Mercurial > repos > cstrittmatter > ss2v110
comparison core.py @ 2:d0350fe29fdf draft
planemo upload commit c50df40caef2fb97c178d6890961e0e527992324
author | cstrittmatter |
---|---|
date | Mon, 27 Apr 2020 01:11:53 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:9811f8cd313d | 2:d0350fe29fdf |
---|---|
1 #!/usr/bin/env python3 | |
2 | |
3 | |
4 import gzip | |
5 import io | |
6 import pickle | |
7 import os | |
8 import sys | |
9 | |
10 from argparse import ArgumentParser | |
11 try: | |
12 from .version import SalmID_version | |
13 except ImportError: | |
14 SalmID_version = "version unknown" | |
15 | |
16 | |
17 def reverse_complement(sequence): | |
18 """return the reverse complement of a nucleotide (including IUPAC ambiguous nuceotide codes)""" | |
19 complement = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'N': 'N', 'M': 'K', 'R': 'Y', 'W': 'W', | |
20 'S': 'S', 'Y': 'R', 'K': 'M', 'V': 'B', 'H': 'D', 'D': 'H', 'B': 'V'} | |
21 return "".join(complement[base] for base in reversed(sequence)) | |
22 | |
23 | |
24 def parse_args(): | |
25 "Parse the input arguments, use '-h' for help." | |
26 parser = ArgumentParser(description='SalmID - rapid Kmer based Salmonella identifier from sequence data') | |
27 # inputs | |
28 parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + SalmID_version) | |
29 parser.add_argument( | |
30 '-i', '--input_file', type=str, required=False, default='None', metavar='your_fastqgz', | |
31 help='Single fastq.gz file input, include path to file if file is not in same directory ') | |
32 parser.add_argument( | |
33 '-e', '--extension', type=str, required=False, default='.fastq.gz', metavar='file_extension', | |
34 help='File extension, if specified without "--input_dir", SalmID will attempt to ID all files\n' + | |
35 ' with this extension in current directory, otherwise files in input directory') | |
36 | |
37 parser.add_argument( | |
38 '-d', '--input_dir', type=str, required=False, default='.', metavar='directory', | |
39 help='Directory which contains data for identification, when not specified files in current directory will be analyzed.') | |
40 parser.add_argument( | |
41 '-r', '--report', type=str, required=False, default='percentage', metavar='percentage, coverage or taxonomy', | |
42 help='Report either percentage ("percentage") of clade specific kmers recovered, average kmer-coverage ("cov"), or ' | |
43 'taxonomy (taxonomic species ID, plus observed mean k-mer coverages and expected coverage).') | |
44 parser.add_argument( | |
45 '-m', '--mode', type=str, required=False, default='quick', metavar='quick or thorough', | |
46 help='Quick [quick] or thorough [thorough] mode') | |
47 if len(sys.argv) == 1: | |
48 parser.print_help(sys.stderr) | |
49 sys.exit(1) | |
50 return parser.parse_args() | |
51 | |
52 | |
53 def get_av_read_length(file): | |
54 """Samples the first 100 reads from a fastq file and return the average read length.""" | |
