%s[%s] of %s" % (
-                    len(t),
-                    len(n),
-                    f_start,
-                    f_end,
-                    f_strand,
-                    record.description,
-                )
-                fid = record.id + "|%s%i" % (self.ftype, i + 1)
-
-                r = SeqRecord(Seq(n), id=fid, name="", description=descr)
-                t = SeqRecord(Seq(t), id=fid, name="", description=descr)
-
-                SeqIO.write(r, out_nuc, "fasta")
-                SeqIO.write(t, out_prot, "fasta")
-
-                nice_strand = "+" if f_strand == +1 else "-"
-
-                out_bed.write(
-                    "\t".join(
-                        map(str, [record.id, f_start, f_end, fid, 0, nice_strand])
-                    )
-                    + "\n"
-                )
-
-                out_gff3.write(
-                    "\t".join(
-                        map(
-                            str,
-                            [
-                                record.id,
-                                "getOrfsOrCds",
-                                "CDS",
-                                f_start + 1,
-                                f_end,
-                                ".",
-                                nice_strand,
-                                0,
-                                "ID=%s.%s.%s" % (self.ftype, idx, i + 1),
-                            ],
-                        )
-                    )
-                    + "\n"
-                )
-        log.info("Found %i %ss", out_count, self.ftype)
-
-    def start_chop_and_trans(self, s, strict=True):
-        """Returns offset, trimmed nuc, protein."""
-        if strict:
-            assert s[-3:] in self.stops, s
-        assert len(s) % 3 == 0
-        for match in self.re_starts.finditer(s, overlapped=True):
-            # Must check the start is in frame
-            start = match.start()
-            if start % 3 == 0:
-                n = s[start:]
-                assert len(n) % 3 == 0, "%s is len %i" % (n, len(n))
-                if strict:
-                    t = translate(n, self.table)
-                else:
-                    # Use when missing stop codon,
-                    t = "M" + translate(n[3:], self.table, to_stop=True)
-                yield start, n, t  # Edited by CPT to be a generator
-
-    def break_up_frame(self, s):
-        """Returns offset, nuc, protein."""
-        start = 0
-        for match in self.re_stops.finditer(s, overlapped=True):
-            index = match.start() + 3
-            if index % 3 != 0:
-                continue
-            n = s[start:index]
-            for (offset, n, t) in self.start_chop_and_trans(n):
-                if n and len(t) >= self.min_len:
-                    yield start + offset, n, t
-            start = index
-
-    def putative_genes_in_sequence(self, nuc_seq):
-        """Returns start, end, strand, nucleotides, protein.
-        Co-ordinates are Python style zero-based.
-        """
-        nuc_seq = nuc_seq.upper()
-        # TODO - Refactor to use a generator function (in start order)
-        # rather than making a list and sorting?
-        answer = []
-        full_len = len(nuc_seq)
-
-        for frame in range(0, 3):
-            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
-                start = frame + offset  # zero based
-                answer.append((start, start + len(n), +1, n, t))
-
-        rc = reverse_complement(nuc_seq)
-        for frame in range(0, 3):
-            for offset, n, t in self.break_up_frame(rc[frame:]):
-                start = full_len - frame - offset  # zero based
-                answer.append((start, start - len(n), -1, n, t))
-        answer.sort()
-        return answer
-
-    def get_all_peptides(self, nuc_seq):
-        """Returns start, end, strand, nucleotides, protein.
-
-        Co-ordinates are Python style zero-based.
-        """
-        # Refactored into generator by CPT
-        full_len = len(nuc_seq)
-        if self.strand != "reverse":
-            for frame in range(0, 3):
-                for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
-                    start = frame + offset  # zero based
-                    yield (start, start + len(n), +1, n, t)
-        if self.strand != "forward":
-            rc = reverse_complement(nuc_seq)
-            for frame in range(0, 3):
-                for offset, n, t in self.break_up_frame(rc[frame:]):
-                    start = full_len - frame - offset  # zero based
-                    yield (start - len(n), start, -1, n, t)
-
-
-class MGAFinder(object):
-    def __init__(self, table, ftype, ends, min_len):
-        self.table = table
-        self.table_obj = CodonTable.ambiguous_generic_by_id[table]
-        self.ends = ends
-        self.ftype = ftype
-        self.min_len = min_len
-        self.starts = sorted(self.table_obj.start_codons)
-        self.stops = sorted(self.table_obj.stop_codons)
-        self.re_starts = re.compile("|".join(self.starts))
-        self.re_stops = re.compile("|".join(self.stops))
-
-    def locate(self, fasta_file, out_nuc, out_prot, out_bed, out_gff3):
-        seq_format = "fasta"
-        log.debug("Genetic code table %i" % self.table)
-        log.debug("Minimum length %i aa" % self.min_len)
-
-        out_count = 0
-
-        out_gff3.write("##gff-version 3\n")
-
-        for idx, record in enumerate(SeqIO.parse(fasta_file, seq_format)):
-            for i, (f_start, f_end, f_strand, n, t) in enumerate(
-                self.get_all_peptides(str(record.seq).upper())
-            ):
-                out_count += 1
-
-                descr = "length %i aa, %i bp, from %s..%s[%s] of %s" % (
-                    len(t),
-                    len(n),
-                    f_start,
-                    f_end,
-                    f_strand,
-                    record.description,
-                )
-                fid = record.id + "|%s%i" % (self.ftype, i + 1)
-
-                r = SeqRecord(Seq(n), id=fid, name="", description=descr)
-                t = SeqRecord(Seq(t), id=fid, name="", description=descr)
-
-                SeqIO.write(r, out_nuc, "fasta")
-                SeqIO.write(t, out_prot, "fasta")
-
-                nice_strand = "+" if f_strand == +1 else "-"
-
-                out_bed.write(
-                    "\t".join(
-                        map(str, [record.id, f_start, f_end, fid, 0, nice_strand])
-                    )
-                    + "\n"
-                )
-
-                out_gff3.write(
-                    "\t".join(
-                        map(
-                            str,
-                            [
-                                record.id,
-                                "getOrfsOrCds",
-                                "CDS",
-                                f_start + 1,
-                                f_end,
-                                ".",
-                                nice_strand,
-                                0,
-                                "ID=%s.%s.%s" % (self.ftype, idx, i + 1),
-                            ],
-                        )
-                    )
-                    + "\n"
-                )
-        log.info("Found %i %ss", out_count, self.ftype)
-
-    def start_chop_and_trans(self, s, strict=True):
-        """Returns offset, trimmed nuc, protein."""
-        if strict:
-            assert s[-3:] in self.stops, s
-        assert len(s) % 3 == 0
-        for match in self.re_starts.finditer(s, overlapped=True):
-            # Must check the start is in frame
-            start = match.start()
-            if start % 3 == 0:
-                n = s[start:]
-                assert len(n) % 3 == 0, "%s is len %i" % (n, len(n))
-                if strict:
-                    t = translate(n, self.table)
-                else:
-                    # Use when missing stop codon,
-                    t = "M" + translate(n[3:], self.table, to_stop=True)
-                yield start, n, t
-
-    def break_up_frame(self, s):
-        """Returns offset, nuc, protein."""
-        start = 0
-        for match in self.re_stops.finditer(s, overlapped=True):
-            index = match.start() + 3
-            if index % 3 != 0:
-                continue
-            n = s[start:index]
-            for (offset, n, t) in self.start_chop_and_trans(n):
-                if n and len(t) >= self.min_len:
-                    yield start + offset, n, t
-            start = index
-
-    def putative_genes_in_sequence(self, nuc_seq):
-        """Returns start, end, strand, nucleotides, protein.
-        Co-ordinates are Python style zero-based.
-        """
-        nuc_seq = nuc_seq.upper()
-        # TODO - Refactor to use a generator function (in start order)
-        # rather than making a list and sorting?
-        answer = []
-        full_len = len(nuc_seq)
-
-        for frame in range(0, 3):
-            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
-                start = frame + offset  # zero based
-                answer.append((start, start + len(n), +1, n, t))
-
-        rc = reverse_complement(nuc_seq)
-        for frame in range(0, 3):
-            for offset, n, t in self.break_up_frame(rc[frame:]):
-                start = full_len - frame - offset  # zero based
-                answer.append((start, start - len(n), -1, n, t))
-        answer.sort()
-        return answer
-
-    def get_all_peptides(self, nuc_seq):
-        """Returns start, end, strand, nucleotides, protein.
-
-        Co-ordinates are Python style zero-based.
-        """
-        # Refactored into generator by CPT
-
-        full_len = len(nuc_seq)
-        for frame in range(0, 3):
-            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
-                start = frame + offset  # zero based
-                yield (start, start + len(n), +1, n, t)
-        rc = reverse_complement(nuc_seq)
-        for frame in range(0, 3):
-            for offset, n, t in self.break_up_frame(rc[frame:]):
-                start = full_len - frame - offset  # zero based
-                yield (start - len(n), start, -1, n, t)
--- a/cpt_putative_isp/generate-putative-isp.py	Fri Jun 17 13:07:15 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,317 +0,0 @@
-#!/usr/bin/env python
-
-##### findSpanin.pl --> findSpanin.py
-######### Incooperated from the findSpanin.pl script, but better and more snakey.
-
-import argparse
-from cpt import OrfFinder
-from Bio import SeqIO
-from Bio import Seq
-import re
-from spaninFuncs import *
-import os
-
-# if __name__ == '__main__':
-# pass
-###############################################################################
-
-if __name__ == "__main__":
-
-    # Common parameters for both ISP / OSP portion of script
-
-    parser = argparse.ArgumentParser(
-        description="Get putative protein candidates for spanins"
-    )
-    parser.add_argument(
-        "fasta_file", type=argparse.FileType("r"), help="Fasta file"
-    )  # the "input" argument
-
-    parser.add_argument(
-        "-f",
-        "--format",
-        dest="seq_format",
-        default="fasta",
-        help="Sequence format (e.g. fasta, fastq, sff)",
-    )  # optional formats for input, currently just going to do ntFASTA
-
-    parser.add_argument(
-        "--strand",
-        dest="strand",
-        choices=("both", "forward", "reverse"),
-        default="both",
-        help="select strand",
-    )  # Selection of +, -, or both strands
-
-    parser.add_argument(
-        "--table", dest="table", default=11, help="NCBI Translation table", type=int
-    )  # Uses "default" NCBI codon table. This should always (afaik) be what we want...
