Mercurial > repos > devteam > lda_analysis
annotate lda_analy.xml @ 1:f0b6217f4a0c draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-devteam/tree/master/tools/lda_analysis commit a1517c9d22029095120643bbe2c8fa53754dd2b7
author | devteam |
---|---|
date | Wed, 11 Nov 2015 12:18:38 -0500 |
parents | f38763b52f33 |
children |
rev | line source |
---|---|
0 | 1 <tool id="lda_analy1" name="Perform LDA" version="1.0.1"> |
2 <description>Linear Discriminant Analysis</description> | |
3 <requirements> | |
4 <requirement type="package" version="2.11.0">R</requirement> | |
5 </requirements> | |
6 <command interpreter="sh">r_wrapper.sh $script_file</command> | |
7 <inputs> | |
8 <param format="tabular" name="input" type="data" label="Source file"/> | |
1
f0b6217f4a0c
planemo upload for repository https://github.com/galaxyproject/tools-devteam/tree/master/tools/lda_analysis commit a1517c9d22029095120643bbe2c8fa53754dd2b7
devteam
parents:
0
diff
changeset
|
9 <param name="cond" type="integer" value="3" label="Number of principal components" help="See TIP below"> |
0 | 10 <validator type="empty_field" message="Enter a valid number of principal components, see syntax below for examples"/> |
11 </param> | |
12 | |
13 </inputs> | |
14 <outputs> | |
15 <data format="txt" name="output" /> | |
16 </outputs> | |
17 | |
18 <tests> | |
19 <test> | |
20 <param name="input" value="matrix_generator_for_pc_and_lda_output.tabular"/> | |
21 <output name="output" file="lda_analy_output.txt"/> | |
22 <param name="cond" value="2"/> | |
23 | |
24 </test> | |
25 </tests> | |
26 | |
27 <configfiles> | |
28 <configfile name="script_file"> | |
29 | |
30 rm(list = objects() ) | |
31 | |
32 ############# FORMAT X DATA ######################### | |
33 format<-function(data) { | |
34 ind=NULL | |
35 for(i in 1 : ncol(data)){ | |
36 if (is.na(data[nrow(data),i])) { | |
37 ind<-c(ind,i) | |
38 } | |
39 } | |
40 #print(is.null(ind)) | |
41 if (!is.null(ind)) { | |
42 data<-data[,-c(ind)] | |
43 } | |
44 | |
45 data | |
46 } | |
47 | |
48 ########GET RESPONSES ############################### | |
49 get_resp<- function(data) { | |
50 resp1<-as.vector(data[,ncol(data)]) | |
51 resp=numeric(length(resp1)) | |
52 for (i in 1:length(resp1)) { | |
53 if (resp1[i]=="Y ") { | |
54 resp[i] = 0 | |
55 } | |
56 if (resp1[i]=="X ") { | |
57 resp[i] = 1 | |
58 } | |
59 } | |
60 return(resp) | |
61 } | |
62 | |
63 ######## CHARS TO NUMBERS ########################### | |
64 f_to_numbers<- function(F) { | |
65 ind<-NULL | |
66 G<-matrix(0,nrow(F), ncol(F)) | |
67 for (i in 1:nrow(F)) { | |
68 for (j in 1:ncol(F)) { | |
69 G[i,j]<-as.integer(F[i,j]) | |
70 } | |
71 } | |
72 return(G) | |
73 } | |
74 | |
75 ###################NORMALIZING######################### | |
76 norm <- function(M, a=NULL, b=NULL) { | |
77 C<-NULL | |
78 ind<-NULL | |
79 | |
80 for (i in 1: ncol(M)) { | |
81 if (sd(M[,i])!=0) { | |
82 M[,i]<-(M[,i]-mean(M[,i]))/sd(M[,i]) | |
83 } | |
84 # else {print(mean(M[,i]))} | |
85 } | |
86 return(M) | |
87 } | |
88 | |
89 ##### LDA DIRECTIONS ################################# | |
90 lda_dec <- function(data, k){ | |
91 priors=numeric(k) | |
92 grandmean<-numeric(ncol(data)-1) | |
93 means=matrix(0,k,ncol(data)-1) | |
94 B = matrix(0, ncol(data)-1, ncol(data)-1) | |
95 N=nrow(data) | |
96 for (i in 1:k){ | |
97 priors[i]=sum(data[,1]==i)/N | |