55 i = 1 | |
56 n_reads = 0 | |
57 total_length = 0 | |
58 if file.endswith(".gz"): | |
59 file_content = io.BufferedReader(gzip.open(file)) | |
60 else: | |
61 file_content = open(file, "r").readlines() | |
62 for line in file_content: | |
63 if i % 4 == 2: | |
64 total_length += len(line.strip()) | |
65 n_reads += 1 | |
66 i += 1 | |
67 if n_reads == 100: | |
68 break | |
69 return total_length / 100 | |
70 | |
71 | |
72 def createKmerDict_reads(list_of_strings, kmer): | |
73 """Count occurence of K-mers in a list of strings | |
74 | |
75 Args: | |
76 list_of_strings(list of str): nucleotide sequences as a list of strings | |
77 kmer(int): length of the K-mer to count | |
78 | |
79 Returns: | |
80 dict: dictionary with kmers as keys, counts for each kmer as values""" | |
81 kmer_table = {} | |
82 for string in list_of_strings: | |
83 sequence = string.strip('\n') | |
84 if len(sequence) >= kmer: | |
85 for i in range(len(sequence) - kmer + 1): | |
86 new_mer = sequence[i:i + kmer] | |
87 new_mer_rc = reverse_complement(new_mer) | |
88 if new_mer in kmer_table: | |
89 kmer_table[new_mer.upper()] += 1 | |
90 else: | |
91 kmer_table[new_mer.upper()] = 1 | |
92 if new_mer_rc in kmer_table: | |
93 kmer_table[new_mer_rc.upper()] += 1 | |
94 else: | |
95 kmer_table[new_mer_rc.upper()] = 1 | |
96 return kmer_table | |
97 | |
98 | |
99 def target_read_kmerizer_multi(file, k, kmerDict_1, kmerDict_2, mode): | |
100 mean_1 = None | |
101 mean_2 = None | |
102 i = 1 | |
103 n_reads_1 = 0 | |
104 n_reads_2 = 0 | |
105 total_coverage_1 = 0 | |
106 total_coverage_2 = 0 | |
107 reads_1 = [] | |
108 reads_2 = [] | |
109 total_reads = 0 | |
110 if file.endswith(".gz"): | |
111 file_content = io.BufferedReader(gzip.open(file)) | |
112 else: | |
113 file_content = open(file, "r").readlines() | |
114 for line in file_content: | |
115 start = int((len(line) - k) // 2) | |
116 if i % 4 == 2: | |
117 total_reads += 1 | |
118 if file.endswith(".gz"): | |
119 s1 = line[start:k + start].decode() | |
120 line = line.decode() | |
121 else: | |
122 s1 = line[start:k + start] | |
123 if s1 in kmerDict_1: | |
124 n_reads_1 += 1 | |
125 total_coverage_1 += len(line) | |
126 reads_1.append(line) | |
127 if s1 in kmerDict_2: | |
128 n_reads_2 += 1 | |
129 total_coverage_2 += len(line) | |
130 reads_2.append(line) | |
131 i += 1 | |
132 if mode == 'quick': | |
133 if total_coverage_2 >= 800000: | |
134 break | |
135 | |
136 if len(reads_1) == 0: | |
137 kmer_Dict1 = {} | |
138 else: | |
139 kmer_Dict1 = createKmerDict_reads(reads_1, k) | |
140 mers_1 = set([key for key in kmer_Dict1]) | |
141 mean_1 = sum([kmer_Dict1[key] for key in kmer_Dict1]) / len(mers_1) | |
142 if len(reads_2) == 0: | |
143 kmer_Dict2 = {} | |
144 else: | |
145 kmer_Dict2 = createKmerDict_reads(reads_2, k) | |
146 mers_2 = set([key for key in kmer_Dict2]) | |
147 mean_2 = sum([kmer_Dict2[key] for key in kmer_Dict2]) / len(mers_2) | |
