Mercurial > repos > eschen42 > w4mkmeans
changeset 0:6ccbe18131a6 draft
planemo upload for repository https://github.com/HegemanLab/w4mkmeans_galaxy_wrapper/tree/master commit 299e5c7fdb0d6eb0773f3660009f6d63c2082a8d
author | eschen42 |
---|---|
date | Tue, 08 Aug 2017 15:30:38 -0400 |
parents | |
children | 02cafb660b72 |
files | LICENSE README test-data/input_dataMatrix.tsv test-data/input_sampleMetadata.tsv test-data/input_variableMetadata.tsv w4m_general_purpose_routines.R w4mkmeans.xml w4mkmeans_routines.R w4mkmeans_wrapper.R |
diffstat | 9 files changed, 1336 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LICENSE Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2017 Hegeman Lab + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/README Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,2 @@ +# w4mkmeans_galaxy_wrapper +Planemo-based galaxy-tool-wrapper to wrap the stats::kmeans R package for the W4M dataMatrix
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/input_dataMatrix.tsv Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,50 @@ + Y11_1_RA5_01_213 Y2_1_RB1_01_218 Y4_1_RB3_01_220 Y12_1_RB4_01_221 Y1_1_RC1_01_228 Y14_1_RC6_01_234 Y1_2_RD1_01_239 Y14_2_RD2_01_240 Y4_2_RD3_01_241 Y11_2_RD7_01_246 Y2_2_RE4_01_253 Y12_2_RE6_01_255 Y14_3_GA2_01_260 Y2_3_GA4_01_264 Y1_3_GA6_01_266 Y4_3_GA7_01_267 Y12_3_GB1_01_270 Y11_3_GC3_01_283 Y14_4_GC7_01_287 Y11_4_GD8_01_299 Y2_4_GE1_01_300 Y12_4_GE2_01_304 Y1_4_GE3_01_305 Y4_4_GE7_01_309 +M118T229 95180.7747000001 283910.279545455 172325.198333334 174004.4176 163525.775666667 194233.618999999 142895.435454546 201401.5926 170930.6395 156553.24775 306528.603090909 254326.335272728 205081.407083333 276873.723636364 172071.209999999 275012.5056 211128.511 168167.790333333 209328.198222222 207513.570083333 258813.932083334 229502.711454545 149345.9256 314364.292 +M144T249 326771.492625001 512639.358421052 353343.595999999 237878.822999999 339952.473666668 283992.739200001 452071.323999999 315416.134166667 375718.035999999 239514.176 223116.3613 325831.656181819 397814.869333331 247409.932 413466.492 269627.942181817 234804.7824 251907.6144 339409.032 220480.5408 397906.873411764 264368.2988 318008.1856 495033.681090908 +M146T229 320441.164249999 651210.312000002 429015.22876923 417925.811454544 423543.081153847 506829.407999998 487752.597818182 514688.158400001 678459.668923076 396639.590750001 687614.607272727 579226.515333335 468291.098181819 569996.119583333 454626.169846155 622650.143272727 478350.217636364 318360.932923077 499228.386583333 403412.987666666 688496.831769231 496628.723000001 429311.235818182 838101.268454545 +M162T214 133545.175 32892.6798 104879.959 17067.3888000001 120440.1933 84904.1830000002 316369.630727272 96002.5383333335 96790.2144000002 116384.262555555 71055.4319999999 74141.2103999997 87130.2437142859 140641.192222222 208159.7504 163545.61125 60130.1777777777 89822.8736000002 42445.1565999999 71159.8343999999 48624.3143999998 40807.9287000001 133222.676 131059.152 +M163T243 3320290.99999999 3108104.81549999 3448471.301 2649747.70925 3185779.57349999 4484308.74208335 3190403.006 3461277.36441667 4739358.17723077 4988993.7978 4326959.19833332 4229307.74861538 4462765.79775 3372438.61476924 2588784.26284211 3698171.4 3981525.46875 5212799.26566667 3029175.68083334 4289629.53125 3360903.98691667 4298080.61900001 4601251.09542858 4758480.73153845 +M163T227 81353.0119999997 277375.471090909 177928.7208 209416.268 336317.096571428 313326.249599999 285323.6838 277747.251000001 220211.9752 412879.704545456 351173.200800001 268427.1216 347385.8924 222852.162727273 210297.4016 462226.94 243806.3265 458488.170555556 251712.213600001 447141.623636363 314488.332250001 324182.184700001 404536.579230769 192976.228727273 +M165T338 724868.499090913 877319.328000006 759359.831833331 705376.317666666 899233.227846154 800838.637500001 1185786.86941666 511026.113076926 770710.490692306 639682.233333337 880641.546416661 626728.389999999 774059.748583339 900734.519384618 1045032.61569231 893720.37375 746035.217769229 681933.343461539 642841.190916669 761710.223 716082.415999997 939827.908000004 725854.212461543 896462.216000001 +M165T317 1130886.05307692 1812034.41157895 1452469.27115385 1516359.36084616 1558264.69400001 1580774.47499999 2004662.84615385 986370.671999996 1315054.05833333 981890.410666671 1628334.48492307 1547053.44276924 1404010.065 1901171.5945 1782603.46833333 1720287.20733333 1345033.98538462 1169690.92984615 1239343.35369231 1370985.05716666 1245982.68483333 1579861.11230769 1297590.04075001 1816625.20433332 +M165T256 445597.162363634 752569.200000003 778348.672666668 421562.802000002 654155.689090909 752461.291363638 587120.120363634 374952.432888887 766559.366153846 308674.929090909 280340.442272728 638563.938833331 679017.778181819 662184.475666663 725624.464714288 671300.992250002 509622.759272728 312362.860222223 394442.381818181 520020.93 655205.484727275 437002.535999998 284057.6 744655.189923079 +M166T317 727736.923058826 1400721.315 1119526.94750001 1131558.16892308 1288062.01575001 1289170.92553845 1567321.55999999 732237.957454547 1228480.778 754151.018181823 1230562.42953846 1159439.86583333 1040231.05900001 1250927.11800001 1310860.23784615 1317991.92215385 1100686.37733333 882175.46666667 755843.530833333 1202600.54999999 971518.627857144 1264788.31227272 1018571.67838462 1403519.06461538 +M166T337 535493.003230769 537670.579090913 524305.310833333 529912.831583333 759048.122333334 545610.804692307 904553.357166664 382865.879538464 499657.654545453 495805.509692307 471345.377666664 612882.894999999 575737.238076923 703178.630000001 909569.733428573 673342.805214286 451606.921307691 485620.918181817 489490.224166666 596035.92969231 434305.194909089 536214.752333336 443352.580727274 684367.120800004 +M173T433 872624.526000007 290744.186333333 185146.705333334 238549.7025 344110.821333334 1217246.96576922 2927582.75066668 452283.894499998 887542.037999999 1536963.151 1458324.71238462 158696.136 475251.359999999 180843.85375 2969298.02159998 291831.223250001 152192.0155 3230876.27099999 1342571.92884615 739735.453461538 1390449.90133333 1344650.47892307 578792.587499996 283502.951846154 +M173T452 481770.02953846 40518.7860000002 59564.4563076922 61386.5370769228 663118.856615389 535227.494400001 2547608.22184616 658396.209375001 752411.497846154 2509512.19642856 2059157.31 29022.3323076923 147433.713461538 22037.9669230769 1780617.13873334 120787.385250001 149953.957846154 3586741.67571431 1506165.27238461 885117.421571427 63289.0830000001 97302.4615384615 141625.425000001 141565.155416667 +M177T293 239697.192272726 339318.7325 370127.929599997 231084.886500001 255961.721454544 214423.6237 498854.82272727 331869.634363636 504499.559615384 194262.091636363 544156.960999999 332599.338545456 284810.937272727 178276.830545456 330199.34625 426179.259545455 226910.991272727 423589.32 192593.767636365 345042.431916665 545204.371153847 262482.331363638 270070.200181818 223371.289090908 +M181T317 1551089.0625 2356309.305 2025537.14246155 1887074.3593077 2155321.67208335 2152321.62276921 2909601.36923077 1265406.45000001 1884556.09963636 1361593.83333334 2314263.59815384 2110263.61484999 1704036.63600001 2432050.96400001 2652011.9316923 2166045.35 1863221.40490909 1687583.66133333 1468726.8405 2044414.08484614 1821315.82476922 2339779.26600001 1405792.56475001 2629505.64283331 +M181T338 1116126.71033333 1494031.91454547 1412638.36842105 1209982.58892308 1700276.59666667 1366537.54254546 2098504.1676923 1000522.08692308 1088673.17716667 956757.138333338 1139215.23866667 1266012.807 1157141.29038461 1198396.16555555 1670662.16030769 1459273.90399999 1108390.23 1186064.86673684 1053115.41925 1574395.43007693 1130225.76774999 1502924.48633334 1253596.65083334 1716730.796 +M181T540 114170.844000001 335350.871384612 678801.634999995 671804.150399994 433469.59035714 449745.809857141 558749.474999996 56897.5679999995 141987.476666666 144845.450000001 411823.42666667 279864.209384616 153696.542999999 538483.697785716 298451.644333334 390774.94615385 415434.873181819 105634.627636365 241557.603000001 158620.688333334 623829.036 350240.913750001 390470.768615381 503592.612272725 +M181T418 255682.698727273 879465.336428571 482329.227692308 419421.054749998 396065.475 283473.841090909 476227.489615385 481487.012727272 761271.084583336 129740.343818181 1018552.73538461 566311.837000001 507793.690615385 739655.819166664 406504.944 438517.608363634 322220.895454544 222088.504750001 550516.247272728 181327.84275 950577.289428568 472788.937000001 542215.576454546 751088.927999996 +M182T338 155536.136818182 212202.352727274 135094.031999999 85727.9950000004 207023.581090908 164970.071999999 469331.443199999 105784.205636364 204499.402500001 119440.945636364 245130.584181819 141416.402909091 168036.721000001 237708.350833333 329938.23335 254357.114363634 132881.786181818 199335.354545454 124395.392727273 103726.982666667 183942.359999999 213144.038333334 152312.02709091 201404.438909092 +M183T540 280687.475727275 832699.580142853 1552579.7067857 1511037.63678572 876650.769230769 822939.503416667 1811796.6536154 70189.7188181812 234320.407666666 166921.699272727 1008223.6665 560995.786 257556.298999999 845500.623000003 595019.379230768 905334.287000005 1002068.62 182871.041000002 475329.952615386 239258.972333334 1041242.6880909 803959.900250001 804604.114166663 1169992.40307693 +M185T338 309406.989090909 451780.576000003 359851.400333333 284807.506500001 418843.482615385 331644.043636362 543210.523076922 162928.532909092 430153.190769229 293627.218909092 365682.489333334 379552.096 197093.358000001 322153.33625 447730.780000002 325509.835 264096.13825 318501.532153846 263034.079636363 378089.818615386 357671.724249998 510060.220666669 369954.747750001 478997.324076925 +M188T229 325321.985333333 443351.971555557 526763.314999999 378828.5728 476716.428500002 605968.773800003 358227.560727273 537857.529999999 768857.387416669 441628.511052632 596488.461454545 607736.636454547 510042.85675 662930.435400001 506126.361000002 851115.76 572905.509000001 355023.274545454 412989.0048 409181.408999999 505112.187272727 637321.695272728 423858.6048 813834.588181817 +M191T254 314634.607599998 312210.054545454 308189.933999999 294215.177 296653.692700001 403428.711363637 344007.5496 287995.152666667 288118.090909091 469033.15076923 323057.429200001 234701.600545454 273445.627499999 241536.635636363 227998.612545454 394610.645454545 401590.503599999 471296.085166669 326836.2318 513877.778916666 330136.616999999 428510.580833335 273669.479999999 315422.891999999 +M199T338 696654.470315789 708972.063636369 720076.446615387 679706.518142857 885637.992666668 828489.6045 1062776.81866666 294702.771454548 688895.165666663 582827.192727275 684462.754363638 637469.442909092 519383.82536364 628733.694999999 886987.506000005 964826.9325 502285.691454546 659655.506923077 482820.595416668 680035.250166666 523689.856363633 857377.497600009 534871.529090911 879507.338666668 +M208T219 162436.8645 84196.8900000001 143799.653 40224.9118 178578 88848.6920000002 317295.448 352397.916000001 158524.9524 373768.072727273 138565.6321 52200.8824999999 87220.286 57983.5098000002 246020.00409091 294838.355166667 165608.9666 202727.238 166314.7808 183508.88 45345.9375999998 85176.3998 347211.713624999 108620.3998 +M209T337 188957.965727273 408412.114500001 345848.508153847 278660.695500001 451043.323636364 309294.098181817 641444.855384614 247566.436727275 297270.490000001 386759.855 427439.697333334 270467.613000002 235202.157000001 404612.207999997 390277.789500002 383022.807999998 298555.566399999 247162.160333332 163777.7834 317261.655833333 251007.428666665 467324.382214288 361969.636153848 397527.172545457 +M211T540 505556.927999997 907561.727999991 1727843.54000001 2048632.02742856 1133045.67814285 1255842.11971428 2341966.23728573 214084.313999998 378955.242666666 365709.286153846 1335168.1425 767502.452307695 309575.766499999 1342551.82757143 759631.728923075 813443.068125004 1229671.66 257477.365384613 566221.977750001 436789.712333335 1539500.118 1210916.5875 918577.941666663 1145270.74366667 +M221T389 944378.429166668 1246735.56192308 2230688.74 447813.575500002 1842116.28999998 1310351.13692308 2986012.38030771 523734.415333331 2017382.01230768 1833838.42966665 787672.346153846 482161.056600002 1303129.64741667 899165.169684215 2210010.06961538 2503041.74600001 907344.106846154 959964.033538461 495675.872999998 993632.533333336 957898.894333333 959729.180307693 915090.909230767 1376157.295 +M222T621 38433.6460909086 43479.0963636365 40568.4536666668 148023.062333335 139884.13075 59951.0749090913 49010.4283333327 43235.8550000005 475484.401461536 20958.4208333333 133180.825416665 54471.6956363641 48230.2215000002 256738.391999997 117607.776 205588.245785716 84583.2905454557 42559.2900833333 6707633.32928564 37271.6553636361 74913.9344999992 44669.3768181811 85095.6058333341 128534.542500001 +M223T302 2979478.24246153 4228687.79938462 3871043.54874999 4447973.83084212 5616041.22599999 3129391.64323077 11460084.1353846 2565935.61900001 5404062.66315383 3234164.97223075 2861764.84107691 3527168.21961536 2597899.9668 3773274.53900002 5441142.88166666 3981019.64833332 3005957.56892308 3948688.86530769 1873767.18749999 3422925.85750001 5283613.7668421 2924211.98892307 3746307.47261537 4368849.85384613 +M223T251 655702.933545454 639264.348333333 604856.705636365 271222.943090908 280765.490727273 481104.925999999 929082.2996 515123.135999999 717283.072999998 399204.710272728 387418.294899998 282292.424999999 455368.1598 505073.335416666 380329.595666668 458796.407727274 341395.992000001 505783.627500001 263930.703750001 516219.482999999 488393.189333334 403836.629727273 408471.071399999 651448.746333334 +M223T584 1645690.58271428 3452196.60805554 4625584.9258666 2116437.67984615 3973839.62249997 1369454.00457143 7240635.27064284 1213867.92314286 3570765.41249998 1073848.39761539 1549722.87771427 1840699.8994286 1178652.00457143 1551158.48816665 1918725.45600001 2203474.75115385 1649724.54000002 1312886.90050001 481538.195833326 1098103.46156522 3379122.1385 1616669.57314285 691692.401857135 2506740.31714282 +M224T302 333486.798909091 509647.562666667 349834.778181818 469517.815636364 682724.658888888 413504.330909091 1679954.35569231 281159.640000001 849339.585769228 377144.799999998 210466.44 340686.5772 259709.7636 471722.683090907 599293.753666666 631540.997999999 489340.507333338 304464.886818181 207544.481454547 488294.054583335 502204.444875002 297023.185454547 398353.576727274 474397.270600002 +M224T687 92866.0084615382 471219.245538461 230546.999692307 293547.27446154 304002.384999997 229475.769999998 63017.0190769234 83194.4694166669 62633402.7274285 130312.074 502207.413333331 241089.818538461 187084.711999998 1029565.25233335 258992.930999997 916235.442999993 494548.092999997 94759.885833334 100986025.159 169719.36 323565.261333332 304620.739999998 201430.732461537 570145.173333336 +M227T338 1724068.77246154 2146834.564 1559923.7555 1676053.06615384 2538617.83092307 1934249.10849999 3328131.2676923 1139676.89590909 1944437.69999999 1302132.22772728 1854466.59627272 1441451.648 1236970.55181819 1870585.86958333 2623771.69833332 2002762.87145453 1667559.48074999 1684871.21615385 1474674.58425 2341232.04923078 1657207.82338461 2086383.87900001 1639781.51981819 2594903.26200002 +M228T1015 2293002.62999997 1401534.48461538 1607641.46571429 1520457.92799999 2125697.55076925 1757600.67307692 2759028.1745 2181315.36 2187718.78846153 2284593.90789473 2641559.59466665 