-
-    parser.add_argument(
-        "-t",
-        "--ftype",
-        dest="ftype",
-        choices=("CDS", "ORF"),
-        default="ORF",
-        help="Find ORF or CDSs",
-    )  # "functional type(?)" --> Finds ORF or CDS, for this we want just the ORF
-
-    parser.add_argument(
-        "-e",
-        "--ends",
-        dest="ends",
-        choices=("open", "closed"),
-        default="closed",
-        help="Open or closed. Closed ensures start/stop codons are present",
-    )  # includes the start and stop codon
-
-    parser.add_argument(
-        "-m",
-        "--mode",
-        dest="mode",
-        choices=("all", "top", "one"),
-        default="all",  # I think we want this to JUST be all...nearly always
-        help="Output all ORFs/CDSs from sequence, all ORFs/CDSs with max length, or first with maximum length",
-    )
-
-    parser.add_argument(
-        "--switch",
-        dest="switch",
-        default="all",
-        help="switch between ALL putative osps, or a range. If not all, insert a range of two integers separated by a colon (:). Eg: 1234:4321",
-    )
-    # isp parameters
-    parser.add_argument(
-        "--isp_min_len",
-        dest="isp_min_len",
-        default=60,
-        help="Minimum ORF length, measured in codons",
-        type=int,
-    )
-    parser.add_argument(
-        "--isp_on",
-        dest="out_isp_nuc",
-        type=argparse.FileType("w"),
-        default="_out_isp.fna",
-        help="Output nucleotide sequences, FASTA",
-    )
-    parser.add_argument(
-        "--isp_op",
-        dest="out_isp_prot",
-        type=argparse.FileType("w"),
-        default="_out_isp.fa",
-        help="Output protein sequences, FASTA",
-    )
-    parser.add_argument(
-        "--isp_ob",
-        dest="out_isp_bed",
-        type=argparse.FileType("w"),
-        default="_out_isp.bed",
-        help="Output BED file",
-    )
-    parser.add_argument(
-        "--isp_og",
-        dest="out_isp_gff3",
-        type=argparse.FileType("w"),
-        default="_out_isp.gff3",
-        help="Output GFF3 file",
-    )
-    parser.add_argument(
-        "--isp_min_dist",
-        dest="isp_min_dist",
-        default=10,
-        help="Minimal distance to first AA of TMD, measured in AA",
-        type=int,
-    )
-    parser.add_argument(
-        "--isp_max_dist",
-        dest="isp_max_dist",
-        default=30,
-        help="Maximum distance to first AA of TMD, measured in AA",
-        type=int,
-    )
-    parser.add_argument(
-        "--putative_isp",
-        dest="putative_isp_fa",
-        type=argparse.FileType("w"),
-        default="_putative_isp.fa",
-        help="Output of putative FASTA file",
-    )
-    parser.add_argument(
-        "--min_tmd_size",
-        dest="min_tmd_size",
-        default=10,
-        help="Minimal size of the TMD domain",
-        type=int,
-    )
-    parser.add_argument(
-        "--max_tmd_size",
-        dest="max_tmd_size",
-        default=20,
-        help="Maximum size of the TMD domain",
-        type=int,
-    )
-    parser.add_argument(
-        "--summary_isp_txt",
-        dest="summary_isp_txt",
-        type=argparse.FileType("w"),
-        default="_summary_isp.txt",
-        help="Summary statistics on putative i-spanins",
-    )
-    parser.add_argument(
-        "--putative_isp_gff",
-        dest="putative_isp_gff",
-        type=argparse.FileType("w"),
-        default="_putative_isp.gff3",
-        help="gff3 output for putative i-spanins",
-    )
-
-    parser.add_argument(
-        "--max_isp",
-        dest="max_isp",
-        default=230,
-        help="Maximum size of the ISP",
-        type=int,
-    )
-
-    parser.add_argument(
-        "--isp_mode",
-        action="store_true",
-        default=True
-    )
-
-    parser.add_argument(
-        "--peri_min",
-        type=int,
-        default=18,
-        help="amount of residues after TMD is found min"
-    )
-
-    parser.add_argument(
-        "--peri_max",
-        type=int,
-        default=206,
-        help="amount of residues after TMD is found max"
-    )
-    # parser.add_argument('-v', action='version', version='0.3.0') # Is this manually updated?
-    args = parser.parse_args()
-    the_args = vars(parser.parse_args())
-
-    ### isp output, naive ORF finding:
-    isps = OrfFinder(args.table, args.ftype, args.ends, args.isp_min_len, args.strand)
-    isps.locate(
-        args.fasta_file,
-        args.out_isp_nuc,
-        args.out_isp_prot,
-        args.out_isp_bed,
-        args.out_isp_gff3,
-    )
-    """
-    >T7_EIS MLEFLRKLIPWVLVGMLFGLGWHLGSDSMDAKWKQEVHNEYVKRVEAAKSTQRAIGAVSAKYQEDLAALEGSTDRIISDLRSDNKRLRVRVKTTGISDGQCGFEPDGRAELDDRDAKRILAVTQKGDAWIRALQDTIRELQRK
-    >lambda_EIS MSRVTAIISALVICIIVCLSWAVNHYRDNAITYKAQRDKNARELKLANAAITDMQMRQRDVAALDAKYTKELADAKAENDALRDDVAAGRRRLHIKAVCQSVREATTASGVDNAASPRLADTAERDYFTLRERLITMQKQLEGTQKYINEQCR
-    """
-    args.fasta_file.close()
-    args.fasta_file = open(args.fasta_file.name, "r")
-    args.out_isp_prot.close()
-    args.out_isp_prot = open(args.out_isp_prot.name, "r")
-
-    pairs = tuple_fasta(fasta_file=args.out_isp_prot)
-
-    # print(pairs)
-
-    have_tmd = []  # empty candidates list to be passed through the user input criteria
-
-    for (
-        each_pair
-    ) in (
-        pairs
-    ):  # grab transmembrane domains from spaninFuncts (queries for lysin snorkels # and a range of hydrophobic regions that could be TMDs)
-        if len(each_pair[1]) <= args.max_isp:
-            try:
-                have_tmd += find_tmd(
-                    pair=each_pair,
-                    minimum=args.isp_min_dist,
-                    maximum=args.isp_max_dist,
-                    TMDmin=args.min_tmd_size,
-                    TMDmax=args.max_tmd_size,
-                    isp_mode=args.isp_mode,
-                    peri_min=args.peri_min,
-                    peri_max=args.peri_max,
-                )
-            except TypeError:
-                continue
-
-    if args.switch == "all":
-        pass
-    else:
-        # for each_pair in have_lipo:
-        range_of = args.switch
-        range_of = re.search(("[\d]+:[\d]+"), range_of).group(0)
-        start = int(range_of.split(":")[0])
-        end = int(range_of.split(":")[1])
-        have_tmd = parse_a_range(pair=have_tmd, start=start, end=end)
-
-    total_isp = len(have_tmd)
-
-    # ORF = [] # mightttttttttttt use eventually
-    length = []  # grabbing length of the sequences
-    candidate_dict = {k: v for k, v in have_tmd}
-    with args.putative_isp_fa as f:
-        for desc, s in candidate_dict.items():  # description / sequence
-            f.write(">" + str(desc))
-            f.write("\n" + lineWrapper(str(s).replace("*","")) + "\n")
-            length.append(len(s))
-            # ORF.append(desc)
-    if not length:
-        raise Exception("Parameters yielded no candidates.")
-    bot_size = min(length)
-    top_size = max(length)
-    avg = (sum(length)) / total_isp
-    n = len(length)
-    if n == 0:
-        raise Exception("no median for empty data")
-    if n % 2 == 1:
-        med = length[n // 2]
-    else:
-        i = n // 2
-        med = (length[i - 1] + length[i]) / 2
-    
-    #### Extra statistics
-    args.out_isp_prot.close()
-    all_orfs = open(args.out_isp_prot.name, "r")
-    all_isps = open(args.putative_isp_fa.name, "r")
-    #record = SeqIO.read(all_orfs, "fasta")
-    #print(len(record))
-    n = 0
-    for line in all_orfs:
-        if line.startswith(">"):
-            n += 1
-    all_orfs_counts = n
-    
-    c = 0
-    for line in all_isps:
-        if line.startswith(">"):
-            c += 1
-    all_isps_counts = c
-
-    #print(f"{n} -> {c}")
-    #count = 0
-    #for feature in record.features:
-    #    count += 1
-    #print(count)
-
-
-    with args.summary_isp_txt as f:
-        f.write("total potential o-spanins: " + str(total_isp) + "\n")
-        f.write("average length (AA): " + str(avg) + "\n")
-        f.write("median length (AA): " + str(med) + "\n")
-        f.write("maximum orf in size (AA): " + str(top_size) + "\n")
-        f.write("minimum orf in size (AA): " + str(bot_size) + "\n")
-        f.write("ratio of isps found from naive orfs: " + str(c) + "/" +str(n))
-
-    # Output the putative list in gff3 format
-    args.putative_isp_fa = open(args.putative_isp_fa.name, "r")
-    gff_data = prep_a_gff3(fa=args.putative_isp_fa, spanin_type="isp",org=args.fasta_file)
-    write_gff3(data=gff_data, output=args.putative_isp_gff)
-
-    """https://docs.python.org/3.4/library/subprocess.html"""
-    """https://github.tamu.edu/CPT/Galaxy-Tools/blob/f0bf4a4b8e5124d4f3082d21b738dfaa8e1a3cf6/tools/phage/transmembrane.py"""
--- a/cpt_putative_isp/generate-putative-isp.xml	Fri Jun 17 13:07:15 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,82 +0,0 @@
-<?xml version="1.1"?>
-<tool id="edu.tamu.cpt2.spanin.generate-putative-isp" name="ISP candidates" version="1.0">
-    <description>constructs a putative list of potential i-spanin from an input genomic FASTA</description>
-    <macros>
-        <import>macros.xml</import>
-        <import>cpt-macros.xml</import>
-    </macros>
-    <expand macro="requirements">
-    </expand>
-    <command detect_errors="aggressive"><![CDATA[
-python $__tool_directory__/generate-putative-isp.py
-$fasta_file
---strand $strand
---switch $switch
---isp_on $isp_on
---isp_op $isp_op
---isp_ob $isp_ob
---isp_og $isp_og
---isp_min_len $isp_min_len
---isp_min_dist $isp_min_dist
---isp_max_dist $isp_max_dist
---min_tmd_size $min_tmd_size
---max_tmd_size $max_tmd_size
---putative_isp $putative_isp
---summary_isp_txt $summary_isp
---putative_isp_gff $putative_isp_gff
---isp_max $isp_max
---peri_min $peri_min
---peri_max $peri_max
-
-]]></command>
-    <inputs>
-        <param type="select" label="Strand Choice" name="strand">
-            <option value="both">both</option>
-            <option value="forward">+</option>
-            <option value="reverse">-</option>
-        </param>
-        <param label="Single Genome FASTA" name="fasta_file" type="data" format="fasta" />
-        <param label="i-spanin minimal length" name="isp_min_len" type="integer" value="60" />
-        <param label="i-spanin maximum length" name="isp_max" type="integer" value="230" />
-        <param label="Range Selection; default is all; for a specific range to check for a spanin input integers separated by a colon (eg. 1000:2000)" type="text" name="switch" value="all" />
-        <param label="TMD minimal distance from start codon" name="isp_min_dist" type="integer" value="10" />
-        <param label="TMD maximum distance from start codon" name="isp_max_dist" type="integer" value="35" help="Searches for a TMD between TMDmin and TMDmax ie [TMDmin,TMDmax]" />
-        <param label="TMD minimal size" name="min_tmd_size" type="integer" value="10" />
-        <param label="TMD maximum size" name="max_tmd_size" type="integer" value="25" />
-        <param label="Periplasmic minimal residue amount" name="peri_min" type="integer" value="16" />
-        <param label="Periplasmic maximum residue amount" name="peri_max" type="integer" value="206" />
-    </inputs>
-    <outputs>
-        <data format="fasta" name="isp_on" label="NucSequences.fa" hidden = "true"/>
-        <data format="fasta" name="isp_op" label="ProtSequences.fa" hidden = "true"/>
-        <data format="bed" name="isp_ob" label="BED_Output.bed" hidden = "true"/>
-        <data format="gff3" name="isp_og" label="GFF_Output.gff" hidden = "true"/>
-        <data format="fasta" name="putative_isp" label="putative_isp.fa"/>
-        <data format="txt" name="summary_isp" label="summary_isp.txt"/>
-        <data format="gff3" name="putative_isp_gff" label="putative_isp.gff3"/>
-    </outputs>
-    <help><![CDATA[
-
-**What it does**
-Searches a genome for candidate i-spanins (ISPs), a phage protein involved in outer membrane disruption during Gram-negative bacterial host cell lysis.