148 return kmer_Dict1, kmer_Dict2, mean_1, mean_2, total_reads | |
149 | |
150 | |
151 def mean_cov_selected_kmers(iterable, kmer_dict, clade_specific_kmers): | |
152 ''' | |
153 Given an iterable (list, set, dictrionary) returns mean coverage for the kmers in iterable | |
154 :param iterable: set, list or dictionary containing kmers | |
155 :param kmer_dict: dictionary with kmers as keys, kmer-frequency as value | |
156 :param clade_specific_kmers: list, dict or set of clade specific kmers | |
157 :return: mean frequency as float | |
158 ''' | |
159 if len(iterable) == 0: | |
160 return 0 | |
161 return sum([kmer_dict[value] for value in iterable]) / len(clade_specific_kmers) | |
162 | |
163 | |
164 def kmer_lists(query_fastq_gz, k, | |
165 allmers, allmers_rpoB, | |
166 uniqmers_bongori, | |
167 uniqmers_I, | |
168 uniqmers_IIa, | |
169 uniqmers_IIb, | |
170 uniqmers_IIIa, | |
171 uniqmers_IIIb, | |
172 uniqmers_IV, | |
173 uniqmers_VI, | |
174 uniqmers_VII, | |
175 uniqmers_VIII, | |
176 uniqmers_bongori_rpoB, | |
177 uniqmers_S_enterica_rpoB, | |
178 uniqmers_Escherichia_rpoB, | |
179 uniqmers_Listeria_ss_rpoB, | |
180 uniqmers_Lmono_rpoB, | |
181 mode): | |
182 dict_invA, dict_rpoB, mean_invA, mean_rpoB, total_reads = target_read_kmerizer_multi(query_fastq_gz, k, allmers, | |
183 allmers_rpoB, mode) | |
184 target_mers_invA = set([key for key in dict_invA]) | |
185 target_mers_rpoB = set([key for key in dict_rpoB]) | |
186 if target_mers_invA == 0: | |
187 print('No reads found matching invA, no Salmonella in sample?') | |
188 else: | |
189 p_bongori = (len(uniqmers_bongori & target_mers_invA) / len(uniqmers_bongori)) * 100 | |
190 p_I = (len(uniqmers_I & target_mers_invA) / len(uniqmers_I)) * 100 | |
191 p_IIa = (len(uniqmers_IIa & target_mers_invA) / len(uniqmers_IIa)) * 100 | |
192 p_IIb = (len(uniqmers_IIb & target_mers_invA) / len(uniqmers_IIb)) * 100 | |
193 p_IIIa = (len(uniqmers_IIIa & target_mers_invA) / len(uniqmers_IIIa)) * 100 | |
194 p_IIIb = (len(uniqmers_IIIb & target_mers_invA) / len(uniqmers_IIIb)) * 100 | |
195 p_VI = (len(uniqmers_VI & target_mers_invA) / len(uniqmers_VI)) * 100 | |
196 p_IV = (len(uniqmers_IV & target_mers_invA) / len(uniqmers_IV)) * 100 | |
197 p_VII = (len(uniqmers_VII & target_mers_invA) / len(uniqmers_VII)) * 100 | |
198 p_VIII = (len(uniqmers_VIII & target_mers_invA) / len(uniqmers_VIII)) * 100 | |
199 p_bongori_rpoB = (len(uniqmers_bongori_rpoB & target_mers_rpoB) / len(uniqmers_bongori_rpoB)) * 100 | |
200 p_Senterica = (len(uniqmers_S_enterica_rpoB & target_mers_rpoB) / len(uniqmers_S_enterica_rpoB)) * 100 | |
201 p_Escherichia = (len(uniqmers_Escherichia_rpoB & target_mers_rpoB) / len(uniqmers_Escherichia_rpoB)) * 100 | |
202 p_Listeria_ss = (len(uniqmers_Listeria_ss_rpoB & target_mers_rpoB) / len(uniqmers_Listeria_ss_rpoB)) * 100 | |
203 p_Lmono = (len(uniqmers_Lmono_rpoB & target_mers_rpoB) / len(uniqmers_Lmono_rpoB)) * 100 | |
