Mercurial > repos > ecology > ecoregion_clara_cluster
view indval.R @ 7:893b2b010d4a draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit 9dee19b2d28b61a81f2a89d4c7d35678e31a9927
author | ecology |
---|---|
date | Wed, 23 Jul 2025 14:36:07 +0000 |
parents | |
children |
line wrap: on
line source
#Seguineau Pauline #02/12/2024 #Indicspecies tool library(dplyr) library(indicspecies) #load arguments args = commandArgs(trailingOnly=TRUE) if (length(args)==0) { stop("This tool needs at least one argument") }else{ clus_pts <- args[1] occ <- args[2] spe_name <- args[3] sign <- args[4] } ###load data clus <- read.table(clus_pts, dec=".", sep="\t", header=T,na.strings = "na") #cluster points file (ecoregionalization workflow) data.col <- read.table(occ, dec=".", sep="\t", header=T,na.strings = "na") #occurrence file (merged table from ecoregionalization workflow) spe_name = strsplit(spe_name, ",") spname=NULL for (n in spe_name) { spname = cbind(names(data.col[as.numeric(n)]))} #Rename decimalLatitude and decimalLongitude columns from occurrence file if ("decimalLatitude" %in% colnames(data.col)) { colnames(data.col)[which(colnames(data.col) == "decimalLatitude")] <- "lat" } if ("decimalLongitude" %in% colnames(data.col)) { colnames(data.col)[which(colnames(data.col) == "decimalLongitude")] <- "long" } #Round lat and long of the data.col file to be able to put clus cluster in it data.col$lat = round(data.col$lat,digits = 2) data.col$long = round(data.col$long,digits = 2) # Creates a new "station" column that associates a unique identifier to each latitude-longitude pair data.col <- data.col %>% mutate(station = as.factor(paste(lat, long, sep = "_"))) # convert "station" to a unique numeric identifier data.col <- data.col %>% mutate(station = as.numeric(factor(station))) #Adding clusters to file clusta <- merge(data.col,clus, by=c("lat","long"), all.x = TRUE) #This generated duplicates with different clusters clusta <- aggregate(clusta, by=list(clusta$station,clusta$cluster), FUN=mean, na.rm=TRUE) clusta <- na.exclude(clusta) # indval on all clusters indval = multipatt(clusta[,spname], clusta$cluster,duleg = TRUE, control = how(nperm=999)) if (sign=="true"){ capture.output(summary(indval,indvalcomp=TRUE), file = "indval.txt") }else{ capture.output(summary(indval,indvalcomp=TRUE, alpha=1), file = "indval.txt")}