1844340.61416667 2850425.38846152 2061002.25928569 1924765.77714287 1813602.4342857 1572096.60214286 2814677.17714283 2575106.44571426 2078775.48928572 2015586.40000001 3429532.08857141 2418660.88999998 1952747.53142856 +M229T1015 418917.335454547 163204.836363634 173677.360000002 267090.970833331 244282.969999999 200608.134545453 336866.566666665 257400.199999998 266119.544545456 442615.87466667 327720.029090909 252660.875000001 309365.040833335 344560.122500001 252079.805454545 460836.719999996 183110.105454544 408233.730000003 380762.459999995 311279.266666668 243038.487272727 318411.516666665 235092.845454541 202601.280000001 +M237T589 532865.734307696 226635.78133333 893815.050615387 117684.107666665 1230127.28142858 489271.364999995 1265523.30457144 1216228.17830767 4681682.64999998 1859733.21600001 2007864.38714287 155056.536153844 514583.381000006 292040.242999999 495335.002615389 3588519.19453846 507224.674666664 1056575.73 691304.085769224 1500803.19257143 101600.927083334 188361.358999999 2470535.57353847 654847.74642857 +M237T507 703355.073999997 550011.560000002 965632.896307698 915403.287272722 724118.229166667 386659.543 1636376.28627274 439630.258833334 1701594.46984615 524515.044428569 756075.009499999 871363.231857143 1399470.64800001 592975.050307695 1201274.85642856 1413997.779 1236487.384 506445.215357144 235979.998250002 369735.080727271 813289.588999999 700891.467166672 232961.595333333 861136.780000002 +M245T458 212603.254500001 271358.777666667 503074.115083331 44970.0660833335 131609.623090909 280617.921818184 773743.02866666 2334917.91500002 99518.4412499995 1016073.89891667 338413.903833333 55441.1083333332 220399.192666668 188045.522166668 310482.079249999 1530415.97333333 60800.495 1328460.313 1203955.012 778120.18475 119439.517666666 84655.04375 452362.827999998 1983764.26125001 +M246T512 146788.109999999 407066.762249999 633426.109 533463.833615383 1956593.89342856 165702.49815 120181.589833332 353320.577749999 642874.945142854 119179.247615384 99590.2682500005 758379.92076923 52436.3834166666 147546.816500001 294954.356923078 1609162.86685714 584555.170230768 170359.68353846 51917.8174615381 229662.194400003 211933.249999999 60445.8974166666 634458.219230768 100737.631500001 +M246T490 75256.4203333334 34590.6509090912 150163.741636363 34411.6830909094 74755.9112727271 103711.803166667 45954.4614545453 35152.0549999998 24719.0138181817 71617.0521818181 11311.7707272727 63841.0036363632 27595.3401818182 31920.2162500003 98890.9431818186 135013.109083333 47742.2570909091 27862.1563636363 36125.5670909093 62861.4490833336 20261.5554545455 22206.8672727271 73136.961545455 235336.321846153 +M247T433 4836161.03384619 1044492.01435715 951798.914285713 1424537.325 3787406.10666667 9887497.97830775 30488070.5421429 3441749.28 8499038.62799999 17388611.7989999 20526331.7456 1106400.24907692 3016821.11076925 1076241.15692308 35494666.1914286 2461932.47007691 1529940.06230769 38365027.5439287 18163699.0110001 9636879.56399995 10746013.236 18833821.2581429 4966775.00357139 1639208.92369231 +M247T452 5195507.70825003 369661.240285716 490699.764615384 436494.736999998 7412698.44276928 12170776.00775 34440641.0083078 5016978.85769229 8803133.89476923 27844873.7553571 36488147.0250003 506057.533076924 3027637.58846154 653070.954888888 18741495.8692308 552111.216461536 608777.786 42140646.1521431 16718584.3028572 10782086.7869286 551145.999000004 1022681.34276923 5037210.42115387 1667076.72061537 +M248T433 1132061.80500001 198989.691727273 242631.120000001 385296.71625 533583.706545452 1700043.58833333 7857412.81114289 725243.771999994 876190.803333335 4407848.9363846 2654510.973 270592.230999999 537803.304363637 294857.264307691 3564818.11400002 422974.383666665 327743.053846153 4390963.79250004 3575371.16159998 1580044.82999999 1915246.6695 3058478.66324999 981666.862307692 318243.068 +M251T497 1063427.48939999 865129.956142858 495022.085833334 488440.844615385 1129829.22 729926.57776923 1940279.044 1221215.83823077 736401.295384619 760975.140166666 273042.048615386 561850.154166666 1121087.55323077 721610.410153842 2108837.44992856 530356.117499997 934878.418692311 1242937.12242857 328026.640384617 1036373.51330769 718361.729800002 536136.268499999 1419632.77730769 2391210.31999999 +M257T1014 1566972.91999999 1893127.35857143 2151729.80857143 1146142.15333334 1970881.65571426 1402985.23499999 2812863.02500003 1880269.89428571 2527579.56705883 1461081.88615383 1791326.51 1478730.04615386 1823267.80461538 2234492.50153846 2529937.4047059 3148326.66461539 1868762.54266667 1421995.43307692 1517500.28 1805290.20999998 1642292.79999997 1683944.028 2379338.33999998 2487090.41230771 +M261T332 1930046.88 1414066.78508333 3490063.85953848 1047626.07700001 4522749.77961537 1593664.43775 5263343.87100001 2824216.94399999 1630093.88518182 4023852.75425 1510231.9848 1225828.25025001 2182490.55266666 1439822.48483333 8412854.24699993 3388651.75384613 991437.89583333 3719176.7 1188956.48025 2188517.84249999 1310827.23100001 1540731.44238462 1604828.60533333 2495122.53646153 +M263T323 1171838.28333332 1092287.00399999 1784798.51050001 230456.097454544 3162077.20061541 901831.286555555 2870354.68692308 3141344.14099999 795229.416727274 6039038.19407691 3336169.10769232 134580.004545455 1114891.535 919091.57784615 2457832.58563637 5292105.64400001 263116.985833333 6938595.35746151 4367916.80500001 3698151.2689231 268597.518 276733.936000001 1068827.01066667 9589520.52215389
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/input_sampleMetadata.tsv Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,25 @@ +sampleMetadata class polarity sampleType injectionOrder batch tissue hotelling_pval missing_pval decile_pval PCA_XSCOR.p1 PCA_XSCOR.p2 class_PLSDA_XSCOR.p1 class_PLSDA_XSCOR.p2 class_PLSDA_predictions +Y11_1_RA5_01_213 y1 positive sample 213 1 2 0.0955561581467602 1 0.0306775551319138 -2.26882060894901 1.94958116765736 -3.05527623038242 2.32594165405491 y1 +Y2_1_RB1_01_218 y2 positive sample 218 1 1 0.090775969547078 1 0.0334308308237932 -5.43790231069006 3.28509884002914 -5.09396184849057 3.13632363820691 y2 +Y4_1_RB3_01_220 y4 positive sample 220 1 1 0.0922380872343134 1 0.0343065627030201 -5.96519534532645 2.76065569212045 -5.61271725241037 2.60836215684335 y4 +Y12_1_RB4_01_221 y2 positive sample 221 1 2 0.0731025791938841 1 0.0335814402688999 -3.90074024447077 2.32567583717618 -4.06427508572245 2.47867307479093 y2 +Y1_1_RC1_01_228 y1 positive sample 228 1 1 0.948646526283138 1 0.0150153992414774 -5.79172889541087 3.18442356006801 -5.71894211121787 3.14075608795096 y1 +Y14_1_RC6_01_234 y4 positive sample 234 1 2 0.961424772615561 1 0.0889762542416943 -3.50543091786719 1.90332246047248 -3.60257250798236 1.95341548985651 y4 +Y1_2_RD1_01_239 y1 positive sample 239 1 1 0.391486624975171 1 0.419632697534464 -10.0290510611276 3.46916578350898 -9.30301404180818 3.22425994348737 y1 +Y14_2_RD2_01_240 y4 positive sample 240 1 2 0.334478686842038 1 0.471265236704114 -0.955577667004931 1.62643379077323 -1.17127923245195 1.73770179646644 y4 +Y4_2_RD3_01_241 y4 positive sample 241 1 1 0.243979127543208 1 0.115904447650611 -6.29053214398527 3.48768497975009 -5.86080882473825 3.19393908077519 y4 +Y11_2_RD7_01_246 y1 positive sample 246 1 2 0.639085015503201 1 0.496291025606805 -0.737703114796199 1.89206669195622 -1.33734677265265 2.19119862732508 y1 +Y2_2_RE4_01_253 y2 positive sample 253 1 1 0.681339414372971 1 0.713644697663014 -4.43122798643441 2.59136016132011 -4.21959323228049 2.4942150403311 y2 +Y12_2_RE6_01_255 y2 positive sample 255 1 2 0.581861317126264 1 0.446040669279691 -3.42333388673909 2.19844489197916 -3.40077262161465 2.21882800112511 y2 +Y14_3_GA2_01_260 y4 positive sample 260 1 2 0.792323381194401 1 0.812319191661791 -2.61403564986014 1.9025507158402 -2.90132077481451 2.05744453719897 y4 +Y2_3_GA4_01_264 y2 positive sample 264 1 1 0.278347988263537 1 0.668405316795454 -6.19672954480257 4.11371745717593 -5.72942704887795 3.94423530839635 y2 +Y1_3_GA6_01_266 y1 positive sample 266 1 1 0.303133108610158 1 0.521065147801524 -5.91283168480956 2.57721868167528 -5.8128281040434 2.56623732055011 y1 +Y4_3_GA7_01_267 y4 positive sample 267 1 1 0.204620420161485 1 0.53551459376182 -5.81862869528986 3.42191037440281 -5.37442797934098 3.22465790741629 y4 +Y12_3_GB1_01_270 y2 positive sample 270 1 2 0.7747649633382 1 0.698966513767803 -3.0854085700971 1.67899209632345 -3.14572560562774 1.75648836353689 y2 +Y11_3_GC3_01_283 y1 positive sample 283 1 2 0.918803505111851 1 0.396638581468035 -1.16946485386388 1.66851916844539 -1.7032576378218 1.94860768310552 y1 +Y14_4_GC7_01_287 y4 positive sample 287 1 2 0.577273975934045 1 0.14919566995266 -1.24666389579168 2.84891525888206 -1.58652468539139 2.90364189714377 y4 +Y11_4_GD8_01_299 y1 positive sample 299 1 2 0.31302025978985 1 0.426766355892969 -2.15936901108787 1.66989335813642 -2.66042240568943 1.95509478589954 y1 +Y2_4_GE1_01_300 y2 positive sample 300 1 1 0.0338929937565918 1 0.419149865807458 -5.76080121045973 3.47845733452933 -5.39212267305567 3.34452446158071 y2 +Y12_4_GE2_01_304 y2 positive sample 304 1 2 0.130905883509031 1 0.59698349195307 -4.15585900988913 3.22702525356271 -4.28382960930699 3.34874792551519 y2 +Y1_4_GE3_01_305 y1 positive sample 305 1 1 0.129479197101219 1 0.618449187175638 -2.9921645121991 3.14523577730793 -2.85639638001866 3.08197032598192 y1 +Y4_4_GE7_01_309 y4 positive sample 309 1 1 0.758837157578886 1 0.339564008612217 -5.95949084754462 3.20317151028856 -5.46675286145534 3.04585537553442 y4
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/input_variableMetadata.tsv Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,50 @@ +variableMetadata namecustom mz mzmin mzmax rt rtmin rtmax npeaks my_blank pool y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 isotopes adduct pcgroup CV.samp CV.pool CV.ind blank_mean blank_sd blank_CV sample_mean sample_sd sample_CV blankMean_over_sampleMean pool_mean pool_sd pool_CV poolCV_over_sampleCV class_kruskal_fdr class_kruskal_sig class_kruskal_y1.y0_dif class_kruskal_y2.y0_dif class_kruskal_y3.y0_dif class_kruskal_y4.y0_dif class_kruskal_y5.y0_dif class_kruskal_y6.y0_dif class_kruskal_y7.y0_dif class_kruskal_y8.y0_dif class_kruskal_y9.y0_dif class_kruskal_y2.y1_dif class_kruskal_y3.y1_dif class_kruskal_y4.y1_dif class_kruskal_y5.y1_dif class_kruskal_y6.y1_dif class_kruskal_y7.y1_dif class_kruskal_y8.y1_dif class_kruskal_y9.y1_dif class_kruskal_y3.y2_dif class_kruskal_y4.y2_dif class_kruskal_y5.y2_dif class_kruskal_y6.y2_dif class_kruskal_y7.y2_dif class_kruskal_y8.y2_dif class_kruskal_y9.y2_dif class_kruskal_y4.y3_dif class_kruskal_y5.y3_dif class_kruskal_y6.y3_dif class_kruskal_y7.y3_dif class_kruskal_y8.y3_dif class_kruskal_y9.y3_dif class_kruskal_y5.y4_dif class_kruskal_y6.y4_dif class_kruskal_y7.y4_dif class_kruskal_y8.y4_dif class_kruskal_y9.y4_dif class_kruskal_y6.y5_dif class_kruskal_y7.y5_dif class_kruskal_y8.y5_dif class_kruskal_y9.y5_dif class_kruskal_y7.y6_dif class_kruskal_y8.y6_dif class_kruskal_y9.y6_dif class_kruskal_y8.y7_dif class_kruskal_y9.y7_dif class_kruskal_y9.y8_dif class_kruskal_y1.y0_fdr class_kruskal_y2.y0_fdr class_kruskal_y3.y0_fdr class_kruskal_y4.y0_fdr class_kruskal_y5.y0_fdr class_kruskal_y6.y0_fdr class_kruskal_y7.y0_fdr class_kruskal_y8.y0_fdr class_kruskal_y9.y0_fdr class_kruskal_y2.y1_fdr class_kruskal_y3.y1_fdr class_kruskal_y4.y1_fdr class_kruskal_y5.y1_fdr class_kruskal_y6.y1_fdr class_kruskal_y7.y1_fdr class_kruskal_y8.y1_fdr class_kruskal_y9.y1_fdr class_kruskal_y3.y2_fdr class_kruskal_y4.y2_fdr class_kruskal_y5.y2_fdr class_kruskal_y6.y2_fdr class_kruskal_y7.y2_fdr class_kruskal_y8.y2_fdr class_kruskal_y9.y2_fdr class_kruskal_y4.y3_fdr class_kruskal_y5.y3_fdr class_kruskal_y6.y3_fdr class_kruskal_y7.y3_fdr class_kruskal_y8.y3_fdr class_kruskal_y9.y3_fdr class_kruskal_y5.y4_fdr class_kruskal_y6.y4_fdr class_kruskal_y7.y4_fdr class_kruskal_y8.y4_fdr class_kruskal_y9.y4_fdr class_kruskal_y6.y5_fdr class_kruskal_y7.y5_fdr class_kruskal_y8.y5_fdr class_kruskal_y9.y5_fdr class_kruskal_y7.y6_fdr class_kruskal_y8.y6_fdr class_kruskal_y9.y6_fdr class_kruskal_y8.y7_fdr class_kruskal_y9.y7_fdr class_kruskal_y9.y8_fdr class_kruskal_y1.y0_sig class_kruskal_y2.y0_sig class_kruskal_y3.y0_sig class_kruskal_y4.y0_sig class_kruskal_y5.y0_sig class_kruskal_y6.y0_sig class_kruskal_y7.y0_sig class_kruskal_y8.y0_sig class_kruskal_y9.y0_sig class_kruskal_y2.y1_sig class_kruskal_y3.y1_sig class_kruskal_y4.y1_sig class_kruskal_y5.y1_sig class_kruskal_y6.y1_sig class_kruskal_y7.y1_sig class_kruskal_y8.y1_sig class_kruskal_y9.y1_sig class_kruskal_y3.y2_sig class_kruskal_y4.y2_sig class_kruskal_y5.y2_sig class_kruskal_y6.y2_sig class_kruskal_y7.y2_sig class_kruskal_y8.y2_sig class_kruskal_y9.y2_sig class_kruskal_y4.y3_sig class_kruskal_y5.y3_sig class_kruskal_y6.y3_sig class_kruskal_y7.y3_sig class_kruskal_y8.y3_sig class_kruskal_y9.y3_sig class_kruskal_y5.y4_sig class_kruskal_y6.y4_sig class_kruskal_y7.y4_sig class_kruskal_y8.y4_sig class_kruskal_y9.y4_sig class_kruskal_y6.y5_sig class_kruskal_y7.y5_sig class_kruskal_y8.y5_sig class_kruskal_y9.y5_sig class_kruskal_y7.y6_sig class_kruskal_y8.y6_sig class_kruskal_y9.y6_sig class_kruskal_y8.y7_sig class_kruskal_y9.y7_sig class_kruskal_y9.y8_sig PCA_XLOAD.p1 PCA_XLOAD.p2 class_PLSDA_XLOAD.p1 class_PLSDA_XLOAD.p2 class_PLSDA_VIP class_PLSDA_y0.COEFF class_PLSDA_y1.COEFF class_PLSDA_y2.COEFF class_PLSDA_y3.COEFF class_PLSDA_y4.COEFF class_PLSDA_y5.COEFF class_PLSDA_y6.COEFF class_PLSDA_y7.COEFF class_PLSDA_y8.COEFF class_PLSDA_y9.COEFF +M118T229 M118T229.46 118 118 118 229.455291748047 228.736724853516 230.594131469727 55 0 8 7 5 7 6 5 2 3 7 3 2 118 0.554571338812749 0.182791107722623 1 222439.554974048 195365.680228179 0.878286599031237 176244.197127339 110977.214194002 0.629678684477871 1.26210995085037 155437.851425 114292.160673818 0.7352916913482 1.16772523744853 1.66164992620511e-08 1 -223469.361382575 -126938.739412878 -133449.455499242 -180267.373249242 -294391.240395454 -239458.682065909 -76554.566924243 -261291.811240909 -260891.311868686 96530.6219696975 90019.905883333 43201.988133333 -70921.879012879 -15989.3206833335 146914.794458332 -37822.4498583335 -37421.950486111 -6510.71608636447 -53328.6338363645 -167452.500982576 -112519.942653031 50384.1724886345 -134353.071828031 -133952.572455808 -46817.91775 -160941.784896212 -106009.226566667 56894.888574999 -127842.355741667 -127441.856369444 -114123.867146212 -59191.3088166665 103712.806324999 -81024.4379916665 -80623.938619444 54932.5583295455 217836.673471211 33099.4291545455 33499.928526768 162904.115141666 -21833.129175 -21432.6298027775 -184737.244316666 -184336.744944443 400.499372222504 0.052228974501798 1 1 0.968678467026688 6.82548419440413e-05 0.0252028502127163 1 0.0103342950150846 0.090998598707947 1 1 1 1 1 0.227514794354078 1 1 1 1 0.292043497476492 1 1 0.563138922804635 1 1 0.390408587868349 1 1 1 1 0.459462762339069 1 1 1 1 1 0.00223728896288522 1 1 0.116839984773705 1 1 0.0900823169726959 0.296718843529397 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.0751465404017426 0.114470509909381 0.0775649916703844 0.113255054281766 0.926381557758783 0.0182402372008762 -0.0113981265999673 0.0426448134069729 0.0197016024646982 -0.0232348488731026 -0.0424516830523853 -0.0147138462348906 0.0214688799695989 -0.00513169620476044 -0.00704409517333393 +M144T249 M143.875T248.69 143.875 143.875 143.875 248.692764282227 248.002151489258 249.422805786133 62 0 8 2 7 3 5 7 8 6 5 8 3 142 0.470618443098571 0.216046830280697 1 292413.434736192 203604.182450115 0.696288741431463 