Mercurial > repos > dcouvin > mirureader
view MIRUReader/MIRUReader.py @ 2:f9422a33e9c1 draft default tip
Uploaded
author | dcouvin |
---|---|
date | Fri, 03 Sep 2021 19:52:01 +0000 |
parents | f0e3646a4e45 |
children |
line wrap: on
line source
#!/usr/bin/python3 #Copyright 2019 NUS pathogen genomics #Written by Cheng Yee Tang (chengyee.tang@nus.edu.sg) #former python tag !/usr/bin/env python import os import sys import gzip import argparse import pandas as pd import statistics import subprocess from statistics import mode from collections import Counter #function to determine repeat number based on total number of mismatches in primer sequence def chooseMode(name, table, CounterList): maxcount = max(CounterList.values()) repeatToCheck = [] for k, v in CounterList.items(): if v == maxcount: repeatToCheck.append(k) x = 0 for i, j in table.items(): if name in i: x += 1 mismatchDict = {} for rp in repeatToCheck: mismatchDict[rp] = 0 for i in range(x): string = name + '_' + str(i+1) if table[string][1] in repeatToCheck: mismatchDict[table[string][1]] += table[string][0] checklist2 = [] for m, n in mismatchDict.items(): checklist2.append(n) duplicates = '' for item in checklist2: if checklist2.count(item) > 1: duplicates = 'yes' finalMode = '' if duplicates == 'yes': finalMode = '/'.join(str(r) for min_value in (min(mismatchDict.values()),) for r in mismatchDict if mismatchDict[r]==min_value) else: finalMode = min(mismatchDict.keys(), key=(lambda k: mismatchDict[k])) return finalMode ''' Main function ''' script_dir = os.path.dirname(os.path.abspath(sys.argv[0])) MIRU_table = script_dir + "/MIRU_table" MIRU_table_0580 = script_dir + "/MIRU_table_0580" MIRU_primers = script_dir + "/MIRU_primers" parser = argparse.ArgumentParser() main_group = parser.add_argument_group('Main options') main_group.add_argument('-r', '--reads', required=True, help='input reads file in fastq/fasta format (required)') main_group.add_argument('-p', '--prefix', required=True, help='sample ID (required)') main_group.add_argument('--table', type=str, default=MIRU_table, help='allele calling table') main_group.add_argument('--primers', type=str, default=MIRU_primers, help='primers sequences') optional_group = parser.add_argument_group('Optional options') optional_group.add_argument('--amplicons', help='provide output from primersearch and summarize MIRU profile directly', action='store_true') optional_group.add_argument('--details', help='for inspection', action='store_true') optional_group.add_argument('--nofasta', help='delete the fasta reads file generated if your reads are in fastq format', action='store_true') args = parser.parse_args() if not os.path.exists(args.reads): sys.exit('Error: ' + args.reads + ' is not found!') sample_prefix = args.prefix sample_dir = os.path.dirname(os.path.abspath(args.reads)) mismatch_allowed = 18 psearchOut = sample_dir + '/' + sample_prefix + '.' + str(mismatch_allowed) + '.primersearch.out' df = pd.read_csv(MIRU_table, sep='\t') df_0580 = pd.read_csv(MIRU_table_0580, sep='\t') miru = [] with open(args.primers) as primerFile: for line in primerFile: miru.append(line.split()[0]) #auto detect .fastq, .fastq.gz, .fasta, .fasta.gz #convert fastq to fasta fastaReads = sample_dir + '/' + sample_prefix + '.fasta' if not args.amplicons: if '.fastq' in args.reads: if '.gz' in args.reads: tmpH = open(fastaReads, 'w') p1 = subprocess.Popen(['zcat', args.reads], stdout=subprocess.PIPE) subprocess_args1 = ['sed', '-n', '1~4s/^@/>/p;2~4p'] subprocess.call(subprocess_args1, stdin=p1.stdout, stdout=tmpH) tmpH.close() else: tmpH = open(fastaReads, 'w') subprocess_args1 = ['sed', '-n', '1~4s/^@/>/p;2~4p', args.reads] subprocess.call(subprocess_args1, stdout=tmpH) tmpH.close() elif '.fasta' in args.reads: if '.gz' in args.reads: with open(fastaReads, 'w') as f: for line in gzip.open(args.reads, 'rb').readlines(): f.write(line) else: fastaReads = args.reads if not args.amplicons: try: subprocess_args = ['primersearch', '-seqall', fastaReads, '-infile', args.primers, '-mismatchpercent', str(mismatch_allowed), '-outfile', psearchOut] subprocess.call(subprocess_args) except OSError: print('OSError: primersearch command is not found.') sys.exit() if not os.path.exists(psearchOut): sys.exit('Error: ' + psearchOut + ' is not found!') lookup = {} repeats = {} with open(psearchOut, 'r') as infile: for line in infile.read().splitlines(): if line.startswith('Primer'): col = line.split(' ') loci = str(col[2]) repeats.setdefault(loci, []) elif (line.startswith('Amplimer') and len(line) < 12): col = line.split(' ') primerID = loci + '_' + str(col[1]) lookup.setdefault(primerID, []) mm = 0 elif 'mismatches' in line: mm += int(line.partition('with ')[2].rstrip(' mismatches')) elif 'Amplimer length' in line: field = line.split(':') amplicon = int(field[1].strip(' ').rstrip(' bp')) lookup.setdefault(primerID).append(mm) if amplicon > 1828: lookup.setdefault(primerID).append('NA') elif loci == '0580': if amplicon > df_0580[loci][25]: lookup.setdefault(primerID).append('NA') else: for i in range(26): if amplicon < df_0580[loci][i]: if i != 0: first = df_0580[loci][i-1] second = df_0580[loci][i] if abs(amplicon - first) > abs(amplicon - second): repeats.setdefault(loci).append(df_0580['No.'][i]) lookup.setdefault(primerID).append(df_0580['No.'][i]) break else: repeats.setdefault(loci).append(df_0580['No.'][i-1]) lookup.setdefault(primerID).append(df_0580['No.'][i-1]) break else: repeats.setdefault(loci).append(0) lookup.setdefault(primerID).append(0) else: if amplicon > df[loci][15]: lookup.setdefault(primerID).append('NA') else: for i in range(16): if amplicon < df[loci][i]: if i != 0: first = df[loci][i-1] second = df[loci][i] if abs(amplicon - first) > abs(amplicon - second): repeats.setdefault(loci).append(i) lookup.setdefault(primerID).append(i) break else: repeats.setdefault(loci).append(i-1) lookup.setdefault(primerID).append(i-1) break else: repeats.setdefault(loci).append(0) lookup.setdefault(primerID).append(0) if args.details: myLookUp = pd.DataFrame(columns=["loci", "hit_index", "repeat_no", "error_no"]) for key, value in lookup.items(): #example: lookup = {'0154_1':[2,4]} total no. of mismatches, repeat number myLookUp = myLookUp.append({"loci":key.split("_")[0], "hit_index":int(key.split("_")[1]), "repeat_no":lookup[key][1], "error_no":lookup[key][0]}, ignore_index=True) sortedLookUp = myLookUp.sort_values(by=["loci", "hit_index"]) print(sortedLookUp.to_csv(sep='\t', index=False)) for item in miru: #array that used to determine repeat number print(Counter(repeats[item])) miru_repeats = pd.DataFrame(columns = ['sample_prefix'] + miru, index = range(1)) miru_repeats['sample_prefix'] = sample_prefix for item in miru: if repeats[item] != []: try: repeat = mode(repeats[item]) miru_repeats[item][0] = repeat except statistics.StatisticsError: repeat = chooseMode(item, lookup, Counter(repeats[item])) miru_repeats[item][0] = repeat else: miru_repeats[item][0] = "ND" if args.nofasta: if ('.fastq' in args.reads) or ('.gz' in args.reads): os.remove(fastaReads) print(miru_repeats.to_csv(sep='\t', index=False, header=True))