98 grp=subset(data,data\$group==i) | |
99 means[i,]=mean(grp[,2:ncol(data)]) | |
100 #print(means[i,]) | |
101 #print(priors[i]) | |
102 #print(priors[i]*means[i,]) | |
103 grandmean = priors[i]*means[i,] + grandmean | |
104 } | |
105 | |
106 for (i in 1:k) { | |
107 B= B + priors[i]*((means[i,]-grandmean)%*%t(means[i,]-grandmean)) | |
108 } | |
109 | |
110 W = var(data[,2:ncol(data)]) | |
111 svdW = svd(W) | |
112 inv_sqrtW =solve(svdW\$v %*% diag(sqrt(svdW\$d)) %*% t(svdW\$v)) | |
113 B_star= t(inv_sqrtW)%*%B%*%inv_sqrtW | |
114 B_star_decomp = svd(B_star) | |
115 directions = inv_sqrtW%*%B_star_decomp\$v | |
116 return( list(directions, B_star_decomp\$d) ) | |
117 } | |
118 | |
119 ################ NAIVE BAYES FOR 1D SIR OR LDA ############## | |
120 naive_bayes_classifier <- function(resp, tr_data, test_data, k=2, tau) { | |
121 tr_data=data.frame(resp=resp, dir=tr_data) | |
122 means=numeric(k) | |
123 #print(k) | |
124 cl=numeric(k) | |
125 predclass=numeric(length(test_data)) | |
126 for (i in 1:k) { | |
127 grp = subset(tr_data, resp==i) | |
128 means[i] = mean(grp\$dir) | |
129 #print(i, means[i]) | |
130 } | |
131 cutoff = tau*means[1]+(1-tau)*means[2] | |
132 #print(tau) | |
133 #print(means) | |
134 #print(cutoff) | |
135 if (cutoff>means[1]) { | |
136 cl[1]=1 | |
137 cl[2]=2 | |
138 } | |
139 else { | |
140 cl[1]=2 | |
141 cl[2]=1 | |
142 } | |
143 | |
144 for (i in 1:length(test_data)) { | |
145 | |
146 if (test_data[i] <= cutoff) { | |
147 predclass[i] = cl[1] | |
148 } | |
149 else { | |
150 predclass[i] = cl[2] | |
151 } | |
152 } | |
153 #print(means) | |
154 #print(mean(means)) | |
155 #X11() | |
156 #plot(test_data,pch=predclass, col=resp) | |
157 predclass | |
158 } | |
159 | |
160 ################# EXTENDED ERROR RATES ################# | |
161 ext_error_rate <- function(predclass, actualclass,msg=c("you forgot the message"), pr=1) { | |
162 er=sum(predclass != actualclass)/length(predclass) | |
163 | |
164 matr<-data.frame(predclass=predclass,actualclass=actualclass) | |
165 escapes = subset(matr, actualclass==1) | |
166 subjects = subset(matr, actualclass==2) | |
167 er_esc=sum(escapes\$predclass != escapes\$actualclass)/length(escapes\$predclass) | |
168 er_subj=sum(subjects\$predclass != subjects\$actualclass)/length(subjects\$predclass) | |
169 | |
170 if (pr==1) { | |
171 # print(paste(c(msg, 'overall : ', (1-er)*100, "%."),collapse=" ")) | |
172 # print(paste(c(msg, 'within escapes : ', (1-er_esc)*100, "%."),collapse=" ")) | |
173 # print(paste(c(msg, 'within subjects: ', (1-er_subj)*100, "%."),collapse=" ")) | |
174 } | |
175 return(c((1-er)*100, (1-er_esc)*100, (1-er_subj)*100)) | |
176 } | |
177 | |
178 ## Main Function ## | |
179 | |
180 files<-matrix("${input}", 1,1, byrow=T) | |
181 | |
182 d<-"${cond}" # Number of PC | |
183 | |
184 tau<-seq(0,1, by=0.005) | |
185 #tau<-seq(0,1, by=0.1) | |
186 for_curve=matrix(-10, 3,length(tau)) | |
187 | |
188 ############################################################## | |
189 | |
190 test_data_whole_X <-read.delim(files[1,1], row.names=1) | |
191 | |
192 #### FORMAT TRAINING DATA #################################### | |
193 # get only necessary columns | |
194 | |
195 test_data_whole_X<-format(test_data_whole_X) | |
196 oligo_labels<-test_data_whole_X[1:(nrow(test_data_whole_X)-1),ncol(test_data_whole_X)] | |