271524.560161574 158685.604562455 0.584424497246317 1.07693180521934 383231.735361819 301728.874896368 0.787327475923931 1.34718424644013 6.45954352514962e-07 1 235618.806762501 169118.08305 229322.632631251 259605.281649999 416619.815033332 275136.827786364 150532.487104546 457817.763728431 195173.60565 -66500.7237125005 -6296.17413124954 23986.4748874989 181001.008270831 39518.021023863 -85086.319657955 222198.95696593 -40445.201112501 60204.549581251 90487.1985999995 247501.731983331 106018.744736364 -18585.5959454545 288699.680678431 26055.5225999995 30282.6490187485 187297.182402081 45814.1951551125 -78790.1455267055 228495.13109718 -34149.0269812515 157014.533383332 15531.546136364 -109072.794545454 198212.482078431 -64431.676 -141482.987246968 -266087.327928786 41197.9486950994 -221446.209383332 -124604.340681818 182680.935942067 -79963.222136364 307285.276623885 44641.118545454 -262644.158078431 0.41166209367422 0.695786868243422 0.294551379678528 0.0999587113644674 6.82548419440413e-05 0.0979696628294609 1 6.99294016548446e-05 1 1 1 1 1 1 1 0.660361761700837 1 1 1 0.78294591403514 1 1 0.359071250151712 1 1 1 1 1 0.800695257846844 1 1 1 1 1 1 1 0.0211144277007564 1 1 1 1 1 0.0290403766541771 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 -0.0425445507499967 -0.137386022704088 -0.0414455664421757 -0.138961517651778 0.94030081229378 -0.0175777629069553 -0.0012658955204704 -0.0374855225818242 -0.0115638894382932 0.0369249335046923 0.0613915623367941 -0.0282052479473143 -0.0129882503144432 0.0212574166388364 -0.0144134753666958 +M146T229 M145.875T229.42 145.875 145.875 145.875 229.422142028809 228.712783813477 230.594131469727 62 0 9 8 6 6 6 6 2 6 8 4 1 118 0.48059751415742 0.159160327803038 1 542353.504170514 417121.368012766 0.769094999488792 448233.950201589 270767.904818011 0.604077189370051 1.20997863710813 405757.717987176 296615.203178599 0.731015554429883 1.21013600131501 7.70188729663607e-09 1 -582059.466330129 -420926.183282051 -341325.049310082 -484778.717540386 -752503.017731838 -593558.467831296 -221486.367407052 -660228.32603985 -671454.694221447 161133.283048078 240734.417020047 97280.748789743 -170443.551401709 -11499.001501167 360573.098923077 -78168.8597097215 -89395.2278913175 79601.133971969 -63852.5342583345 -331576.834449787 -172632.284549245 199439.815875 -239302.142757799 -250528.510939395 -143453.668230304 -411177.968421756 -252233.418521214 119838.68190303 -318903.276729768 -330129.644911364 -267724.300191452 -108779.75029091 263292.350133334 -175449.608499464 -186675.976681061 158944.549900542 531016.650324786 92274.6916919875 81048.3235103915 372072.100424244 -66669.8582085545 -77896.2263901506 -438741.958632799 -449968.326814395 -11226.368181596 0.027794335864133 1 1 0.975940335684243 4.71856017804362e-05 0.0252028502127163 1 0.00137556615138216 0.0668266484078959 1 1 1 1 1 0.208110883871688 1 1 1 1 0.516072532531189 1 1 0.763113985902735 1 1 0.305615730979035 1 1 0.399116928338267 1 0.410587406257074 1 1 0.753420461486308 1 1 0.00223728896288522 1 1 0.168171506310646 1 1 0.0294571388445663 0.272157453958819 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0.0754996095137967 0.120865516467987 0.0784680705150086 0.119115248373144 0.956609897374724 0.0226314437704627 -0.0153551878413858 0.0159176509359441 0.0285781636368376 -0.00845519747929896 -0.0389253784563034 -0.0108323340963491 0.0184213773838867 -0.00841148941129242 -0.00490518790379316 +M162T214 M161.875T214.05 161.875 161.875 161.875 214.046737670898 212.855850219727 215.482360839844 33 0 4 5 5 0 3 4 4 2 2 3 1 197 0.643205622075402 0.302352932180999 1 108048.694547817 84423.1740003108 0.781343766841616 110010.754324522 79549.9666204105 0.723110818654558 0.982164836622094 147182.710689167 136206.352437578 0.925423589495038 1.27978114228316 0.013171312020726 1 -98971.9199611115 -171426.108522223 -131915.83299293 -129406.978244445 -100146.050947475 -106919.259311111 -113422.508511112 -105365.741111112 -137589.675261112 -72454.1885611113 -32943.9130318181 -30435.0582833332 -1174.13098636351 -7947.33934999997 -14450.5885500001 -6393.82115 -38617.7553000002 39510.2755292932 42019.1302777781 71280.0575747477 64506.8492111113 58003.6000111112 66060.3674111112 33836.4332611111 2508.8547484849 31769.7820454545 24996.5736818181 18493.324481818 26550.0918818181 -5673.84226818211 29260.9272969696 22487.7189333332 15984.4697333331 24041.2371333332 -8182.69701666701 -6773.20836363646 -13276.4575636366 -5219.69016363649 -37443.6243136367 -6503.24920000011 1553.51819999996 -30670.4159500002 8056.76740000007 -24167.1667500001 -32223.9341500002 1 0.00981901375773889 0.583573028216822 0.609080481101714 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.991777100919273 0.510921658223701 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0413685282058045 0.0251369477242697 0.0461461277698264 0.0212500710478278 0.969128578744853 0.0219642382800089 0.0133095223699376 -0.0618848704475708 0.00641922990982015 -0.010432133127727 -0.00105700389112426 0.0420873458583823 -0.0046161505464534 -0.00778018441733679 0.00273500166111701 +M163T243 M162.875T242.9 162.875 162.875 162.875 242.903991699219 242.447631835938 243.801193237305 49 0 4 5 4 5 5 3 7 4 5 5 2 22 0.330166227054866 0.202141075579992 1 3644123.41358197 2193909.9479373 0.602040518101117 3941767.38640001 2117862.19588964 0.537287462268003 0.924489716505094 3851549.38397353 2458931.83720283 0.638426667313305 1.18824039671124 0.000883115703271284 1 -2113291.45021155 -2241269.67407693 -1961993.97916989 -1837783.11696155 -2346310.06200321 -1687083.8001186 1469904.32266347 -1181126.12783655 -496228.665580146 -127978.223865375 151297.471041664 275508.333250005 -233018.611791655 426207.650092955 3583195.77287502 932165.322375004 1617062.7846314 279275.69490704 403486.55711538 -105040.38792628 554185.87395833 3711173.99674039 1060143.54624038 1745041.00849678 124210.86220834 -384316.08283332 274910.17905129 3431898.30183335 780867.85133334 1465765.31358974 -508526.94504166 150699.31684295 3307687.43962501 656656.989124999 1341554.4513814 659226.26188461 3816214.38466667 1165183.93416666 1850081.39642306 3156988.12278206 505957.672282049 1190855.13453845 -2651030.45050002 -1966132.98824362 684897.4622564 0.726729317104316 0.201447349857883 0.432717869460653 0.846424728600258 0.237673040121011 1 1 1 1 1 1 1 1 1 0.318014146637016 1 1 1 1 1 1 0.0451868594618056 1 1 1 1 1 0.185177599153334 1 1 1 1 0.405841258365009 1 1 1 0.0909035169246734 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.103537558415284 0.0102238605418316 0.10233249981553 0.0102333271167748 0.720515281231768 0.00301939207982759 -0.0103804062188476 -0.00664448326609202 9.20366856958295e-05 0.00189603327691161 -0.0197997811813405 -0.00824439163111674 0.0238952517819599 -0.00325718346485697 0.0266950912674502 +M163T227 M162.875T226.85 162.875 162.875 162.875 226.847427368164 218.395324707031 227.658325195312 33 0 3 2 4 3 2 1 1 4 4 5 3 165 0.462353517434431 0.322320987979724 1 372189.648483144 260392.311306243 0.69962265841479 322756.691823757 201499.313245604 0.624307158767243 1.15315858016781 310373.217946263 201745.669544165 0.650009916703236 1.04117005159246 7.28058964013852e-05 1 92037.943351099 -5487.59820454498 21778.2526500005 -13659.1622499985 58466.9313000015 75191.1620833335 404944.20485 295068.039866665 190810.4638 -97525.541555644 -70259.6907010985 -105697.105601098 -33571.0120510976 -16846.7812677656 312906.261498901 203030.096515566 98772.520448901 27265.8508545455 -8171.56404545356 63954.5295045464 80678.7602878785 410431.803054545 300555.63807121 196298.062004545 -35437.414899999 36688.6786500009 53412.909433333 383165.9522 273289.787216665 169032.21115 72126.09355 88850.324333332 418603.367099999 308727.202116664 204469.626049999 16724.230783332 