204 bongori_invA_cov = mean_cov_selected_kmers(uniqmers_bongori & target_mers_invA, dict_invA, uniqmers_bongori) | |
205 I_invA_cov = mean_cov_selected_kmers(uniqmers_I & target_mers_invA, dict_invA, uniqmers_I) | |
206 IIa_invA_cov = mean_cov_selected_kmers(uniqmers_IIa & target_mers_invA, dict_invA, uniqmers_IIa) | |
207 IIb_invA_cov = mean_cov_selected_kmers(uniqmers_IIb & target_mers_invA, dict_invA, uniqmers_IIb) | |
208 IIIa_invA_cov = mean_cov_selected_kmers(uniqmers_IIIa & target_mers_invA, dict_invA, uniqmers_IIIa) | |
209 IIIb_invA_cov = mean_cov_selected_kmers(uniqmers_IIIb & target_mers_invA, dict_invA, uniqmers_IIIb) | |
210 IV_invA_cov = mean_cov_selected_kmers(uniqmers_IV & target_mers_invA, dict_invA, uniqmers_IV) | |
211 VI_invA_cov = mean_cov_selected_kmers(uniqmers_VI & target_mers_invA, dict_invA, uniqmers_VI) | |
212 VII_invA_cov = mean_cov_selected_kmers(uniqmers_VII & target_mers_invA, dict_invA, uniqmers_VII) | |
213 VIII_invA_cov = mean_cov_selected_kmers(uniqmers_VIII & target_mers_invA, dict_invA, uniqmers_VIII) | |
214 S_enterica_rpoB_cov = mean_cov_selected_kmers((uniqmers_S_enterica_rpoB & target_mers_rpoB), dict_rpoB, | |
215 uniqmers_S_enterica_rpoB) | |
216 S_bongori_rpoB_cov = mean_cov_selected_kmers((uniqmers_bongori_rpoB & target_mers_rpoB), dict_rpoB, | |
217 uniqmers_bongori_rpoB) | |
218 Escherichia_rpoB_cov = mean_cov_selected_kmers((uniqmers_Escherichia_rpoB & target_mers_rpoB), dict_rpoB, | |
219 uniqmers_Escherichia_rpoB) | |
220 Listeria_ss_rpoB_cov = mean_cov_selected_kmers((uniqmers_Listeria_ss_rpoB & target_mers_rpoB), dict_rpoB, | |
221 uniqmers_Listeria_ss_rpoB) | |
222 Lmono_rpoB_cov = mean_cov_selected_kmers((uniqmers_Lmono_rpoB & target_mers_rpoB), dict_rpoB, | |
223 uniqmers_Lmono_rpoB) | |
224 coverages = [Listeria_ss_rpoB_cov, Lmono_rpoB_cov, Escherichia_rpoB_cov, S_bongori_rpoB_cov, | |
225 S_enterica_rpoB_cov, bongori_invA_cov, I_invA_cov, IIa_invA_cov, IIb_invA_cov, | |
226 IIIa_invA_cov, IIIb_invA_cov, IV_invA_cov, VI_invA_cov, VII_invA_cov, VIII_invA_cov] | |
227 locus_scores = [p_Listeria_ss, p_Lmono, p_Escherichia, p_bongori_rpoB, p_Senterica, p_bongori, | |
228 p_I, p_IIa, p_IIb, p_IIIa, p_IIIb, p_IV, p_VI, p_VII, p_VIII] | |
229 return locus_scores, coverages, total_reads | |
230 | |
231 | |
232 def report_taxon(locus_covs, average_read_length, number_of_reads): | |
233 list_taxa = [ 'Listeria ss', 'Listeria monocytogenes', 'Escherichia sp.', # noqa: E201 | |
234 'Salmonella bongori (rpoB)', 'Salmonella enterica (rpoB)', | |
235 'Salmonella bongori (invA)', 'S. enterica subsp. enterica (invA)', | |
236 'S. enterica subsp. salamae (invA: clade a)', 'S. enterica subsp. salamae (invA: clade b)', | |
237 'S. enterica subsp. arizonae (invA)', 'S. enterica subsp. diarizonae (invA)', | |
238 'S. enterica subsp. houtenae (invA)', 'S. enterica subsp. indica (invA)', | |