197 test_data_whole_X<-test_data_whole_X[,1:(ncol(test_data_whole_X)-1)] | |
198 | |
199 X_names<-colnames(test_data_whole_X)[1:ncol(test_data_whole_X)] | |
200 test_data_whole_X<-t(test_data_whole_X) | |
201 resp<-get_resp(test_data_whole_X) | |
202 ldaqda_resp = resp + 1 | |
203 a<-sum(resp) # Number of Subject | |
204 b<-length(resp) - a # Number of Escape | |
205 ## FREQUENCIES ################################################# | |
206 F<-test_data_whole_X[,1:(ncol(test_data_whole_X)-1)] | |
207 F<-f_to_numbers(F) | |
208 FN<-norm(F, a, b) | |
209 ss<-svd(FN) | |
210 eigvar<-NULL | |
211 eig<-ss\$d^2 | |
212 | |
213 for ( i in 1:length(ss\$d)) { | |
214 eigvar[i]<-sum(eig[1:i])/sum(eig) | |
215 } | |
216 | |
217 #print(paste(c("Variance explained : ", eigvar[d]*100, "%"), collapse="")) | |
218 | |
219 Z<-F%*%ss\$v | |
220 | |
221 ldaqda_data <- data.frame(group=ldaqda_resp,Z[,1:d]) | |
222 lda_dir<-lda_dec(ldaqda_data,2) | |
223 train_lda_pred <-Z[,1:d]%*%lda_dir[[1]] | |
224 | |
225 ############# NAIVE BAYES CROSS-VALIDATION ############# | |
226 ### LDA ##### | |
227 | |
228 y<-ldaqda_resp | |
229 X<-F | |
230 cv<-matrix(c(rep('NA',nrow(test_data_whole_X))), nrow(test_data_whole_X), length(tau)) | |
231 for (i in 1:nrow(test_data_whole_X)) { | |
232 # print(i) | |
233 resp<-y[-i] | |
234 p<-matrix(X[-i,], dim(X)[1]-1, dim(X)[2]) | |
235 testdata<-matrix(X[i,],1,dim(X)[2]) | |
236 p1<-norm(p) | |
237 sss<-svd(p1) | |
238 pred<-(p%*%sss\$v)[,1:d] | |
239 test<- (testdata%*%sss\$v)[,1:d] | |
240 lda <- lda_dec(data.frame(group=resp,pred),2) | |
241 pred <- pred[,1:d]%*%lda[[1]][,1] | |
242 test <- test%*%lda[[1]][,1] | |
243 test<-matrix(test, 1, length(test)) | |
244 for (t in 1:length(tau)) { | |
245 cv[i, t] <- naive_bayes_classifier (resp, pred, test,k=2, tau[t]) | |
246 } | |
247 } | |
248 | |
249 for (t in 1:length(tau)) { | |
250 tr_err<-ext_error_rate(cv[,t], ldaqda_resp , c("CV"), 1) | |
251 for_curve[1:3,t]<-tr_err | |
252 } | |
253 | |
254 dput(for_curve, file="${output}") | |
255 | |
256 | |
257 </configfile> | |
258 </configfiles> | |
259 | |
260 <help> | |
261 | |
262 .. class:: infomark | |
263 | |
264 **TIP:** If you want to perform Principal Component Analysis (PCA) on the give numeric input data (which corresponds to the "Source file First in "Generate A Matrix" tool), please use *Multivariate Analysis/Principal Component Analysis* | |
265 | |
266 ----- | |
267 | |
268 .. class:: infomark | |
269 | |
270 **What it does** | |
271 | |
272 This tool consists of the module to perform the Linear Discriminant Analysis as described in Carrel et al., 2006 (PMID: 17009873) | |
273 | |
274 *Carrel L, Park C, Tyekucheva S, Dunn J, Chiaromonte F, et al. (2006) Genomic Environment Predicts Expression Patterns on the Human Inactive X Chromosome. PLoS Genet 2(9): e151. doi:10.1371/journal.pgen.0020151* | |
275 | |
276 ----- | |
277 | |
278 .. class:: warningmark | |
279 | |
280 **Note** | |
281 | |
282 - Output from "Generate A Matrix" tool is used as input file for this tool | |
283 - Output of this tool contains LDA classification success rates for different values of the turning parameter tau (from 0 to 1 with 0.005 interval). This output file will be used to establish the ROC plot, and you can obtain more detail information from this plot. | |
284 | |
285 | |
286 </help> | |
287 | |
288 </tool> |