346477.273549999 236601.108566664 132343.532499999 329753.042766667 219876.877783332 115619.301716667 -109876.164983335 -214133.74105 -104257.576066665 1 1 1 1 1 1 0.148945390005489 1 1 1 1 1 1 1 0.259968473346067 0.928057390014631 1 1 1 1 1 0.0113412825957223 0.158241679428041 1 1 1 1 0.0174305367955663 0.393726593936203 1 1 1 0.0349697529541062 0.212273688265833 1 1 0.201711313363453 1 1 0.755086080639964 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.0882730388426585 -0.0626313413608719 0.0855840966907186 -0.0622697374848941 0.731099486377141 -0.0123561292390632 -6.7964133186564e-05 0.0100481896395706 -0.00552600551341292 -0.0169557479735041 -0.0124719709624862 -0.00711548040057009 0.0309950031115815 0.0067438521265861 0.00921686363048771 +M165T338 M164.875T337.56 164.875 164.875 164.875 337.562683105469 336.875305175781 338.089294433594 54 0 7 0 8 8 7 7 7 6 0 0 4 [M+K]+ 125.917 [M+H-CO2]+ 207.865 70 0.866006563972147 0.216447080767682 1 409647.705963215 391168.471151946 0.954889934589483 483732.806229776 468412.580947781 0.968329157988268 0.846847062443456 340484.946041818 405527.906354914 1.1910303555832 1.22998501672469 4.40385233462652e-09 1 684585.875230772 752480.930384618 1332601.70961539 713188.777137823 581681.090634616 337352.650499999 -29146.5433674241 -20036.42525 292014.81209091 67895.055153846 648015.834384619 28602.901907051 -102904.784596156 -347233.224730773 -713732.418598196 -704622.300480772 -392571.063139862 580120.779230773 -39292.1532467951 -170799.839750002 -415128.279884619 -781627.473752042 -772517.355634618 -460466.118293708 -619412.932477568 -750920.618980774 -995249.059115392 -1361748.25298281 -1352638.13486539 -1040586.89752448 -131507.686503206 -375836.126637824 -742335.320505247 -733225.202387823 -421173.965046912 -244328.440134618 -610827.63400204 -601717.515884616 -289666.278543706 -366499.193867423 -357389.075749999 -45337.8384090885 9110.1181174241 321161.355458334 312051.23734091 0.11358005453071 0.096583438487779 0.000885600327703758 0.154002054065049 0.81416791594465 1 1 1 1 1 1 1 1 1 0.0153492689390872 0.0316154204461071 1 1 1 1 1 0.00706527037967482 0.0259008764753472 1 1 1 0.863088887199138 4.13963413771479e-05 0.000211122065598297 0.839196132637624 1 1 0.0297674436408949 0.0468543105155901 1 1 0.191442817641279 0.574914929783298 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0.141010709592148 0.0402268470581567 -0.140535296190201 0.0412489943271345 0.910312124202508 -0.00333510835663055 0.0136374524544247 -0.00820912512316714 0.0470702813959839 -0.00398704499005538 0.00677141222121328 -0.0255578597606999 -0.0082298996778851 -0.00766915945623759 -0.0144184298772256 +M165T317 M164.875T317.02 164.875 164.875 164.875 317.018585205078 316.065521240234 317.901153564453 53 0 4 0 8 8 8 8 8 6 0 0 3 [M+K]+ 125.917 [M+H-CO2]+ 207.865 77 0.838096959264605 0.21023653805185 1 744287.742360614 784725.59330251 1.05433093767424 889025.742508789 860270.720448739 0.967655579939784 0.837194815372015 652449.806359795 823739.294658445 1.26253282111359 1.30473367516999 4.40385233462652e-09 1 1267620.126875 1496789.85545513 2679183.56220613 1361572.24599359 1291942.86241667 678901.841734849 -19985.2434924243 3377.41055303039 607888.429301282 229169.72858013 1411563.43533113 93952.1191185899 24322.735541665 -588718.285140153 -1287605.37036743 -1264242.71632197 -659731.69757372 1182393.706751 -135217.60946154 -204846.993038465 -817888.013720282 -1516775.09894756 -1493412.4449021 -888901.426153849 -1317611.31621254 -1387240.69978946 -2000281.72047128 -2699168.80569856 -2675806.1516531 -2071295.13290485 -69629.3835769249 -682670.404258742 -1381557.48948602 -1358194.83544056 -753683.816692309 -613041.020681818 -1311928.10590909 -1288565.45186364 -684054.433115385 -698887.085227274 -675524.431181819 -71013.412433567 23362.6540454546 627873.672793707 604511.018748252 0.194688344932518 0.0294571388445663 0.000214532654363442 0.119553524972248 0.15296941387555 1 1 1 1 1 1 1 1 1 0.093849631189904 0.182561660808706 1 1 1 1 1 0.0113412825957223 0.0328735636467172 1 1 1 0.731926152362486 4.13963413771479e-05 0.000211122065598297 0.749354263169383 1 1 0.0590414494368151 0.117470445038843 1 1 0.068895633153238 0.256723489735304 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.144942278851616 0.0351471064761888 -0.144601766945615 0.0362697969126675 0.918051512642409 -0.00416689847409616 0.00509611351082173 -0.00780522330278605 0.04472336476531 -0.000576380660106708 0.0219563132520997 -0.0297731462861804 -0.00827009810277392 -0.0103033874802389 -0.0149540330008828 +M165T256 M164.875T255.62 164.875 164.875 164.875 255.6181640625 247.542572021484 256.341644287109 43 0 8 0 2 2 8 6 3 4 0 0 0 112 1.06630114173494 0.22093644805502 1 354378.95226233 413700.495343639 1.16739578550759 405093.616318681 451931.541704622 1.11562247218701 0.874807545679874 308960.957516783 502888.483794206 1.62767648001896 1.45898502459183 5.73706634478748e-09 1 450357.350772726 541641.653643938 1587110.30450437 679384.788643358 432806.05890909 355017.176024474 6883.474181818 6180.37504545455 61218.9507727272 91284.3028712125 1136752.95373165 229027.437870632 -17551.2918636365 -95340.1747482524 -443473.876590908 -444176.975727272 -389138.399999999 1045468.65086044 137743.13499942 -108835.594734849 -186624.477619465 -534758.179462121 -535461.278598484 -480422.702871211 -907725.515861016 -1154304.24559528 -1232093.1284799 -1580226.83032256 -1580929.92945892 -1525891.35373165 -246578.729734269 -324367.612618884 -672501.31446154 -673204.413597904 -618165.837870631 -77788.882884616 -425922.584727272 -426625.683863635 -371587.108136362 -348133.701842656 -348836.800979019 -293798.225251746 -703.099136363453 54335.4765909092 55038.5757272726 0.376416304824586 0.131113773705304 0.000215301825024248 0.0210747984613607 0.434665197552073 0.393726593936203 1 1 1 1 1 1 1 1 0.31043009321928 0.195701876605421 1 1 1 1 1 0.0781352865602566 0.0702415877019049 1 1 1 1 9.72490468141253e-05 0.000174459842983365 0.55366855858571 1 1 0.0349697529541062 0.0138878820584484 1 1 0.376852597053223 0.429754235275785 1 0.650272995087645 0.594406729658818 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0.12000096395695 0.0283783588881645 -0.119057665594828 0.0289759974618512 1.10789318886327 0.00499918519235584 -0.00585580764933178 -0.0420058136274642 0.0702058814512454 0.0113348456098694 0.00382847974997085 -0.00149421872025079 -0.0123805253499523 -0.00848841207292826 -0.0276847502031869 +M166T317 M165.875T317.04 165.875 165.875 165.875 317.04475402832 316.065521240234 317.901153564453 56 0 5 0 8 8 8 8 8 7 0 0 4 77 0.873886130701936 0.28978273762146 1 566564.548916175 612586.058432978 1.08122906667006 669868.766163304 662819.087890653 0.989476030785808 0.845784394697476 478650.24083985 629349.788549455 1.31484272826267 1.32882726549573 4.40385233462652e-09 1 1085877.34460897 1170292.37810256 1923052.91783974 1149295.09316667 946647.338696386 596387.020426767 -13908.0936287879 -17929.8044772727 486468.485493589 84415.0334935898 837175.57323077 63417.7485576998 -139230.005912586 -489490.324182205 -1099785.43823776 -1103807.14908624 -599408.859115383 752760.53973718 -20997.28493589 -223645.039406175 -573905.357675795 -1184200.47173135 -1188222.18257983 -683823.892608973 -773757.82467307 -976405.579143356 -1326665.89741297 -1936961.01146853 -1940982.72231701 -1436584.43234615 -202647.754470285 -552908.072739905 -1163203.18679546 -1167224.89764394 -662826.607673083 -350260.318269619 -960555.432325174 -964577.143173659 -460178.853202797 -610295.114055555 -614316.82490404 -109918.534933178 -4021.71084848481 500376.579122377 504398.289970861 0.17719979609046 0.0562090515292501 0.000246618179542912 0.110401371966041 0.278759995756641 1 1 1 1 1 1 1 1 1 0.116618496591879 0.0473584049961879 1 1 1 1 