239 'S. enterica subsp. VII (invA)', 'S. enterica subsp. salamae (invA: clade VIII)' ] # noqa: E202 | |
240 if sum(locus_covs) < 1: | |
241 rpoB = ('No rpoB matches!', 0) | |
242 invA = ('No invA matches!', 0) | |
243 return rpoB, invA, 0.0 | |
244 else: | |
245 # given list of scores get taxon | |
246 if sum(locus_covs[0:5]) > 0: | |
247 best_rpoB = max(range(len(locus_covs[1:5])), key=lambda x: locus_covs[1:5][x]) + 1 | |
248 all_rpoB = max(range(len(locus_covs[0:5])), key=lambda x: locus_covs[0:5][x]) | |
249 if (locus_covs[best_rpoB] != 0) & (all_rpoB == 0): | |
250 rpoB = (list_taxa[best_rpoB], locus_covs[best_rpoB]) | |
251 elif (all_rpoB == 0) & (round(sum(locus_covs[1:5]), 1) < 1): | |
252 rpoB = (list_taxa[0], locus_covs[0]) | |
253 else: | |
254 rpoB = (list_taxa[best_rpoB], locus_covs[best_rpoB]) | |
255 else: | |
256 rpoB = ('No rpoB matches!', 0) | |
257 if sum(locus_covs[5:]) > 0: | |
258 best_invA = max(range(len(locus_covs[5:])), key=lambda x: locus_covs[5:][x]) + 5 | |
259 invA = (list_taxa[best_invA], locus_covs[best_invA]) | |
260 else: | |
261 invA = ('No invA matches!', 0) | |
262 if 'Listeria' in rpoB[0]: | |
263 return rpoB, invA, (average_read_length * number_of_reads) / 3000000 | |
264 else: | |
265 return rpoB, invA, (average_read_length * number_of_reads) / 5000000 | |
266 | |
267 | |
268 def main(): | |
269 ex_dir = os.path.dirname(os.path.realpath(__file__)) | |
270 args = parse_args() | |
271 input_file = args.input_file | |
272 if input_file != 'None': | |
273 files = [input_file] | |
274 else: | |
275 extension = args.extension | |
276 inputdir = args.input_dir | |
277 files = [inputdir + '/' + f for f in os.listdir(inputdir) if f.endswith(extension)] | |
278 report = args.report | |
279 mode = args.mode | |
280 f_invA = open(ex_dir + "/invA_mers_dict", "rb") | |
281 sets_dict_invA = pickle.load(f_invA) | |
282 f_invA.close() | |
283 allmers = sets_dict_invA['allmers'] | |
284 uniqmers_I = sets_dict_invA['uniqmers_I'] | |
285 uniqmers_IIa = sets_dict_invA['uniqmers_IIa'] | |
286 uniqmers_IIb = sets_dict_invA['uniqmers_IIb'] | |
287 uniqmers_IIIa = sets_dict_invA['uniqmers_IIIa'] | |
288 uniqmers_IIIb = sets_dict_invA['uniqmers_IIIb'] | |
289 uniqmers_IV = sets_dict_invA['uniqmers_IV'] | |
290 uniqmers_VI = sets_dict_invA['uniqmers_VI'] | |
291 uniqmers_VII = sets_dict_invA['uniqmers_VII'] | |
292 uniqmers_VIII = sets_dict_invA['uniqmers_VIII'] | |
293 uniqmers_bongori = sets_dict_invA['uniqmers_bongori'] | |
294 | |
295 f = open(ex_dir + "/rpoB_mers_dict", "rb") | |
296 sets_dict = pickle.load(f) | |
297 f.close() | |
298 | |
299 allmers_rpoB = sets_dict['allmers'] | |
300 uniqmers_bongori_rpoB = sets_dict['uniqmers_bongori'] | |
301 uniqmers_S_enterica_rpoB = sets_dict['uniqmers_S_enterica'] | |
302 uniqmers_Escherichia_rpoB = sets_dict['uniqmers_Escherichia'] | |
303 uniqmers_Listeria_ss_rpoB = sets_dict['uniqmers_Listeria_ss'] | |
304 uniqmers_Lmono_rpoB = sets_dict['uniqmers_L_mono'] | |