-
-**METHODOLOGY**
-
-Locates ALL potential start sequences, based on TTG / ATG / GTG (M / L / V). This list is pared down to those within the user-set min/max lengths. That filtered list generates a set of files with the ORFs in FASTA (nt and aa), BED, and GFF3 file formats.
-
-With the protein FASTA, the tool next reads in each potential sequence and determines if it has a putative transmembrane domain (TMD) with the following criteria:
-
-    1. Presence of snorkeling Lysine residues surrounded by hydrophobic residues described for TMD below, within the range the user specifies.
-    2. A putative transmembrane domain, or TMD, defined as a repeated hydrophobic region within the sequence ([FIWLVMYCATGSP]), of length and position within the range the user inputs.
-    3. Length of expected periplasmic region. User defines minimum and maximum thresholds for required number of residues after TMD.
-
-**INPUT** --> Genomic FASTA
-*NOTE: This tool only takes a SINGLE genomic fasta. It does not work with multiFASTAs.*
-
-**OUTPUT** --> putative_isp.fa (FASTA) file, putative_isp.gff3, and basic summary statistics as summary_isp.txt.
-
-Protein sequences which passed the above filters are returned as the candidate ISPs.
-
-]]></help>
-        <expand macro="citations-crr" />
-</tool>
--- a/cpt_putative_isp/macros.xml	Fri Jun 17 13:07:15 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,63 +0,0 @@
-<?xml version="1.0"?>
-<macros>
-	<xml name="requirements">
-		<requirements>
-                        <requirement type="package" version="2019.06.05">regex</requirement>
-			<requirement type="package" version="3.6">python</requirement>
-			<requirement type="package" version="1.77">biopython</requirement>
-			<requirement type="package" version="1.1.7">cpt_gffparser</requirement>  
-			<yield/>
-		</requirements>
-	</xml>
-	<token name="@BLAST_TSV@">
-		"$blast_tsv"
-	</token>
-	<xml name="blast_tsv">
-		<param label="Blast Results" help="TSV/tabular (25 Column)"
-			name="blast_tsv" type="data" format="tabular" />
-	</xml>
-
-	<token name="@BLAST_XML@">
-		"$blast_xml"
-	</token>
-	<xml name="blast_xml">
-		<param label="Blast Results" help="XML format"
-			name="blast_xml" type="data" format="blastxml" />
-	</xml>
-	<xml name="gff3_with_fasta">
-	<param label="Genome Sequences" name="fasta" type="data" format="fasta" />
-	<param label="Genome Annotations" name="gff3" type="data" format="gff3" />
-	</xml>
-	<xml name="genome_selector">
-	    <param name="genome_fasta" type="data" format="fasta" label="Source FASTA Sequence"/>
-	</xml>
-	<xml name="gff3_input">
-		<param label="GFF3 Annotations" name="gff3_data" type="data" format="gff3"/>
-	</xml>
-	<xml name="input/gff3+fasta">
-		<expand macro="gff3_input" />
-		<expand macro="genome_selector" />
-	</xml>
-	<token name="@INPUT_GFF@">
-	"$gff3_data"
-	</token>
-	<token name="@INPUT_FASTA@">
-		genomeref.fa
-	</token>
-	<token name="@GENOME_SELECTOR_PRE@">
-		ln -s $genome_fasta genomeref.fa;
-	</token>
-	<token name="@GENOME_SELECTOR@">
-		genomeref.fa
-	</token>
-        <xml name="input/fasta">
-		<param label="Fasta file" name="sequences" type="data" format="fasta"/>
-	</xml>
-
-	<token name="@SEQUENCE@">
-		"$sequences"
-	</token>
-	<xml name="input/fasta/protein">
-		<param label="Protein fasta file" name="sequences" type="data" format="fasta"/>
-	</xml>
-</macros>
--- a/cpt_putative_isp/spaninFuncs.py	Fri Jun 17 13:07:15 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,469 +0,0 @@
-"""
-PREMISE
-### Functions/Classes that are used in both generate-putative-osp.py and generate-putative-isp.py
-###### Main premise here is to make the above scripts a little more DRY, as well as easily readable for execution.
-###### Documentation will ATTEMPT to be thourough here
-"""
-
-import re
-from Bio import SeqIO
-from Bio import Seq
-from collections import OrderedDict
-
-# Not written in OOP for a LITTLE bit of trying to keep the complication down in case adjustments are needed by someone else.
-# Much of the manipulation is string based; so it should be straightforward as well as moderately quick
-################## GLobal Variables
-Lys = "K"
-
-
-def check_back_end_snorkels(seq, tmsize):
-    """
-        Searches through the backend of a potential TMD snorkel. This is the 2nd part of a TMD snorkel lysine match.
-        --> seq : should be the sequence fed from the "search_region" portion of the sequence
-        --> tmsize : size of the potential TMD being investigated
-    """
-    found = []
-    if seq[tmsize - 4] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 5]):
-        found = "match"
-        return found
-    elif seq[tmsize - 3] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 4]):
-        found = "match"
-        return found
-    elif seq[tmsize - 2] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 3]):
-        found = "match"
-        return found
-    elif seq[tmsize - 1] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 2]):
-        found = "match"
-        return found
-    else:
-        found = "NOTmatch"
-        return found
-
-
-def prep_a_gff3(fa, spanin_type, org):
-    """
-        Function parses an input detailed 'fa' file and outputs a 'gff3' file
-        ---> fa = input .fa file
-        ---> output = output a returned list of data, easily portable to a gff3 next
-        ---> spanin_type = 'isp' or 'osp'
-    """
-    with org as f:
-        header = f.readline()
-        orgacc = header.split(" ")
-        orgacc = orgacc[0].split(">")[1].strip()
-    fa_zip = tuple_fasta(fa)
-    data = []
-    for a_pair in fa_zip:
-        # print(a_pair)
-        if re.search(("(\[1\])"), a_pair[0]):
-            strand = "+"
-        elif re.search(("(\[-1\])"), a_pair[0]):
-            strand = "-"  # column 7
-        start = re.search(("[\d]+\.\."), a_pair[0]).group(0).split("..")[0]  # column 4
-        end = re.search(("\.\.[\d]+"), a_pair[0]).group(0).split("..")[1]  # column 5
-        orfid = re.search(("(ORF)[\d]+"), a_pair[0]).group(0)  # column 1
-        if spanin_type == "isp":
-            methodtype = "CDS"  # column 3
-            spanin = "isp"
-        elif spanin_type == "osp":
-            methodtype = "CDS"  # column 3
-            spanin = "osp"
-        elif spanin_type == "usp":
-            methodtype = "CDS"
-            spanin = "usp"
-        else:
-            raise "need to input spanin type"
-        source = "cpt.py|putative-*.py"  # column 2
-        score = "."  # column 6
-        phase = "."  # column 8
-        attributes = "ID=" +orgacc+ "|"+ orfid + ";ALIAS=" + spanin + ";SEQ="+a_pair[1]  # column 9
-        sequence = [[orgacc, source, methodtype, start, end, score, strand, phase, attributes]]
-        data += sequence
-    return data
-
-
-def write_gff3(data, output="results.gff3"):
-    """
-        Parses results from prep_a_gff3 into a gff3 file
-        ---> input : list from prep_a_gff3
-        ---> output : gff3 file
-    """
-    data = data
-    filename = output
-    with filename as f:
-        f.write("#gff-version 3\n")
-        for value in data:
-            f.write(
-                "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(
-                    value[0],
-                    value[1],
-                    value[2],
-                    value[3],
-                    value[4],
-                    value[5],
-                    value[6],
-                    value[7],
-                    value[8],
-                )
-            )
-    f.close()
-
-
-def find_tmd(pair, minimum=10, maximum=30, TMDmin=10, TMDmax=20, isp_mode=False, peri_min=18, peri_max=206):
-    """ 
-        Function that searches for lysine snorkels and then for a spanning hydrophobic region that indicates a potential TMD
-        ---> pair : Input of tuple with description and AA sequence (str)
-        ---> minimum : How close from the initial start codon a TMD can be within
-        ---> maximum : How far from the initial start codon a TMD can be within
-        ---> TMDmin : The minimum size that a transmembrane can be (default = 10)
-        ---> TMDmax : The maximum size tha ta transmembrane can be (default = 20)
-    """
-    # hydrophobicAAs = ['P', 'F', 'I', 'W', 'L', 'V', 'M', 'Y', 'C', 'A', 'T', 'G', 'S']
-    tmd = []
-    s = str(pair[1])  # sequence being analyzed
-    # print(s) # for trouble shooting
-    if maximum > len(s):
-        maximum = len(s)
-    search_region = s[minimum - 1 : maximum + 1]
-    #print(f"this is the search region: {search_region}")
-    # print(search_region) # for trouble shooting
-
-    for tmsize in range(TMDmin, TMDmax+1, 1):
-        #print(f"this is the current tmsize we're trying: {tmsize}")
-        # print('==============='+str(tmsize)+'================') # print for troubleshooting
-        pattern = "[PFIWLVMYCATGS]{"+str(tmsize)+"}"  # searches for these hydrophobic residues tmsize total times
-        #print(pattern)
-        #print(f"sending to regex: {search_region}")
-        if re.search(
-            ("[K]"), search_region[1:8]):  # grabbing one below with search region, so I want to grab one ahead here when I query.
