Mercurial > repos > cstrittmatter > ss2v110
diff core.py @ 2:d0350fe29fdf draft
planemo upload commit c50df40caef2fb97c178d6890961e0e527992324
author | cstrittmatter |
---|---|
date | Mon, 27 Apr 2020 01:11:53 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/core.py Mon Apr 27 01:11:53 2020 -0400 @@ -0,0 +1,386 @@ +#!/usr/bin/env python3 + + +import gzip +import io +import pickle +import os +import sys + +from argparse import ArgumentParser +try: + from .version import SalmID_version +except ImportError: + SalmID_version = "version unknown" + + +def reverse_complement(sequence): + """return the reverse complement of a nucleotide (including IUPAC ambiguous nuceotide codes)""" + complement = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'N': 'N', 'M': 'K', 'R': 'Y', 'W': 'W', + 'S': 'S', 'Y': 'R', 'K': 'M', 'V': 'B', 'H': 'D', 'D': 'H', 'B': 'V'} + return "".join(complement[base] for base in reversed(sequence)) + + +def parse_args(): + "Parse the input arguments, use '-h' for help." + parser = ArgumentParser(description='SalmID - rapid Kmer based Salmonella identifier from sequence data') + # inputs + parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + SalmID_version) + parser.add_argument( + '-i', '--input_file', type=str, required=False, default='None', metavar='your_fastqgz', + help='Single fastq.gz file input, include path to file if file is not in same directory ') + parser.add_argument( + '-e', '--extension', type=str, required=False, default='.fastq.gz', metavar='file_extension', + help='File extension, if specified without "--input_dir", SalmID will attempt to ID all files\n' + + ' with this extension in current directory, otherwise files in input directory') + + parser.add_argument( + '-d', '--input_dir', type=str, required=False, default='.', metavar='directory', + help='Directory which contains data for identification, when not specified files in current directory will be analyzed.') + parser.add_argument( + '-r', '--report', type=str, required=False, default='percentage', metavar='percentage, coverage or taxonomy', + help='Report either percentage ("percentage") of clade specific kmers recovered, average kmer-coverage ("cov"), or ' + 'taxonomy (taxonomic species ID, plus observed mean k-mer coverages and expected coverage).') + parser.add_argument( + '-m', '--mode', type=str, required=False, default='quick', metavar='quick or thorough', + help='Quick [quick] or thorough [thorough] mode') + if len(sys.argv) == 1: + parser.print_help(sys.stderr) + sys.exit(1) + return parser.parse_args() + + +def get_av_read_length(file): + """Samples the first 100 reads from a fastq file and return the average read length.""" + i = 1 + n_reads = 0 + total_length = 0 + if file.endswith(".gz"): + file_content = io.BufferedReader(gzip.open(file)) + else: + file_content = open(file, "r").readlines() + for line in file_content: + if i % 4 == 2: + total_length += len(line.strip()) + n_reads += 1 + i += 1 + if n_reads == 100: + break + return total_length / 100 + + +def createKmerDict_reads(list_of_strings, kmer): + """Count