1 0.0282849217271787 0.0156681247002895 1 1 1 0.731926152362486 9.10680126391271e-05 9.2887565991869e-05 0.749354263169383 1 1 0.0719236522024915 0.0323078297004921 1 1 0.19992767477345 0.17218181552716 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0.146020022766386 0.0366973584592664 -0.145563837156519 0.0377332359553988 0.899519032194015 -0.00447874499227033 0.00623286208417728 -0.00852923643310405 0.0433171033273482 0.0016662567301934 0.0195693090227752 -0.0294634466753394 -0.00832138180433661 -0.0101889924661074 -0.0134739364466115 +M166T337 M165.875T337.42 165.875 165.875 165.875 337.417572021484 336.457580566406 338.150177001953 52 0 8 0 7 7 7 8 6 5 0 0 4 [M+Na]+ 142.886 70 0.910692168611428 0.156064156426672 1 292723.92194447 300900.700022275 1.02793341255982 355457.93832726 350744.111393467 0.986738720885021 0.82351212444992 253759.28752768 352409.260322572 1.38875413686733 1.4074183038259 4.40385233462652e-09 1 549945.90271154 517245.228208335 1091632.47967308 519139.49401282 451097.8547 262840.719490384 -3739.5958484848 -170.656579545401 248999.802999999 -32700.674503205 541686.57696154 -30806.4086987195 -98848.04801154 -287105.183221156 -553685.498560024 -550116.559291085 -300946.099711541 574387.251464745 1894.26580448553 -66147.373508335 -254404.508717951 -520984.824056819 -517415.88478788 -268245.425208336 -572492.98566026 -640534.62497308 -828791.760182696 -1095372.07552156 -1091803.13625263 -842632.676673081 -68041.6393128205 -256298.774522436 -522879.089861305 -519310.150592365 -270139.691012821 -188257.135209616 -454837.450548484 -451268.511279545 -202098.051700001 -266580.315338869 -263011.376069929 -13840.916490385 3568.9392689394 252739.398848484 249170.459579544 0.027794335864133 0.0782193052607655 0.000214532654363442 0.0709833796124271 0.278759995756641 1 1 1 1 1 1 1 1 1 0.0205696439022416 0.0372795462439186 1 1 1 1 1 0.0302502177508984 0.0994751953608944 1 1 1 0.731926152362486 4.82874721854535e-05 0.000305370996244383 0.749354263169383 1 1 0.0482551154177424 0.0786976165455977 1 1 0.175929150529689 0.513273791431581 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0.139647432104521 0.0353721087288137 -0.139453007772802 0.0365786394764915 0.95282644111542 -0.00239075652738033 0.0166765027313631 -0.0243395466985536 0.0501296326031231 0.00381713941207584 0.0167969911921033 -0.0318016484679871 -0.0101405611647808 -0.0079649556443399 -0.0148195375889052 +M173T433 M172.875T433.34 172.875 172.875 172.875 433.337677001953 432.7353515625 438.034820556641 35 0 6 6 5 1 1 2 6 4 3 0 1 3 1.36272892229385 0.194560260970084 1 1266393.79444102 1470379.40323134 1.16107596995954 1867769.12872026 2665189.92042312 1.42693755852428 0.678024802406233 1038548.3271461 1341040.15559937 1.29126408521066 0.904919824625027 9.99796489760505e-08 1 -1747537.41099359 -2687684.30507693 -2794091.37107693 -2488563.6222436 9042.13950639963 -2322653.47741667 5050056.08668495 -2765931.19199359 -2186566.51620193 -940146.894083337 -1046553.96008334 -741026.211250005 1756579.55049999 -575116.066423079 6797593.49767855 -1018393.781 -439029.105208336 -106407.066 199120.682833332 2696726.44458333 365030.827660259 7737740.39176188 -78246.886916666 501117.788875001 305527.748833332 2803133.51058333 471437.893660258 7844147.45776188 28160.1790833335 607524.854875001 2497605.76175 165910.144826927 7538619.70892855 -277367.569749998 301997.106041669 -2331695.61692307 5041013.94717855 -2774973.33149999 -2195608.65570833 7372709.56410162 -443277.714576925 136086.961214743 -7815987.27867855 -7236622.60288688 579364.675791668 1 0.178882656376245 0.015573708479007 0.371390870029448 1 1 1 0.00256052754702936 1 1 1 1 1 1 1 0.249717973636758 1 1 1 0.78294591403514 1 0.0278206311309793 1 1 1 0.336004787546739 1 0.00171726404788857 1 1 1 1 0.0989244154768505 1 1 1 1 0.0156238673157544 1 0.919863887653276 0.986135604824185 1 0.000503880835770941 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0.0740954755491924 0.0388848011411367 0.0743843865526884 0.0359285315474547 0.983854090469824 -0.00409485685635407 0.00592242893781314 -0.00392693249841443 -0.00604969504836195 -0.022436286710685 0.0408373681356486 -0.0359902106972653 0.0483848366776398 -0.01827589400169 -0.0060070322145816 +M173T452 M172.875T451.9 172.875 172.875 172.875 451.900009155273 450.496032714844 452.717468261719 22 0 5 3 4 0 1 2 3 2 2 0 0 2 1.67048893241062 0.164096600990738 1 1534618.18187864 2752886.79222939 1.7938577978135 1799986.21986154 3024490.5787063 1.68028540737326 0.852572183578546 895116.751720905 1276865.17165728 1.42647891373103 0.848950367283735 1.49453569519423e-07 1 -3136536.19256876 -4407065.66268268 -4404362.27087499 -4128072.86879037 -2725258.33741345 -4391302.35755447 3366482.13258654 -4374117.77237499 -4244205.29872114 -1270529.47011392 -1267826.07830623 -991536.676221614 411277.855155302 -1254766.16498572 6503018.32515529 -1237581.57980623 -1107669.10615238 2703.39180769265 278992.793892308 1681807.32526922 15763.3051282053 7773547.79526921 32947.890307692 162860.363961539 276289.402084615 1679103.93346153 13059.9133205126 7770844.40346152 30244.4984999993 160156.972153846 1402814.53137692 -263229.488764103 7494555.00137691 -246044.903584616 -116132.429930769 -1666044.02014102 6091740.46999999 -1648859.43496153 -1518946.96130768 7757784.49014101 17184.5851794867 147097.058833334 -7740599.90496152 -7610687.43130767 129912.473653847 1 0.0208616985570098 0.0166726873696721 0.544704985403882 1 0.0989244154768505 1 0.0535710678503395 1 1 1 1 1 1 1 0.727987340048391 1 1 1 0.92181621665812 1 0.0021946718804578 1 1 1 1 1 0.00122458360600508 1 1 1 1 0.110401371966041 1 1 1 1 0.849208109774197 1 0.0211087298101045 1 1 0.00628735616393173 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0.0946521088490593 0.0518298787797983 0.095027503976889 0.0491338486016648 0.918521369018439 0.000401372763371066 0.00801825505421245 -0.00325255772163423 -0.000791015550030907 -0.017845875851988 0.0256520138688964 -0.0388903170894016 0.0455436608191096 -0.0138873792887782 -0.00680059132620932 +M177T293 M176.875T293.13 176.875 176.875 176.875 293.1279296875 292.215759277344 293.648864746094 28 0 3 0 4 3 1 1 4 3 5 4 0 154 0.57248629098329 0.175837562560253 1 268237.285691414 181343.532095866 0.67605639398129 345355.38578632 242803.479940902 0.703053984196818 0.776699297972954 319759.470804041 243517.177160178 0.761563610759829 1.08322209656468 7.83458062832179e-06 1 187473.646988637 184879.708727274 194084.456272727 195679.159590909 379033.302257576 241930.723815584 359301.195419787 464707.264072728 123859.270454545 -2593.93826136203 6610.80928409047 8205.5126022725 191559.65526894 54457.076826948 171827.54843115 277233.617084091 -63614.376534092 9204.7475454525 10799.4508636345 194153.593530302 57051.01508831 174421.486692513 279827.555345453 -61020.43827273 1594.70331818203 184948.845984849 47846.2675428575 165216.73914706 270622.807800001 -70225.1858181825 183354.142666667 46251.5642246755 163622.035828878 269028.104481819 -71819.8891363645 -137102.578441992 -19732.1068377895 85673.9618151511 -255174.031803032 117370.471604203 222776.540257143 -118071.45336104 105406.068652941 -235441.924965243 -340847.993618183 0.726729317104316 0.75339809283064 0.591047165252482 0.748184613553196 0.00320948797034482 0.0827025158736361 0.00614526611287047 0.00012469466674357 1 1 1 1 1 1 1 0.505407207722699 1 1 1 1 1 1 0.436610745800502 1 1 1 1 1 0.537537814543305 1 1 1 1 0.435798774666088 1 1 1 1 1 1 1 1 1 1 0.414257956236904 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00604977011148218 -0.105444547671403 0.00800419592849259 -0.109564974372532 0.820190267545327 -0.0210024765694201 -0.00160815667883723 0.00922890709487246 -0.0137565032731326 -0.0229725583526453 0.0169989693539567 0.00731589746551513 0.0253489773119417 