-            store_search = re.search(("[K]"), search_region[1:8])  # storing regex object
-            where_we_are = store_search.start()  # finding where we got the hit
-            if re.search(
-                ("[PFIWLVMYCATGS]"), search_region[where_we_are + 1]
-            ) and re.search(
-                ("[PFIWLVMYCATGS]"), search_region[where_we_are - 1]
-            ):  # hydrophobic neighbor
-                #try:
-                g = re.search(("[PFIWLVMYCATGS]"), search_region[where_we_are + 1]).group()
-                backend = check_back_end_snorkels(search_region, tmsize)
-                if backend == "match":
-                    if isp_mode:
-                        g = re.search((pattern), search_region).group()
-                        end_of_tmd = re.search((g), s).end()+1
-                        amt_peri = len(s) - end_of_tmd
-                        if peri_min <= amt_peri <= peri_max:
-                            pair_desc = pair[0] + ", peri_count~="+str(amt_peri)
-                            new_pair = (pair_desc,pair[1])
-                            tmd.append(new_pair)
-                    else:
-                        tmd.append(pair)
-                else:
-                    continue
-        #else:
-            #print("I'm continuing out of snorkel loop")
-            #print(f"{search_region}")
-            #continue
-        if re.search((pattern), search_region):
-            #print(f"found match: {}")
-            #print("I AM HEREEEEEEEEEEEEEEEEEEEEEEE")
-            #try:
-            if isp_mode:
-                g = re.search((pattern), search_region).group()
-                end_of_tmd = re.search((g), s).end()+1
-                amt_peri = len(s) - end_of_tmd
-                if peri_min <= amt_peri <= peri_max:
-                    pair_desc = pair[0] + ", peri_count~="+str(amt_peri)
-                    new_pair = (pair_desc,pair[1])
-                    tmd.append(new_pair)
-            else:
-                tmd.append(pair)
-        else:
-            continue
-
-        return tmd
-
-
-def find_lipobox(pair, minimum=10, maximum=50, min_after=30, max_after=185, regex=1, osp_mode=False):
-    """
-        Function that takes an input tuple, and will return pairs of sequences to their description that have a lipoobox
-        ---> minimum - min distance from start codon to first AA of lipobox
-        ---> maximum - max distance from start codon to first AA of lipobox
-        ---> regex - option 1 (default) => more strict regular expression ; option 2 => looser selection, imported from LipoRy
-        
-    """
-    if regex == 1:
-        pattern = "[ILMFTV][^REKD][GAS]C"  # regex for Lipobox from findSpanin.pl
-    elif regex == 2:
-        pattern = "[ACGSILMFTV][^REKD][GAS]C"  # regex for Lipobox from LipoRy
-
-    candidates = []
-    s = str(pair[1])
-    # print(s) # trouble shooting
-    search_region = s[minimum-1 : maximum + 5] # properly slice the input... add 4 to catch if it hangs off at max input
-    # print(search_region) # trouble shooting
-    patterns = ["[ILMFTV][^REKD][GAS]C","AW[AGS]C"]
-    for pattern in patterns:
-        #print(pattern)  # trouble shooting
-        if re.search((pattern), search_region):  # lipobox must be WITHIN the range...
-            # searches the sequence with the input RegEx AND omits if
-            g = re.search((pattern), search_region).group() # find the exact group match
-            amt_peri = len(s) - re.search((g), s).end() + 1
-            if min_after <= amt_peri <= max_after: # find the lipobox end region
-                if osp_mode:
-                    pair_desc = pair[0] + ", peri_count~="+str(amt_peri)
-                    new_pair = (pair_desc,pair[1])
-                    candidates.append(new_pair)
-                else:
-                    candidates.append(pair)
-
-                return candidates
-
-
-def tuple_fasta(fasta_file):
-    """
-        #### INPUT: Fasta File
-        #### OUTPUT: zipped (zip) : pairwise relationship of description to sequence
-        #### 
-    """
-    fasta = SeqIO.parse(fasta_file, "fasta")
-    descriptions = []
-    sequences = []
-    for r in fasta:  # iterates and stores each description and sequence
-        description = r.description
-        sequence = str(r.seq)
-        if (
-            sequence[0] != "I"
-        ):  # the translation table currently has I as a potential start codon ==> this will remove all ORFs that start with I
-            descriptions.append(description)
-            sequences.append(sequence)
-        else:
-            continue
-
-    return zip(descriptions, sequences)
-
-
-def lineWrapper(text, charactersize=60):
-
-    if len(text) <= charactersize:
-        return text
-    else:
-        return (
-            text[:charactersize]
-            + "\n"
-            + lineWrapper(text[charactersize:], charactersize)
-        )
-
-
-def getDescriptions(fasta):
-    """
-    Takes an output FASTA file, and parses retrieves the description headers. These headers contain information needed
-    for finding locations of a potential i-spanin and o-spanin proximity to one another.
-    """
-    desc = []
-    with fasta as f:
-        for line in f:
-            if line.startswith(">"):
-                desc.append(line)
-    return desc
-
-
-def splitStrands(text, strand="+"):
-    # positive_strands = []
-    # negative_strands = []
-    if strand == "+":
-        if re.search(("(\[1\])"), text):
-            return text
-    elif strand == "-":
-        if re.search(("(\[-1\])"), text):
-            return text
-    # return positive_strands, negative_strands
-
-
-def parse_a_range(pair, start, end):
-    """
-        Takes an input data tuple from a fasta tuple pair and keeps only those within the input sequence range
-        ---> data : fasta tuple data
-        ---> start : start range to keep
-        ---> end : end range to keep (will need to + 1)
-    """
-    matches = []
-    for each_pair in pair:
-
-        s = re.search(("[\d]+\.\."), each_pair[0]).group(0)  # Start of the sequence
-        s = int(s.split("..")[0])
-        e = re.search(("\.\.[\d]+"), each_pair[0]).group(0)
-        e = int(e.split("..")[1])
-        if start - 1 <= s and e <= end + 1:
-            matches.append(each_pair)
-        else:
-            continue
-    # else:
-    # continue
-    # if matches != []:
-    return matches
-    # else:
-    # print('no candidates within selected range')
-
-
-def grabLocs(text):
-    """
-    Grabs the locations of the spanin based on NT location (seen from ORF). Grabs the ORF name, as per named from the ORF class/module
-    from cpt.py
-    """
-    start = re.search(("[\d]+\.\."), text).group(0)  # Start of the sequence ; looks for [numbers]..