occurence of K-mers in a list of strings + + Args: + list_of_strings(list of str): nucleotide sequences as a list of strings + kmer(int): length of the K-mer to count + + Returns: + dict: dictionary with kmers as keys, counts for each kmer as values""" + kmer_table = {} + for string in list_of_strings: + sequence = string.strip('\n') + if len(sequence) >= kmer: + for i in range(len(sequence) - kmer + 1): + new_mer = sequence[i:i + kmer] + new_mer_rc = reverse_complement(new_mer) + if new_mer in kmer_table: + kmer_table[new_mer.upper()] += 1 + else: + kmer_table[new_mer.upper()] = 1 + if new_mer_rc in kmer_table: + kmer_table[new_mer_rc.upper()] += 1 + else: + kmer_table[new_mer_rc.upper()] = 1 + return kmer_table + + +def target_read_kmerizer_multi(file, k, kmerDict_1, kmerDict_2, mode): + mean_1 = None + mean_2 = None + i = 1 + n_reads_1 = 0 + n_reads_2 = 0 + total_coverage_1 = 0 + total_coverage_2 = 0 + reads_1 = [] + reads_2 = [] + total_reads = 0 + if file.endswith(".gz"): + file_content = io.BufferedReader(gzip.open(file)) + else: + file_content = open(file, "r").readlines() + for line in file_content: + start = int((len(line) - k) // 2) + if i % 4 == 2: + total_reads += 1 + if file.endswith(".gz"): + s1 = line[start:k + start].decode() + line = line.decode() + else: + s1 = line[start:k + start] + if s1 in kmerDict_1: + n_reads_1 += 1 + total_coverage_1 += len(line) + reads_1.append(line) + if s1 in kmerDict_2: + n_reads_2 += 1 + total_coverage_2 += len(line) + reads_2.append(line) + i += 1 + if mode == 'quick': + if total_coverage_2 >= 800000: + break + + if len(reads_1) == 0: + kmer_Dict1 = {} + else: + kmer_Dict1 = createKmerDict_reads(reads_1, k) + mers_1 = set([key for key in kmer_Dict1]) + mean_1 = sum([kmer_Dict1[key] for key in kmer_Dict1]) / len(mers_1) + if len(reads_2) == 0: + kmer_Dict2 = {} + else: + kmer_Dict2 = createKmerDict_reads(reads_2, k) + mers_2 = set([key for key in kmer_Dict2]) + mean_2 = sum([kmer_Dict2[key] for key in kmer_Dict2]) / len(mers_2) + return kmer_Dict1, kmer_Dict2, mean_1, mean_2, total_reads + + +def mean_cov_selected_kmers(iterable, kmer_dict, clade_specific_kmers): + ''' + Given an iterable (list, set, dictrionary) returns mean coverage for the kmers in iterable + :param iterable: set, list or dictionary containing kmers + :param kmer_dict: dictionary with kmers as keys, kmer-frequency as value + :param clade_specific_kmers: list, dict or set of clade specific kmers + :return: mean frequency as float + ''' + if len(iterable) == 0: + return 0 + return sum([kmer_dict[value] for value in iterable]) / len(clade_specific_kmers) + + +def kmer_lists(query_fastq_gz, k, + allmers, allmers_rpoB, + uniqmers_bongori, + uniqmers_I, + uniqmers_IIa, + uniqmers_IIb, + uniqmers_IIIa, + uniqmers_IIIb, + uniqmers_IV, + uniqmers_VI, + uniqmers_VII, + uniqmers_VIII, + uniqmers_bongori_rpoB, + uniqmers_S_enterica_rpoB, + uniqmers_Escherichia_rpoB, + uniqmers_Listeria_ss_rpoB, + uniqmers_Lmono_rpoB, + mode): + dict_invA, dict_rpoB, mean_invA, mean_rpoB, total_reads = target_read_kmerizer_multi(query_fastq_gz, k, allmers, + allmers_rpoB, mode) + target_mers_invA = set([key for key in dict_invA]) + target_mers_rpoB = set([key for key in dict_rpoB]) + if target_mers_invA == 0: + print('No reads found matching invA, no Salmonella in sample?') + else: + p_bongori = (len(uniqmers_bongori & target_mers_invA) / len(uniqmers_bongori)) * 100 + p_I = (len(uniqmers_I & target_mers_invA) / len(uniqmers_I)) * 100 + p_IIa = (len(uniqmers_IIa & target_mers_invA) / len(uniqmers_IIa)) * 100 + p_IIb = (len(uniqmers_IIb & target_mers_invA) / len(uniqmers_IIb)) * 100 + p_IIIa = (len(uniqmers_IIIa & target_mers_invA) / len(uniqmers_IIIa)) * 100 + p_IIIb = (len(uniqmers_IIIb & target_mers_invA) / len(uniqmers_IIIb)) * 100 + p_VI = (len(uniqmers_VI & target_mers_invA) / len(uniqmers_VI)) * 100 + p_IV = (len(uniqmers_IV & target_mers_invA) / len(uniqmers_IV)) * 100 + p_VII = (len(uniqmers_VII & target_mers_invA) / len(uniqmers_VII)) * 100 + p_VIII = (len(uniqmers_VIII & target_mers_invA) / len(uniqmers_VIII)) * 100 + p_bongori_rpoB = (len(uniqmers_bongori_rpoB & target_mers_rpoB) / len(uniqmers_bongori_rpoB)) * 100 + p_Senterica = (len(uniqmers_S_enterica_rpoB & target_mers_rpoB) / len(uniqmers_S_enterica_rpoB)) * 100 + p_Escherichia = (len(uniqmers_Escherichia_rpoB & target_mers_rpoB) / len(uniqmers_Escherichia_rpoB)) * 100 + p_Listeria_ss = (len(uniqmers_Listeria_ss_rpoB & target_mers_rpoB) / len(uniqmers_Listeria_ss_rpoB)) * 100 + p_Lmono = (len(uniqmers_Lmono_rpoB & target_mers_rpoB) / len(uniqmers_Lmono_rpoB)) * 100 + bongori_invA_cov = mean_cov_selected_kmers(uniqmers_bongori & target_mers_invA, dict_invA, uniqmers_bongori) + I_invA_cov = mean_cov_selected_kmers(uniqmers_I & target_mers_invA, dict_invA, uniqmers_I) + IIa_invA_cov = mean_cov_selected_kmers(uniqmers_IIa & target_mers_invA, dict_invA, uniqmers_IIa) + IIb_invA_cov = mean_cov_selected_kmers(uniqmers_IIb & target_mers_invA, dict_invA, uniqmers_IIb) + IIIa_invA_cov = mean_cov_selected_kmers(uniqmers_IIIa & target_mers_invA, dict_invA, uniqmers_IIIa) + IIIb_invA_cov = mean_cov_selected_kmers(uniqmers_IIIb & target_mers_invA, dict_invA, uniqmers_IIIb) + IV_invA_cov = mean_cov_selected_kmers(uniqmers_IV & target_mers_invA, dict_invA, uniqmers_IV) + VI_invA_cov = mean_cov_selected_kmers(uniqmers_VI & target_mers_invA, dict_invA, uniqmers_VI) + VII_invA_cov = mean_cov_selected_kmers(uniqmers_VII & target_mers_invA, dict_invA, uniqmers_VII) + VIII_invA_cov = mean_cov_selected_kmers(uniqmers_VIII & target_mers_invA, dict_invA, uniqmers_VIII) + S_enterica_rpoB_cov = mean_cov_selected_kmers((uniqmers_S_enterica_rpoB & target_mers_rpoB), dict_rpoB, + uniqmers_S_enterica_rpoB) + S_bongori_rpoB_cov = mean_cov_selected_kmers((uniqmers_bongori_rpoB & target_mers_rpoB), dict_rpoB, + uniqmers_bongori_rpoB) + Escherichia_rpoB_cov = mean_cov_selected_kmers((uniqmers_Escherichia_rpoB & target_mers_rpoB), dict_rpoB, + uniqmers_Escherichia_rpoB) + Listeria_ss_rpoB_cov = mean_cov_selected_kmers((uniqmers_Listeria_ss_rpoB & target_mers_rpoB), dict_rpoB, + uniqmers_Listeria_ss_rpoB) + Lmono_rpoB_cov = mean_cov_selected_kmers((uniqmers_Lmono_rpoB & target_mers_rpoB), dict_rpoB, + uniqmers_Lmono_rpoB) + coverages = [Listeria_ss_rpoB_cov, Lmono_rpoB_cov, Escherichia_rpoB_cov, S_bongori_rpoB_cov, + S_enterica_rpoB_cov, bongori_invA_cov, I_invA_cov, IIa_invA_cov, IIb_invA_cov, + IIIa_invA_cov, IIIb_invA_cov, IV_invA_cov, VI_invA_cov, VII_invA_cov, VIII_invA_cov] + locus_scores = [p_Listeria_ss, p_Lmono, p_Escherichia, p_bongori_rpoB, p_Senterica, p_bongori, + p_I, p_IIa, p_IIb, p_IIIa, p_IIIb, p_IV, p_VI, p_VII, p_VIII] + return locus_scores, coverages, total_reads + + +def report_taxon(locus_covs, average_read_length, number_of_reads): + list_taxa = [ 'Listeria ss', 'Listeria monocytogenes', 'Escherichia sp.', # noqa: E201 + 'Salmonella bongori (rpoB)', 'Salmonella enterica (rpoB)', + 'Salmonella bongori (invA)', 'S. enterica subsp. enterica (invA)', + 'S. enterica subsp. salamae (invA: clade a)', 'S. enterica subsp. salamae (invA: clade b)', + 'S. enterica subsp. arizonae (invA)', 'S. enterica subsp. diarizonae (invA)', + 'S. enterica subsp. houtenae (invA)', 'S. enterica subsp. indica (invA)', + 'S. enterica subsp. VII (invA)', 'S. enterica subsp. salamae (invA: clade VIII)' ] # noqa: E202 + if sum(locus_covs) < 1: + rpoB = ('No rpoB matches!', 0) + invA = ('No invA matches!', 0) + return rpoB, invA, 0.0 + else: + # given list of scores get taxon + if sum(locus_covs[0:5]) > 0: + best_rpoB = max(range(len(locus_covs[1:5])), key=lambda x: locus_covs[1:5][x]) + 1 + all_rpoB = max(range(len(locus_covs[0:5])), key=lambda x: locus_covs[0:5][x]) + if (locus_covs[best_rpoB] != 0) & (all_rpoB == 0): + rpoB = (list_taxa[best_rpoB], locus_covs[best_rpoB]) + elif (all_rpoB == 0) & (round(sum(locus_covs[1:5]), 1) < 1): + rpoB = (list_taxa[0], locus_covs[0]) + else: + rpoB = (list_taxa[best_rpoB], locus_covs[best_rpoB]) + else: + rpoB = ('No rpoB matches!', 0) + if sum(locus_covs[5:]) > 0: + best_invA = max(range(len(locus_covs[5:])), key=lambda x: locus_covs[5:][x]) + 5 + invA = (list_taxa[best_invA], locus_covs[best_invA]) + else: + invA = ('No invA matches!', 0) + if 'Listeria' in rpoB[0]: + return rpoB, invA, (average_read_length * number_of_reads) / 3000000 + else: + return rpoB, invA, (average_read_length * number_of_reads) / 5000000 + + +def main(): + ex_dir = os.path.dirname(os.path.realpath(__file__)) + args = parse_args() + input_file = args.input_file + if input_file != 'None': + files = [input_file] + else: + extension = args.extension + inputdir = args.input_dir + files = [inputdir + '/' + f for f in os.listdir(inputdir) if f.endswith(extension)] + report = args.report + mode = args.mode + f_invA = open(ex_dir + "/invA_mers_dict", "rb") + sets_dict_invA = pickle.load(f_invA) + f_invA.close() + allmers = sets_dict_invA['allmers'] + uniqmers_I = sets_dict_invA['uniqmers_I'] + uniqmers_IIa = sets_dict_invA['uniqmers_IIa'] + uniqmers_IIb = sets_dict_invA['uniqmers_IIb'] + uniqmers_IIIa = sets_dict_invA['uniqmers_IIIa'] + uniqmers_IIIb = sets_dict_invA['uniqmers_IIIb'] + uniqmers_IV = sets_dict_invA['uniqmers_IV'] + uniqmers_VI = sets_dict_invA['uniqmers_VI'] + uniqmers_VII = sets_dict_invA['uniqmers_VII'] + uniqmers_VIII = sets_dict_invA['uniqmers_VIII'] + uniqmers_bongori = sets_dict_invA['uniqmers_bongori'] + + f = open(ex_dir + "/rpoB_mers_dict", "rb") + sets_dict = pickle.load(f) + f.close() + + allmers_rpoB = sets_dict['allmers'] + uniqmers_bongori_rpoB = sets_dict['uniqmers_bongori'] + uniqmers_S_enterica_rpoB = sets_dict['uniqmers_S_enterica'] + uniqmers_Escherichia_rpoB = sets_dict['uniqmers_Escherichia'] + uniqmers_Listeria_ss_rpoB = sets_dict['uniqmers_Listeria_ss'] + uniqmers_Lmono_rpoB = sets_dict['uniqmers_L_mono'] + # todo: run kmer_lists() once, create list of tuples containing data to be used fro different reports + if report == 'taxonomy': + print('file\trpoB\tinvA\texpected coverage') + for f in files: + locus_scores, coverages, reads = kmer_lists(f, 27, + allmers, allmers_rpoB, + uniqmers_bongori, + uniqmers_I, + uniqmers_IIa, + uniqmers_IIb, + uniqmers_IIIa, + uniqmers_IIIb, + uniqmers_IV, + uniqmers_VI, + uniqmers_VII, + uniqmers_VIII, + uniqmers_bongori_rpoB, + uniqmers_S_enterica_rpoB, + uniqmers_Escherichia_rpoB, + uniqmers_Listeria_ss_rpoB, + uniqmers_Lmono_rpoB, + mode) + pretty_covs = [round(cov, 1) for cov in coverages] + report = report_taxon(pretty_covs, get_av_read_length(f), reads) + print(f.split('/')[-1] + '\t' + report[0][0] + '[' + str(report[0][1]) + ']' + '\t' + report[1][0] + + '[' + str(report[1][1]) + ']' + + '\t' + str(round(report[2], 1))) + else: + print( + 'file\tListeria sensu stricto (rpoB)\tL. monocytogenes (rpoB)\tEscherichia spp. (rpoB)\tS. bongori (rpoB)\tS. enterica' + # noqa: E122 + '(rpoB)\tS. bongori (invA)\tsubsp. I (invA)\tsubsp. II (clade a: invA)\tsubsp. II' + # noqa: E122 + ' (clade b: invA)\tsubsp. IIIa (invA)\tsubsp. IIIb (invA)\tsubsp.IV (invA)\tsubsp. VI (invA)\tsubsp. VII (invA)' + # noqa: E122 + '\tsubsp. II (clade VIII : invA)') + if report == 'percentage': + for f in files: + locus_scores, coverages, reads = kmer_lists(f, 27, + allmers, allmers_rpoB, + uniqmers_bongori, + uniqmers_I, + uniqmers_IIa, + uniqmers_IIb, + uniqmers_IIIa, + uniqmers_IIIb, + uniqmers_IV, + uniqmers_VI, + uniqmers_VII, + uniqmers_VIII, + uniqmers_bongori_rpoB, + uniqmers_S_enterica_rpoB, + uniqmers_Escherichia_rpoB, + uniqmers_Listeria_ss_rpoB, + uniqmers_Lmono_rpoB, + mode) + pretty_scores = [str(round(score)) for score in locus_scores] + print(f.split('/')[-1] + '\t' + '\t'.join(pretty_scores)) + else: + for f in files: + locus_scores, coverages, reads = kmer_lists(f, 27, + allmers, allmers_rpoB, + uniqmers_bongori, + uniqmers_I, + uniqmers_IIa, + uniqmers_IIb, + uniqmers_IIIa, + uniqmers_IIIb, + uniqmers_IV, + uniqmers_VI, + uniqmers_VII, + uniqmers_VIII, + uniqmers_bongori_rpoB, + uniqmers_S_enterica_rpoB, + uniqmers_Escherichia_rpoB, + uniqmers_Listeria_ss_rpoB, + uniqmers_Lmono_rpoB, + mode) + pretty_covs = [str(round(cov, 1)) for cov in coverages] + print(f.split('/')[-1] + '\t' + '\t'.join(pretty_covs)) + + +if __name__ == '__main__': + main() +