305 # todo: run kmer_lists() once, create list of tuples containing data to be used fro different reports | |
306 if report == 'taxonomy': | |
307 print('file\trpoB\tinvA\texpected coverage') | |
308 for f in files: | |
309 locus_scores, coverages, reads = kmer_lists(f, 27, | |
310 allmers, allmers_rpoB, | |
311 uniqmers_bongori, | |
312 uniqmers_I, | |
313 uniqmers_IIa, | |
314 uniqmers_IIb, | |
315 uniqmers_IIIa, | |
316 uniqmers_IIIb, | |
317 uniqmers_IV, | |
318 uniqmers_VI, | |
319 uniqmers_VII, | |
320 uniqmers_VIII, | |
321 uniqmers_bongori_rpoB, | |
322 uniqmers_S_enterica_rpoB, | |
323 uniqmers_Escherichia_rpoB, | |
324 uniqmers_Listeria_ss_rpoB, | |
325 uniqmers_Lmono_rpoB, | |
326 mode) | |
327 pretty_covs = [round(cov, 1) for cov in coverages] | |
328 report = report_taxon(pretty_covs, get_av_read_length(f), reads) | |
329 print(f.split('/')[-1] + '\t' + report[0][0] + '[' + str(report[0][1]) + ']' + '\t' + report[1][0] + | |
330 '[' + str(report[1][1]) + ']' + | |
331 '\t' + str(round(report[2], 1))) | |
332 else: | |
333 print( | |
334 'file\tListeria sensu stricto (rpoB)\tL. monocytogenes (rpoB)\tEscherichia spp. (rpoB)\tS. bongori (rpoB)\tS. enterica' + # noqa: E122 | |
335 '(rpoB)\tS. bongori (invA)\tsubsp. I (invA)\tsubsp. II (clade a: invA)\tsubsp. II' + # noqa: E122 | |
336 ' (clade b: invA)\tsubsp. IIIa (invA)\tsubsp. IIIb (invA)\tsubsp.IV (invA)\tsubsp. VI (invA)\tsubsp. VII (invA)' + # noqa: E122 | |
337 '\tsubsp. II (clade VIII : invA)') | |
338 if report == 'percentage': | |
339 for f in files: | |
340 locus_scores, coverages, reads = kmer_lists(f, 27, | |
341 allmers, allmers_rpoB, | |
342 uniqmers_bongori, | |
343 uniqmers_I, | |
344 uniqmers_IIa, | |
345 uniqmers_IIb, | |
346 uniqmers_IIIa, | |
347 uniqmers_IIIb, | |
348 uniqmers_IV, | |
349 uniqmers_VI, | |
350 uniqmers_VII, | |
351 uniqmers_VIII, | |
352 uniqmers_bongori_rpoB, | |
353 uniqmers_S_enterica_rpoB, | |
354 uniqmers_Escherichia_rpoB, | |
355 uniqmers_Listeria_ss_rpoB, | |
356 uniqmers_Lmono_rpoB, | |
357 mode) | |
358 pretty_scores = [str(round(score)) for score in locus_scores] | |
359 print(f.split('/')[-1] + '\t' + '\t'.join(pretty_scores)) | |
360 else: | |
361 for f in files: | |
362 locus_scores, coverages, reads = kmer_lists(f, 27, | |
363 allmers, allmers_rpoB, | |
364 uniqmers_bongori, | |
365 uniqmers_I, | |
366 uniqmers_IIa, | |
367 uniqmers_IIb, | |
368 uniqmers_IIIa, | |
369 uniqmers_IIIb, | |
370 uniqmers_IV, | |
371 uniqmers_VI, | |
372 uniqmers_VII, | |
373 uniqmers_VIII, | |
374 uniqmers_bongori_rpoB, | |
375 uniqmers_S_enterica_rpoB, | |
376 uniqmers_Escherichia_rpoB, | |
377 uniqmers_Listeria_ss_rpoB, | |
378 uniqmers_Lmono_rpoB, | |
379 mode) | |
380 pretty_covs = [str(round(cov, 1)) for cov in coverages] | |
381 print(f.split('/')[-1] + '\t' + '\t'.join(pretty_covs)) | |
382 | |
383 | |
384 if __name__ == '__main__': | |
385 main() | |
386 |