-    end = re.search(("\.\.[\d]+"), text).group(0)  # End of the sequence ; Looks for ..[numbers]
-    orf = re.search(("(ORF)[\d]+"), text).group(0)  # Looks for ORF and the numbers that are after it
-    if re.search(("(\[1\])"), text): # stores strand
-        strand = "+"
-    elif re.search(("(\[-1\])"), text): # stores strand
-        strand = "-"
-    start = int(start.split("..")[0])
-    end = int(end.split("..")[1])
-    vals = [start, end, orf, strand]
-
-    return vals
-
-
-def spaninProximity(isp, osp, max_dist=30):
-    """
-    _NOTE THIS FUNCTION COULD BE MODIFIED TO RETURN SEQUENCES_
-    Compares the locations of i-spanins and o-spanins. max_dist is the distance in NT measurement from i-spanin END site
-    to o-spanin START. The user will be inputting AA distance, so a conversion will be necessary (<user_input> * 3)
-    I modified this on 07.30.2020 to bypass the pick + or - strand. To 
-    INPUT: list of OSP and ISP candidates
-    OUTPUT: Return (improved) candidates for overlapping, embedded, and separate list
-    """
-
-    embedded = {}
-    overlap = {}
-    separate = {}
-    for iseq in isp:
-        embedded[iseq[2]] = []
-        overlap[iseq[2]] = []
-        separate[iseq[2]] = []
-        for oseq in osp:
-            if iseq[3] == "+":
-                if oseq[3] == "+":
-                    if iseq[0] < oseq[0] < iseq[1] and oseq[1] < iseq[1]:
-                        ### EMBEDDED ###
-                        combo = [
-                            iseq[0],
-                            iseq[1],
-                            oseq[2],
-                            oseq[0],
-                            oseq[1],
-                            iseq[3],
-                        ]  # ordering a return for dic
-                        embedded[iseq[2]] += [combo]
-                    elif iseq[0] < oseq[0] <= iseq[1] and oseq[1] > iseq[1]:
-                        ### OVERLAP / SEPARATE ###
-                        if (iseq[1] - oseq[0]) < 6:
-                            combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
-                            separate[iseq[2]] += [combo]
-                        else:
-                            combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
-                            overlap[iseq[2]] += [combo]
-                    elif iseq[1] <= oseq[0] <= iseq[1] + max_dist:
-                        combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
-                        separate[iseq[2]] += [combo]
-                    else:
-                        continue
-            if iseq[3] == "-":
-                if oseq[3] == "-":
-                    if iseq[0] <= oseq[1] <= iseq[1] and oseq[0] > iseq[0]:
-                        ### EMBEDDED ###
-                        combo = [
-                            iseq[0],
-                            iseq[1],
-                            oseq[2],
-                            oseq[0],
-                            oseq[1],
-                            iseq[3],
-                        ]  # ordering a return for dict
-                        embedded[iseq[2]] += [combo]
-                    elif iseq[0] <= oseq[1] <= iseq[1] and oseq[0] < iseq[0]:
-                        if (oseq[1] - iseq[0]) < 6:
-                            combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
-                            separate[iseq[2]] += [combo]
-                        else:
-                            combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
-                            overlap[iseq[2]] += [combo]
-                    elif iseq[0] - 10 < oseq[1] < iseq[0]:
-                        combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
-                        separate[iseq[2]] += [combo]
-                    else:
-                        continue
-
-    embedded = {k: embedded[k] for k in embedded if embedded[k]}
-    overlap = {k: overlap[k] for k in overlap if overlap[k]}
-    separate = {k: separate[k] for k in separate if separate[k]}
-
-    return embedded, overlap, separate
-
-
-def check_for_usp():
-    " pass "
-
-############################################### TEST RANGE #########################################################################
-####################################################################################################################################
-if __name__ == "__main__":
-
-    #### TMD TEST
-    test_desc = ["one", "two", "three", "four", "five"]
-    test_seq = [
-        "XXXXXXXXXXXXXXXFMCFMCFMCFMCFMCXXXXXXXXXXXXXXXXXXXXXXXXXX",
-        "XXXXXXXXAAKKKKKKKKKKKKKKKXXXXXXXXXXXXX",
-        "XXXXXXX",
-        "XXXXXXXXXXXKXXXXXXXXXX",
-        "XXXXXXXXXXAKXXXXXXXXXXAKXXXXXXXX",
-    ]
-    # for l in
-    # combo = zip(test_desc,test_seq)
-    pairs = zip(test_desc, test_seq)
-    tmd = []
-    for each_pair in pairs:
-        # print(each_pair)
-        try:
-            tmd += find_tmd(pair=each_pair)
-        except (IndexError, TypeError):
-            continue
-        # try:s = each_pair[1]
-        # tmd += find_tmd(seq=s, tmsize=15)
-    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
-    # print(tmd)
-    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
-
-    #### tuple-fasta TEST
-    # fasta_file = 'out_isp.fa'
-    # ret = tuple_fasta(fasta_file)
-    # print('=============')
-    # for i in ret:
-    # print(i[1])
-
-    #### LipoBox TEST
-    test_desc = ["one", "two", "three", "four", "five", "six", "seven"]
-    test_seq = [
-        "XXXXXXXXXTGGCXXXXXXXXXXXXXXXX",
-        "XXXXXXXXAAKKKKKKKKKKKKKKKXXXXXXXXXXXXX",
-        "XXXXXXX",
-        "AGGCXXXXXXXXXXXXXXXXXXXXTT",
-        "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTGGC",
-        "XXXXXXXXXXXXXXXXXXXXXXXXXXTGGC",
-        "MSTLRELRLRRALKEQSMRYLLSIKKTLPRWKGALIGLFLICVATISGCASESKLPEPPMVSVDSSLMVEPNLTTEMLNVFSQ*",
-    ]
-    pairs = zip(test_desc, test_seq)
-    lipo = []
-    for each_pair in pairs:
-        #print(each_pair)
-        # try:
-        try:
-            lipo += find_lipobox(pair=each_pair, regex=2)  # , minimum=8)
-        except TypeError:  # catches if something doesnt have the min/max requirements (something is too small)
-            continue
-        # except:
-        # continue
-    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
-    #############################3
-    # g = prep_a_gff3(fa='putative_isp.fa', spanin_type='isp')
-    # print(g)
-    # write_gff3(data=g)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/generate-putative-isp.py	Mon Jun 05 02:51:35 2023 +0000
@@ -0,0 +1,314 @@
+#!/usr/bin/env python
+
+##### findSpanin.pl --> findSpanin.py
+######### Incooperated from the findSpanin.pl script, but better and more snakey.
+
+import argparse
+from cpt import OrfFinder
+from Bio import SeqIO
+from Bio import Seq
+import re
+from spaninFuncs import *
+import os
+
+# if __name__ == '__main__':
+# pass
+###############################################################################
+
+if __name__ == "__main__":
+
+    # Common parameters for both ISP / OSP portion of script
+
+    parser = argparse.ArgumentParser(
+        description="Get putative protein candidates for spanins"
+    )
+    parser.add_argument(
+        "fasta_file", type=argparse.FileType("r"), help="Fasta file"
+    )  # the "input" argument
+
+    parser.add_argument(
+        "-f",
+        "--format",
+        dest="seq_format",
+        default="fasta",
+        help="Sequence format (e.g. fasta, fastq, sff)",
+    )  # optional formats for input, currently just going to do ntFASTA
+
+    parser.add_argument(
+        "--strand",
+        dest="strand",
+        choices=("both", "forward", "reverse"),
+        default="both",
+        help="select strand",
+    )  # Selection of +, -, or both strands
+
+    parser.add_argument(
+        "--table", dest="table", default=11, help="NCBI Translation table", type=int
+    )  # Uses "default" NCBI codon table. This should always (afaik) be what we want...
+
+    parser.add_argument(
+        "-t",
+        "--ftype",
+        dest="ftype",
+        choices=("CDS", "ORF"),
+        default="ORF",
+        help="Find ORF or CDSs",
+    )  # "functional type(?)" --> Finds ORF or CDS, for this we want just the ORF
+
+    parser.add_argument(
+        "-e",
+        "--ends",
+        dest="ends",
+        choices=("open", "closed"),
+        default="closed",
+        help="Open or closed. Closed ensures start/stop codons are present",
+    )  # includes the start and stop codon
+
+    parser.add_argument(
+        "-m",
+        "--mode",
+        dest="mode",
+        choices=("all", "top", "one"),
+        default="all",  # I think we want this to JUST be all...nearly always
+        help="Output all ORFs/CDSs from sequence, all ORFs/CDSs with max length, or first with maximum length",
+    )
+
+    parser.add_argument(
+        "--switch",
+        dest="switch",
+        default="all",
+        help="switch between ALL putative osps, or a range. If not all, insert a range of two integers separated by a colon (:). Eg: 1234:4321",
+    )
+    # isp parameters
+    parser.add_argument(
+        "--isp_min_len",
+        dest="isp_min_len",
+        default=60,
+        help="Minimum ORF length, measured in codons",
+        type=int,
+    )
+    parser.add_argument(
+        "--isp_on",
+        dest="out_isp_nuc",
+        type=argparse.FileType("w"),
+        default="_out_isp.fna",
+        help="Output nucleotide sequences, FASTA",
+    )
+    parser.add_argument(
+        "--isp_op",
+        dest="out_isp_prot",
+        type=argparse.FileType("w"),
+        default="_out_isp.fa",
+        help="Output protein sequences, FASTA",
+    )
+    parser.add_argument(
+        "--isp_ob",
+        dest="out_isp_bed",
+        type=argparse.FileType("w"),
+        default="_out_isp.bed",
+        help="Output BED file",
+    )
+    parser.add_argument(
+        "--isp_og",
+        dest="out_isp_gff3",
+        type=argparse.FileType("w"),
+        default="_out_isp.gff3",
+        help="Output GFF3 file",
+    )
+    parser.add_argument(
+        "--isp_min_dist",
+        dest="isp_min_dist",
+        default=10,
+        help="Minimal distance to first AA of TMD, measured in AA",
+        type=int,
+    )
+    parser.add_argument(
+        "--isp_max_dist",
+        dest="isp_max_dist",
+        default=30,
+        help="Maximum distance to first AA of TMD, measured in AA",
+        type=int,
+    )
+    parser.add_argument(
+        "--putative_isp",
+        dest="putative_isp_fa",
+        type=argparse.FileType("w"),
+        default="_putative_isp.fa",
+        help="Output of putative FASTA file",
+    )
+    parser.add_argument(
+        "--min_tmd_size",
+        dest="min_tmd_size",
+        default=10,
+        help="Minimal size of the TMD domain",
+        type=int,
+    )
+    parser.add_argument(
+        "--max_tmd_size",
+        dest="max_tmd_size",
+        default=20,
+        help="Maximum size of the TMD domain",
+        type=int,
+    )
+    parser.add_argument(
+        "--summary_isp_txt",
+        dest="summary_isp_txt",
+        type=argparse.FileType("w"),
+        default="_summary_isp.txt",
+        help="Summary statistics on putative i-spanins",
+    )
+    parser.add_argument(
+        "--putative_isp_gff",
+        dest="putative_isp_gff",
+        type=argparse.FileType("w"),
+        default="_putative_isp.gff3",
+        help="gff3 output for putative i-spanins",
+    )
+
+    parser.add_argument(
+        "--max_isp",
+        dest="max_isp",
+        default=230,
+        help="Maximum size of the ISP",
+        type=int,
+    )
+
+    parser.add_argument("--isp_mode", action="store_true", default=True)
+
+    parser.add_argument(
+        "--peri_min",
+        type=int,
+        default=18,
+        help="amount of residues after TMD is found min",
+    )
+
+    parser.add_argument(
+        "--peri_max",
+        type=int,
+        default=206,
+        help="amount of residues after TMD is found max",
+    )
+    # parser.add_argument('-v', action='version', version='0.3.0') # Is this manually updated?
+    args = parser.parse_args()
+    the_args = vars(parser.parse_args())
+
+    ### isp output, naive ORF finding:
+    isps = OrfFinder(args.table, args.ftype, args.ends, args.isp_min_len, args.strand)
+    isps.locate(
+        args.fasta_file,
+        args.out_isp_nuc,
+        args.out_isp_prot,
+        args.out_isp_bed,
+        args.out_isp_gff3,
+    )
+    """
+    >T7_EIS MLEFLRKLIPWVLVGMLFGLGWHLGSDSMDAKWKQEVHNEYVKRVEAAKSTQRAIGAVSAKYQEDLAALEGSTDRIISDLRSDNKRLRVRVKTTGISDGQCGFEPDGRAELDDRDAKRILAVTQKGDAWIRALQDTIRELQRK
+    >lambda_EIS MSRVTAIISALVICIIVCLSWAVNHYRDNAITYKAQRDKNARELKLANAAITDMQMRQRDVAALDAKYTKELADAKAENDALRDDVAAGRRRLHIKAVCQSVREATTASGVDNAASPRLADTAERDYFTLRERLITMQKQLEGTQKYINEQCR
+    """
+    args.fasta_file.close()
+    args.fasta_file = open(args.fasta_file.name, "r")
+    args.out_isp_prot.close()
+    args.out_isp_prot = open(args.out_isp_prot.name, "r")
+
+    pairs = tuple_fasta(fasta_file=args.out_isp_prot)
+
+    # print(pairs)
+
+    have_tmd = []  # empty candidates list to be passed through the user input criteria
+
+    for (
+        each_pair
+    ) in (
+        pairs
+    ):  # grab transmembrane domains from spaninFuncts (queries for lysin snorkels # and a range of hydrophobic regions that could be TMDs)
+        if len(each_pair[1]) <= args.max_isp:
+            try:
+                have_tmd += find_tmd(
+                    pair=each_pair,
+                    minimum=args.isp_min_dist,
+                    maximum=args.isp_max_dist,
+                    TMDmin=args.min_tmd_size,
+                    TMDmax=args.max_tmd_size,
+                    isp_mode=args.isp_mode,
+                    peri_min=args.peri_min,
+                    peri_max=args.peri_max,
+                )
+            except TypeError:
+                continue
+
+    if args.switch == "all":
+        pass
+    else:
+        # for each_pair in have_lipo:
+        range_of = args.switch
+        range_of = re.search(("[\d]+:[\d]+"), range_of).group(0)
+        start = int(range_of.split(":")[0])
+        end = int(range_of.split(":")[1])
+        have_tmd = parse_a_range(pair=have_tmd, start=start, end=end)
+
+    total_isp = len(have_tmd)
+
+    # ORF = [] # mightttttttttttt use eventually
+    length = []  # grabbing length of the sequences
+    candidate_dict = {k: v for k, v in have_tmd}
+    with args.putative_isp_fa as f:
+        for desc, s in candidate_dict.items():  # description / sequence
+            f.write(">" + str(desc))
+            f.write("\n" + lineWrapper(str(s).replace("*", "")) + "\n")
+            length.append(len(s))
+            # ORF.append(desc)
+    if not length:
+        raise Exception("Parameters yielded no candidates.")
+    bot_size = min(length)
+    top_size = max(length)
+    avg = (sum(length)) / total_isp
+    n = len(length)
+    if n == 0:
+        raise Exception("no median for empty data")
+    if n % 2 == 1:
+        med = length[n // 2]
+    else:
+        i = n // 2
+        med = (length[i - 1] + length[i]) / 2
+
+    #### Extra statistics
+    args.out_isp_prot.close()
+    all_orfs = open(args.out_isp_prot.name, "r")
+    all_isps = open(args.putative_isp_fa.name, "r")
+    # record = SeqIO.read(all_orfs, "fasta")
+    # print(len(record))
+    n = 0
+    for line in all_orfs:
+        if line.startswith(">"):
+            n += 1
+    all_orfs_counts = n
+
+    c = 0
+    for line in all_isps:
+        if line.startswith(">"):
+            c += 1
+    all_isps_counts = c
+
+    # print(f"{n} -> {c}")
+    # count = 0
+    # for feature in record.features:
+    #    count += 1
+    # print(count)
+
+    with args.summary_isp_txt as f:
+        f.write("total potential o-spanins: " + str(total_isp) + "\n")
+        f.write("average length (AA): " + str(avg) + "\n")
+        f.write("median length (AA): " + str(med) + "\n")
+        f.write("maximum orf in size (AA): " + str(top_size) + "\n")
+        f.write("minimum orf in size (AA): " + str(bot_size) + "\n")
+        f.write("ratio of isps found from naive orfs: " + str(c) + "/" + str(n))
+
+    # Output the putative list in gff3 format
+    args.putative_isp_fa = open(args.putative_isp_fa.name, "r")
+    gff_data = prep_a_gff3(
+        fa=args.putative_isp_fa, spanin_type="isp", org=args.fasta_file
+    )
+    write_gff3(data=gff_data, output=args.putative_isp_gff)
+
+    """https://docs.python.org/3.4/library/subprocess.html"""
+    """https://github.tamu.edu/CPT/Galaxy-Tools/blob/f0bf4a4b8e5124d4f3082d21b738dfaa8e1a3cf6/tools/phage/transmembrane.py"""
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/generate-putative-isp.xml	Mon Jun 05 02:51:35 2023 +0000
@@ -0,0 +1,81 @@
+<tool id="edu.tamu.cpt2.spanin.generate-putative-isp" name="ISP candidates" version="1.0">
+    <description>constructs a putative list of potential i-spanin from an input genomic FASTA</description>
+    <macros>
+        <import>macros.xml</import>
+        <import>cpt-macros.xml</import>
+    </macros>
+    <expand macro="requirements">
+    </expand>
+    <command detect_errors="aggressive"><![CDATA[
+python '$__tool_directory__/generate-putative-isp.py'
+'$fasta_file'
+--strand '$strand'
+--switch '$switch'
+--isp_on '$isp_on'
+--isp_op '$isp_op'
+--isp_ob '$isp_ob'
+--isp_og '$isp_og'
+--isp_min_len '$isp_min_len'
+--isp_min_dist '$isp_min_dist'
+--isp_max_dist '$isp_max_dist'
+--min_tmd_size '$min_tmd_size'
+--max_tmd_size '$max_tmd_size'
+--putative_isp '$putative_isp'
+--summary_isp_txt '$summary_isp'
+--putative_isp_gff '$putative_isp_gff'
+--isp_max '$isp_max'
+--peri_min '$peri_min'
+--peri_max '$peri_max'
+
+]]></command>
+    <inputs>
+        <param type="select" label="Strand Choice" name="strand">
+            <option value="both">both</option>
+            <option value="forward">+</option>
+            <option value="reverse">-</option>
+        </param>
+        <param label="Single Genome FASTA" name="fasta_file" type="data" format="fasta"/>
+        <param label="i-spanin minimal length" name="isp_min_len" type="integer" value="60"/>
+        <param label="i-spanin maximum length" name="isp_max" type="integer" value="230"/>
+        <param label="Range Selection; default is all; for a specific range to check for a spanin input integers separated by a colon (eg. 1000:2000)" type="text" name="switch" value="all"/>
+        <param label="TMD minimal distance from start codon" name="isp_min_dist" type="integer" value="10"/>
+        <param label="TMD maximum distance from start codon" name="isp_max_dist" type="integer" value="35" help="Searches for a TMD between TMDmin and TMDmax ie [TMDmin,TMDmax]"/>
+        <param label="TMD minimal size" name="min_tmd_size" type="integer" value="10"/>
+        <param label="TMD maximum size" name="max_tmd_size" type="integer" value="25"/>
+        <param label="Periplasmic minimal residue amount" name="peri_min" type="integer" value="16"/>
+        <param label="Periplasmic maximum residue amount" name="peri_max" type="integer" value="206"/>
+    </inputs>
+    <outputs>
+        <data format="fasta" name="isp_on" label="NucSequences.fa" hidden="true"/>
+        <data format="fasta" name="isp_op" label="ProtSequences.fa" hidden="true"/>
+        <data format="bed" name="isp_ob" label="BED_Output.bed" hidden="true"/>
+        <data format="gff3" name="isp_og" label="GFF_Output.gff" hidden="true"/>
+        <data format="fasta" name="putative_isp" label="putative_isp.fa"/>
+        <data format="txt" name="summary_isp" label="summary_isp.txt"/>
+        <data format="gff3" name="putative_isp_gff" label="putative_isp.gff3"/>
+    </outputs>
+    <help><![CDATA[
+
+**What it does**
+Searches a genome for candidate i-spanins (ISPs), a phage protein involved in outer membrane disruption during Gram-negative bacterial host cell lysis.
+
+**METHODOLOGY**
+
+Locates ALL potential start sequences, based on TTG / ATG / GTG (M / L / V). This list is pared down to those within the user-set min/max lengths. That filtered list generates a set of files with the ORFs in FASTA (nt and aa), BED, and GFF3 file formats.
+
+With the protein FASTA, the tool next reads in each potential sequence and determines if it has a putative transmembrane domain (TMD) with the following criteria:
+
+    1. Presence of snorkeling Lysine residues surrounded by hydrophobic residues described for TMD below, within the range the user specifies.
+    2. A putative transmembrane domain, or TMD, defined as a repeated hydrophobic region within the sequence ([FIWLVMYCATGSP]), of length and position within the range the user inputs.
+    3. Length of expected periplasmic region. User defines minimum and maximum thresholds for required number of residues after TMD.
+
+**INPUT** --> Genomic FASTA
+*NOTE: This tool only takes a SINGLE genomic fasta. It does not work with multiFASTAs.*
+
+**OUTPUT** --> putative_isp.fa (FASTA) file, putative_isp.gff3, and basic summary statistics as summary_isp.txt.
+
+Protein sequences which passed the above filters are returned as the candidate ISPs.
+
+]]></help>
+    <expand macro="citations-crr"/>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/macros.xml	Mon Jun 05 02:51:35 2023 +0000
@@ -0,0 +1,74 @@
+<macros>
+    <xml name="requirements">
+        <requirements>
+            <requirement type="package">progressivemauve</requirement>
+            <!--<requirement type="package" version="2.7">python</requirement>-->
+            <requirement type="package" version="0.6.4">bcbiogff</requirement>
+            <yield/>
+        </requirements>
+    </xml>
+    <token name="@WRAPPER_VERSION@">2.4.0</token>
+    <xml name="citation/progressive_mauve">
+        <citation type="doi">10.1371/journal.pone.0011147</citation>
+    </xml>
+    <xml name="citation/gepard">
+        <citation type="doi">10.1093/bioinformatics/btm039</citation>
+    </xml>
+    <token name="@XMFA_INPUT@">
+		'$xmfa'
+	</token>
+    <xml name="xmfa_input" token_formats="xmfa">
+        <param type="data" format="@FORMATS@" name="xmfa" label="XMFA MSA"/>
+    </xml>
+    <token name="@XMFA_FA_INPUT@">
+		'$sequences'
+	</token>
+    <xml name="xmfa_fa_input">
+        <param type="data" format="fasta" name="sequences" label="Sequences in alignment" help="These sequences should be the SAME DATASET that was used in the progressiveMauve run. Failing that, they should be provided in the same order as in original progressiveMauve run"/>
+    </xml>
+    <xml name="genome_selector">
+        <conditional name="reference_genome">
+            <param name="reference_genome_source" type="select" label="Reference Genome">
+                <option value="history" selected="True">From History</option>
+                <option value="cached">Locally Cached</option>
+            </param>
+            <when value="cached">
+                <param name="fasta_indexes" type="select" label="Source FASTA Sequence">
+                    <options from_data_table="all_fasta"/>
+                </param>
+            </when>
+            <when value="history">
+                <param name="genome_fasta" type="data" format="fasta" label="Source FASTA Sequence"/>
+            </when>
+        </conditional>
+    </xml>
+    <xml name="gff3_input">
+        <param label="GFF3 Annotations" name="gff3_data" type="data" format="gff3"/>
+    </xml>
+    <xml name="input/gff3+fasta">
+        <expand macro="gff3_input"/>
+        <expand macro="genome_selector"/>
+    </xml>
+    <token name="@INPUT_GFF@">
+	    '$gff3_data'
+	</token>
+    <token name="@INPUT_FASTA@">
+    #if str($reference_genome.reference_genome_source) == 'cached':
+            '${reference_genome.fasta_indexes.fields.path}'
+    #else if str($reference_genome.reference_genome_source) == 'history':
+            genomeref.fa
+    #end if
+	</token>
+    <token name="@GENOME_SELECTOR_PRE@">
+    #if $reference_genome.reference_genome_source == 'history':
+            ln -s '$reference_genome.genome_fasta' genomeref.fa;
+    #end if
+	</token>
+    <token name="@GENOME_SELECTOR@">
+    #if str($reference_genome.reference_genome_source) == 'cached':
+            '${reference_genome.fasta_indexes.fields.path}'
+    #else if str($reference_genome.reference_genome_source) == 'history':
+            genomeref.fa
+    #end if
+	</token>
+</macros>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/spaninFuncs.py	Mon Jun 05 02:51:35 2023 +0000
@@ -0,0 +1,530 @@
+"""
+PREMISE
+### Functions/Classes that are used in both generate-putative-osp.py and generate-putative-isp.py
+###### Main premise here is to make the above scripts a little more DRY, as well as easily readable for execution.
+###### Documentation will ATTEMPT to be thourough here
+"""
+
+import re
+from Bio import SeqIO
+from Bio import Seq
+from collections import OrderedDict
+
+# Not written in OOP for a LITTLE bit of trying to keep the complication down in case adjustments are needed by someone else.
+# Much of the manipulation is string based; so it should be straightforward as well as moderately quick
+################## GLobal Variables
+Lys = "K"
+
+
+def check_back_end_snorkels(seq, tmsize):
+    """
+    Searches through the backend of a potential TMD snorkel. This is the 2nd part of a TMD snorkel lysine match.
+    --> seq : should be the sequence fed from the "search_region" portion of the sequence
+    --> tmsize : size of the potential TMD being investigated
+    """
+    found = []
+    if seq[tmsize - 4] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 5]):
+        found = "match"
+        return found
+    elif seq[tmsize - 3] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 4]):
+        found = "match"
+        return found
+    elif seq[tmsize - 2] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 3]):
+        found = "match"
+        return found
+    elif seq[tmsize - 1] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 2]):
+        found = "match"
+        return found
+    else:
+        found = "NOTmatch"
+        return found
+
+
+def prep_a_gff3(fa, spanin_type, org):
+    """
+    Function parses an input detailed 'fa' file and outputs a 'gff3' file
+    ---> fa = input .fa file
+    ---> output = output a returned list of data, easily portable to a gff3 next
+    ---> spanin_type = 'isp' or 'osp'
+    """
+    with org as f:
+        header = f.readline()
+        orgacc = header.split(" ")
+        orgacc = orgacc[0].split(">")[1].strip()
+    fa_zip = tuple_fasta(fa)
+    data = []
+    for a_pair in fa_zip:
+        # print(a_pair)
+        if re.search(("(\[1\])"), a_pair[0]):
+            strand = "+"
+        elif re.search(("(\[-1\])"), a_pair[0]):
+            strand = "-"  # column 7
+        start = re.search(("[\d]+\.\."), a_pair[0]).group(0).split("..")[0]  # column 4
+        end = re.search(("\.\.[\d]+"), a_pair[0]).group(0).split("..")[1]  # column 5
+        orfid = re.search(("(ORF)[\d]+"), a_pair[0]).group(0)  # column 1
+        if spanin_type == "isp":
+            methodtype = "CDS"  # column 3
+            spanin = "isp"
+        elif spanin_type == "osp":
+            methodtype = "CDS"  # column 3
+            spanin = "osp"
+        elif spanin_type == "usp":
+            methodtype = "CDS"
+            spanin = "usp"
+        else:
+            raise "need to input spanin type"
+        source = "cpt.py|putative-*.py"  # column 2
+        score = "."  # column 6
+        phase = "."  # column 8
+        attributes = (
+            "ID=" + orgacc + "|" + orfid + ";ALIAS=" + spanin + ";SEQ=" + a_pair[1]
+        )  # column 9
+        sequence = [
+            [orgacc, source, methodtype, start, end, score, strand, phase, attributes]
+        ]
+        data += sequence
+    return data
+
+
+def write_gff3(data, output="results.gff3"):
+    """
+    Parses results from prep_a_gff3 into a gff3 file
+    ---> input : list from prep_a_gff3
+    ---> output : gff3 file
+    """
+    data = data
+    filename = output
+    with filename as f:
+        f.write("#gff-version 3\n")
+        for value in data:
+            f.write(
+                "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(
+                    value[0],
+                    value[1],
+                    value[2],
+                    value[3],
+                    value[4],
+                    value[5],
+                    value[6],
+                    value[7],
+                    value[8],
+                )
+            )
+    f.close()
+
+
+def find_tmd(
+    pair,
+    minimum=10,
+    maximum=30,
+    TMDmin=10,
+    TMDmax=20,
+    isp_mode=False,
+    peri_min=18,
+    peri_max=206,
+):
+    """
+    Function that searches for lysine snorkels and then for a spanning hydrophobic region that indicates a potential TMD
+    ---> pair : Input of tuple with description and AA sequence (str)
+    ---> minimum : How close from the initial start codon a TMD can be within
+    ---> maximum : How far from the initial start codon a TMD can be within
+    ---> TMDmin : The minimum size that a transmembrane can be (default = 10)
+    ---> TMDmax : The maximum size tha ta transmembrane can be (default = 20)
+    """
+    # hydrophobicAAs = ['P', 'F', 'I', 'W', 'L', 'V', 'M', 'Y', 'C', 'A', 'T', 'G', 'S']
+    tmd = []
+    s = str(pair[1])  # sequence being analyzed
+    # print(s) # for trouble shooting
+    if maximum > len(s):
+        maximum = len(s)
+    search_region = s[minimum - 1 : maximum + 1]
+    # print(f"this is the search region: {search_region}")
+    # print(search_region) # for trouble shooting
+
+    for tmsize in range(TMDmin, TMDmax + 1, 1):
+        # print(f"this is the current tmsize we're trying: {tmsize}")
+        # print('==============='+str(tmsize)+'================') # print for troubleshooting
+        pattern = (
+            "[PFIWLVMYCATGS]{" + str(tmsize) + "}"
+        )  # searches for these hydrophobic residues tmsize total times
+        # print(pattern)
+        # print(f"sending to regex: {search_region}")
+        if re.search(
+            ("[K]"), search_region[1:8]
+        ):  # grabbing one below with search region, so I want to grab one ahead here when I query.
+            store_search = re.search(
+                ("[K]"), search_region[1:8]
+            )  # storing regex object
+            where_we_are = store_search.start()  # finding where we got the hit
+            if re.search(
+                ("[PFIWLVMYCATGS]"), search_region[where_we_are + 1]
+            ) and re.search(
+                ("[PFIWLVMYCATGS]"), search_region[where_we_are - 1]
+            ):  # hydrophobic neighbor
+                # try:
+                g = re.search(
+                    ("[PFIWLVMYCATGS]"), search_region[where_we_are + 1]
+                ).group()
+                backend = check_back_end_snorkels(search_region, tmsize)
+                if backend == "match":
+                    if isp_mode:
+                        g = re.search((pattern), search_region).group()
+                        end_of_tmd = re.search((g), s).end() + 1
+                        amt_peri = len(s) - end_of_tmd
+                        if peri_min <= amt_peri <= peri_max:
+                            pair_desc = pair[0] + ", peri_count~=" + str(amt_peri)
+                            new_pair = (pair_desc, pair[1])
+                            tmd.append(new_pair)
+                    else:
+                        tmd.append(pair)
+                else:
+                    continue
+        # else:
+        # print("I'm continuing out of snorkel loop")
+        # print(f"{search_region}")
+        # continue
+        if re.search((pattern), search_region):
+            # print(f"found match: {}")
+            # print("I AM HEREEEEEEEEEEEEEEEEEEEEEEE")
+            # try:
+            if isp_mode:
+                g = re.search((pattern), search_region).group()
+                end_of_tmd = re.search((g), s).end() + 1
+                amt_peri = len(s) - end_of_tmd
+                if peri_min <= amt_peri <= peri_max:
+                    pair_desc = pair[0] + ", peri_count~=" + str(amt_peri)
+                    new_pair = (pair_desc, pair[1])
+                    tmd.append(new_pair)
+            else:
+                tmd.append(pair)
+        else:
+            continue
+
+        return tmd
+
+
+def find_lipobox(
+    pair, minimum=10, maximum=50, min_after=30, max_after=185, regex=1, osp_mode=False
+):
+    """
+    Function that takes an input tuple, and will return pairs of sequences to their description that have a lipoobox
+    ---> minimum - min distance from start codon to first AA of lipobox
+    ---> maximum - max distance from start codon to first AA of lipobox
+    ---> regex - option 1 (default) => more strict regular expression ; option 2 => looser selection, imported from LipoRy
+
+    """
+    if regex == 1:
+        pattern = "[ILMFTV][^REKD][GAS]C"  # regex for Lipobox from findSpanin.pl
+    elif regex == 2:
+        pattern = "[ACGSILMFTV][^REKD][GAS]C"  # regex for Lipobox from LipoRy
+
+    candidates = []
+    s = str(pair[1])
+    # print(s) # trouble shooting
+    search_region = s[
+        minimum - 1 : maximum + 5
+    ]  # properly slice the input... add 4 to catch if it hangs off at max input
+    # print(search_region) # trouble shooting
+    patterns = ["[ILMFTV][^REKD][GAS]C", "AW[AGS]C"]
+    for pattern in patterns:
+        # print(pattern)  # trouble shooting
+        if re.search((pattern), search_region):  # lipobox must be WITHIN the range...
+            # searches the sequence with the input RegEx AND omits if
+            g = re.search(
+                (pattern), search_region
+            ).group()  # find the exact group match
+            amt_peri = len(s) - re.search((g), s).end() + 1
+            if min_after <= amt_peri <= max_after:  # find the lipobox end region
+                if osp_mode:
+                    pair_desc = pair[0] + ", peri_count~=" + str(amt_peri)
+                    new_pair = (pair_desc, pair[1])
+                    candidates.append(new_pair)
+                else:
+                    candidates.append(pair)
+
+                return candidates
+
+
+def tuple_fasta(fasta_file):
+    """
+    #### INPUT: Fasta File
+    #### OUTPUT: zipped (zip) : pairwise relationship of description to sequence
+    ####
+    """
+    fasta = SeqIO.parse(fasta_file, "fasta")
+    descriptions = []
+    sequences = []
+    for r in fasta:  # iterates and stores each description and sequence
+        description = r.description
+        sequence = str(r.seq)
+        if (
+            sequence[0] != "I"
+        ):  # the translation table currently has I as a potential start codon ==> this will remove all ORFs that start with I
+            descriptions.append(description)
+            sequences.append(sequence)
+        else:
+            continue
+
+    return zip(descriptions, sequences)
+
+
+def lineWrapper(text, charactersize=60):
+
+    if len(text) <= charactersize:
+        return text
+    else:
+        return (
+            text[:charactersize]
+            + "\n"
+            + lineWrapper(text[charactersize:], charactersize)
+        )
+
+
+def getDescriptions(fasta):
+    """
+    Takes an output FASTA file, and parses retrieves the description headers. These headers contain information needed
+    for finding locations of a potential i-spanin and o-spanin proximity to one another.
+    """
+    desc = []
+    with fasta as f:
+        for line in f:
+            if line.startswith(">"):
+                desc.append(line)
+    return desc
+
+
+def splitStrands(text, strand="+"):
+    # positive_strands = []
+    # negative_strands = []
+    if strand == "+":
+        if re.search(("(\[1\])"), text):
+            return text
+    elif strand == "-":
+        if re.search(("(\[-1\])"), text):
+            return text
+    # return positive_strands, negative_strands
+
+
+def parse_a_range(pair, start, end):
+    """
+    Takes an input data tuple from a fasta tuple pair and keeps only those within the input sequence range
+    ---> data : fasta tuple data
+    ---> start : start range to keep
+    ---> end : end range to keep (will need to + 1)
+    """
+    matches = []
+    for each_pair in pair:
+
+        s = re.search(("[\d]+\.\."), each_pair[0]).group(0)  # Start of the sequence
+        s = int(s.split("..")[0])
+        e = re.search(("\.\.[\d]+"), each_pair[0]).group(0)
+        e = int(e.split("..")[1])
+        if start - 1 <= s and e <= end + 1:
+            matches.append(each_pair)
+        else:
+            continue
+    # else:
+    # continue
+    # if matches != []:
+    return matches
+    # else:
+    # print('no candidates within selected range')
+
+
+def grabLocs(text):
+    """
+    Grabs the locations of the spanin based on NT location (seen from ORF). Grabs the ORF name, as per named from the ORF class/module
+    from cpt.py
+    """
+    start = re.search(("[\d]+\.\."), text).group(
+        0
+    )  # Start of the sequence ; looks for [numbers]..
+    end = re.search(("\.\.[\d]+"), text).group(
+        0
+    )  # End of the sequence ; Looks for ..[numbers]
+    orf = re.search(("(ORF)[\d]+"), text).group(
+        0
+    )  # Looks for ORF and the numbers that are after it
+    if re.search(("(\[1\])"), text):  # stores strand
+        strand = "+"
+    elif re.search(("(\[-1\])"), text):  # stores strand
+        strand = "-"
+    start = int(start.split("..")[0])
+    end = int(end.split("..")[1])
+    vals = [start, end, orf, strand]
+
+    return vals
+
+
+def spaninProximity(isp, osp, max_dist=30):
+    """
+    _NOTE THIS FUNCTION COULD BE MODIFIED TO RETURN SEQUENCES_
+    Compares the locations of i-spanins and o-spanins. max_dist is the distance in NT measurement from i-spanin END site
+    to o-spanin START. The user will be inputting AA distance, so a conversion will be necessary (<user_input> * 3)
+    I modified this on 07.30.2020 to bypass the pick + or - strand. To
+    INPUT: list of OSP and ISP candidates
+    OUTPUT: Return (improved) candidates for overlapping, embedded, and separate list
+    """
+
+    embedded = {}
+    overlap = {}
+    separate = {}
+    for iseq in isp:
+        embedded[iseq[2]] = []
+        overlap[iseq[2]] = []
+        separate[iseq[2]] = []
+        for oseq in osp:
+            if iseq[3] == "+":
+                if oseq[3] == "+":
+                    if iseq[0] < oseq[0] < iseq[1] and oseq[1] < iseq[1]:
+                        ### EMBEDDED ###
+                        combo = [
+                            iseq[0],
+                            iseq[1],
+                            oseq[2],
+                            oseq[0],
+                            oseq[1],
+                            iseq[3],
+                        ]  # ordering a return for dic
+                        embedded[iseq[2]] += [combo]
+                    elif iseq[0] < oseq[0] <= iseq[1] and oseq[1] > iseq[1]:
+                        ### OVERLAP / SEPARATE ###
+                        if (iseq[1] - oseq[0]) < 6:
+                            combo = [
+                                iseq[0],
+                                iseq[1],
+                                oseq[2],
+                                oseq[0],
+                                oseq[1],
+                                iseq[3],
+                            ]
+                            separate[iseq[2]] += [combo]
+                        else:
+                            combo = [
+                                iseq[0],
+                                iseq[1],
+                                oseq[2],
+                                oseq[0],
+                                oseq[1],
+                                iseq[3],
+                            ]
+                            overlap[iseq[2]] += [combo]
+                    elif iseq[1] <= oseq[0] <= iseq[1] + max_dist:
+                        combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1], iseq[3]]
+                        separate[iseq[2]] += [combo]
+                    else:
+                        continue
+            if iseq[3] == "-":
+                if oseq[3] == "-":
+                    if iseq[0] <= oseq[1] <= iseq[1] and oseq[0] > iseq[0]:
+                        ### EMBEDDED ###
+                        combo = [
+                            iseq[0],
+                            iseq[1],
+                            oseq[2],
+                            oseq[0],
+                            oseq[1],
+                            iseq[3],
+                        ]  # ordering a return for dict
+                        embedded[iseq[2]] += [combo]
+                    elif iseq[0] <= oseq[1] <= iseq[1] and oseq[0] < iseq[0]:
+                        if (oseq[1] - iseq[0]) < 6:
+                            combo = [
+                                iseq[0],
+                                iseq[1],
+                                oseq[2],
+                                oseq[0],
+                                oseq[1],
+                                iseq[3],
+                            ]
+                            separate[iseq[2]] += [combo]
+                        else:
+                            combo = [
+                                iseq[0],
+                                iseq[1],
+                                oseq[2],
+                                oseq[0],
+                                oseq[1],
+                                iseq[3],
+                            ]
+                            overlap[iseq[2]] += [combo]
+                    elif iseq[0] - 10 < oseq[1] < iseq[0]:
+                        combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1], iseq[3]]
+                        separate[iseq[2]] += [combo]
+                    else:
+                        continue
+
+    embedded = {k: embedded[k] for k in embedded if embedded[k]}
+    overlap = {k: overlap[k] for k in overlap if overlap[k]}
+    separate = {k: separate[k] for k in separate if separate[k]}
+
+    return embedded, overlap, separate
+
+
+def check_for_usp():
+    "pass"
+
+
+############################################### TEST RANGE #########################################################################
+####################################################################################################################################
+if __name__ == "__main__":
+
+    #### TMD TEST
+    test_desc = ["one", "two", "three", "four", "five"]
+    test_seq = [
+        "XXXXXXXXXXXXXXXFMCFMCFMCFMCFMCXXXXXXXXXXXXXXXXXXXXXXXXXX",
+        "XXXXXXXXAAKKKKKKKKKKKKKKKXXXXXXXXXXXXX",
+        "XXXXXXX",
+        "XXXXXXXXXXXKXXXXXXXXXX",
+        "XXXXXXXXXXAKXXXXXXXXXXAKXXXXXXXX",
+    ]
+    # for l in
+    # combo = zip(test_desc,test_seq)
+    pairs = zip(test_desc, test_seq)
+    tmd = []
+    for each_pair in pairs:
+        # print(each_pair)
+        try:
+            tmd += find_tmd(pair=each_pair)
+        except (IndexError, TypeError):
+            continue
+        # try:s = each_pair[1]
+        # tmd += find_tmd(seq=s, tmsize=15)
+    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
+    # print(tmd)
+    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
+
+    #### tuple-fasta TEST
+    # fasta_file = 'out_isp.fa'
+    # ret = tuple_fasta(fasta_file)
+    # print('=============')
+    # for i in ret:
+    # print(i[1])
+
+    #### LipoBox TEST
+    test_desc = ["one", "two", "three", "four", "five", "six", "seven"]
+    test_seq = [
+        "XXXXXXXXXTGGCXXXXXXXXXXXXXXXX",
+        "XXXXXXXXAAKKKKKKKKKKKKKKKXXXXXXXXXXXXX",
+        "XXXXXXX",
+        "AGGCXXXXXXXXXXXXXXXXXXXXTT",
+        "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTGGC",
+        "XXXXXXXXXXXXXXXXXXXXXXXXXXTGGC",
+        "MSTLRELRLRRALKEQSMRYLLSIKKTLPRWKGALIGLFLICVATISGCASESKLPEPPMVSVDSSLMVEPNLTTEMLNVFSQ*",
+    ]
+    pairs = zip(test_desc, test_seq)
+    lipo = []
+    for each_pair in pairs:
+        # print(each_pair)
+        # try:
+        try:
+            lipo += find_lipobox(pair=each_pair, regex=2)  # , minimum=8)
+        except TypeError:  # catches if something doesnt have the min/max requirements (something is too small)
+            continue
+        # except:
+        # continue
+    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
+    #############################3
+    # g = prep_a_gff3(fa='putative_isp.fa', spanin_type='isp')
+    # print(g)
+    # write_gff3(data=g)