0.0109680103936244 -0.0144598231624723 +M181T317 M180.875T317.07 180.875 180.875 180.875 317.065093994141 316.0830078125 317.901153564453 59 0 8 0 7 8 8 8 8 8 0 0 4 [M+K]+ 141.91 [M+Na]+ 157.884 [M+H]+ 179.866 [M+H-CO]+ 207.865 [M+H-HCOOH]+ 225.872 77 0.847012179015651 0.215461727552633 1 1033813.88880537 1079382.85535648 1.04407850101895 1225759.75775606 1159838.04720198 0.946219713824864 0.843406615581766 909497.103254022 1114361.07526075 1.2252497245717 1.2948892383767 4.40385233462652e-09 1 1822438.73112499 2168703.46453717 3420443.29726603 1911486.47908421 1746273.12483164 1002698.41580449 22094.4219519233 29803.3138685897 916809.146381411 346264.73341218 1598004.56614104 89047.7479592201 -76165.6062933549 -819740.315320505 -1800344.30917307 -1792635.4172564 -905629.584743581 1251739.83272886 -257216.98545296 -422430.339705535 -1166005.04873268 -2146609.04258525 -2138900.15066858 -1251894.31815576 -1508956.81818182 -1674170.17243439 -2417744.88146154 -3398348.87531411 -3390639.98339744 -2503634.15088462 -165213.354252575 -908788.063279725 -1889392.05713229 -1881683.16521562 -994677.332702801 -743574.70902715 -1724178.70287971 -1716469.81096305 -829463.978450226 -980603.993852563 -972895.101935897 -85889.2694230761 7708.8919166664 894714.724429487 887005.832512821 0.0662093247050997 0.0138945283829404 0.000180194833037384 0.0709833796124271 0.0879873793686797 1 1 1 1 1 1 1 1 1 0.119197845797172 0.121428831183809 1 1 1 1 1 0.0225571652648505 0.0302502177508984 1 1 1 0.731926152362486 9.72490468141253e-05 0.000211122065598297 0.749354263169383 1 1 0.110401371966041 0.115179867458799 1 1 0.165082954730744 0.256723489735304 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.145993687916278 0.0347133164312306 -0.145632886891297 0.0358138092345575 0.910435654997751 -0.00516481294993012 0.00775866157057417 -0.00341460526913776 0.0430634635228766 -0.00411800545795493 0.0209220863267043 -0.0332074763634702 -0.00689572814362172 -0.00970408225164793 -0.0126984794955494 +M181T338 M180.875T337.56 180.875 180.875 180.875 337.561935424805 336.457580566406 338.089294433594 56 0 6 0 8 7 8 8 8 7 0 0 4 [M+K]+ 141.91 [M+Na]+ 157.884 [M+H]+ 179.866 [M+H-H20]+ 197.874 [M+H-CO]+ 207.865 70 0.890749059452792 0.226102350970809 1 734199.74791277 742563.143161114 1.01139117150628 838143.002537081 820448.667065602 0.978888643801932 0.875983866345394 596052.726331706 761937.280008301 1.27830516722489 1.30587393705993 4.40385233462652e-09 1 1347875.91445514 1138069.25123932 2488718.55260527 1195719.29046504 958525.338480772 614678.044916665 -14458.1820454543 4753.01604545514 548003.759205129 -209806.66321582 1140842.63815013 -152156.6239901 -389350.575974364 -733197.86953847 -1362334.09650059 -1343122.89840968 -799872.155250007 1350649.30136595 57650.0392257201 -179543.912758543 -523391.20632265 -1152527.43328477 -1133316.23519386 -590065.492034186 -1292999.26214023 -1530193.21412449 -1874040.5076886 -2503176.73465072 -2483965.53655981 -1940714.79340014 -237193.951984263 -581041.24554837 -1210177.47251049 -1190966.27441958 -647715.531259906 -343847.293564106 -972983.520526226 -953772.322435317 -410521.579275643 -629136.226962119 -609925.02887121 -66674.2857115365 19211.1980909094 562461.941250583 543250.743159674 0.0319559841252049 0.0710872187110412 0.000214532654363442 0.111907167014595 0.382714862790119 1 1 1 1 1 1 1 1 1 0.0153492689390872 0.0435091283559493 1 1 1 1 1 0.0192386196102813 0.0904684115481689 1 1 1 0.731926152362486 4.13963413771479e-05 0.000305370996244383 0.749354263169383 1 1 0.0482551154177424 0.126666861084309 1 1 0.165082954730744 0.625591516370869 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0.138710296247728 0.0337469846874195 -0.138436791262326 0.0349325293593411 0.96213503122923 -0.00146163030571816 0.0135869699449804 -0.0244472640776858 0.0533012214106436 0.00222726648456858 0.012686511844263 -0.0257506947425399 -0.01060559908191 -0.00801580668344338 -0.0158340653274235 +M181T540 M180.875T539.7 180.875 180.875 180.875 539.704956054688 538.963256835938 540.618347167969 30 0 4 0 2 6 6 4 6 2 0 0 0 [2M+2Na+2K-H]3+ 209.866 102 0.931296329875272 0.210255697154299 1 167418.296563067 173427.477443088 1.0358932148002 236955.820216787 234454.703212544 0.9894447960723 0.706538022192907 165592.89338474 250702.189480323 1.51396708129158 1.53011778656214 2.06498874786457e-08 1 197320.587416667 382413.571007578 443612.860535716 284950.695660259 440913.504695973 129543.439958334 -9959.93608333355 1263.25958333335 170633.733833333 185092.983590911 246292.273119049 87630.1082435915 243592.917279306 -67777.147458333 -207280.523500001 -196057.327833334 -26686.8535833345 61199.2895281385 -97462.875347319 58499.933688395 -252870.131049244 -392373.507090911 -381150.311424244 -211779.837174245 -158662.164875457 -2699.35583974345 -314069.420577382 -453572.79661905 -442349.600952383 -272979.126702383 155962.809035714 -155407.255701924 -294910.631743592 -283687.436076925 -114316.961826926 -311370.064737639 -450873.440779306 -439650.245112639 -270279.77086264 -139503.376041668 -128280.180375001 41090.2938749985 11223.1956666669 180593.669916666 169370.474249999 0.544963130202212 0.0177006655226867 0.00825460439179621 0.223106418473929 0.0104159115438363 1 1 1 1 1 1 1 1 1 0.28078964904256 0.373725697220689 1 1 1 1 1 0.0062545785436375 0.0142368548972908 1 1 1 1 0.00228375564833484 0.00862006472593349 1 1 1 0.102255603050087 0.166115199240491 1 1 0.00584615614337418 0.014401220178017 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 -0.125628433031723 0.0220212323204303 -0.124156896893065 0.0221373318110033 0.894617430657383 -0.00771068528527869 -0.00668142765871337 0.0192214619166783 0.0167325321334545 -0.0110575311091941 0.0572811342801292 -0.0524497934370375 0.000782993401833588 -0.011882685193855 -0.00582182383499652 +M181T418 M180.875T417.83 180.875 180.875 180.875 417.832565307617 417.209350585938 418.605743408203 22 2 3 0 2 6 2 5 0 1 1 0 0 264 0.884588211141309 0.39899416269124 1 305878.667292884 235537.661754836 0.770036249469156 298508.101359527 222097.377898945 0.744024624080295 1.02469134304827 224950.172153788 213201.071033522 0.947770206140434 1.27384252545673 5.73706634478748e-09 1 186292.014681818 513401.755901514 315761.458636362 355479.386972028 -15426.25490909 19694.972227272 -60081.7643030301 -82481.6197386362 -57298.3848409092 327109.741219696 129469.443954543 169187.37229021 -201718.269590908 -166597.042454546 -246373.778984849 -268773.634420455 -243590.399522728 -197640.297265153 -157922.368929486 -528828.010810605 -493706.783674242 -573483.520204545 -595883.375640151 -570700.140742424 39717.9283356665 -331187.713545452 -296066.48640909 -375843.222939392 -398243.078374998 -373059.843477271 -370905.641881118 -335784.414744756 -415561.151275059 -437961.006710665 -412777.771812938 35121.227136362 -44655.5093939401 -67055.3648295462 -41872.1299318192 -79776.7365303021 -102176.591965908 -76993.3570681812 -22399.8554356062 2783.37946212085 25183.234897727 1 0.278717153457073 0.844261049243443 0.497223723055825 1 1 1 1 1 1 1 1 1 1 0.210000322323986 0.0473584049961879 1 1 1 0.433295680015968 1 0.0021946718804578 0.00051463444350322 0.282903922277367 1 1 1 0.0149776297332378 0.00380713476569239 0.749354263169383 0.459462762339069 1 0.0153631652821762 0.00189494308236426 0.393889660548555 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0.0981000313906055 0.076689909625588 -0.0958845968391908 0.0760106647690337 1.11041823753424 -0.014398875333276 -0.00482714291468006 0.098290720531252 -0.00427852306267505 -0.0100001540804539 -0.048122498701128 -0.0243031944182517 0.00948762250130612 0.0022124607345829 -0.00558050699571515 +M182T338 M181.875T337.6 181.875 181.875 181.875 337.60302734375 336.875305175781 338.150177001953 11 0 3 0 2 0 5 0 1 0 0 0 0 273 0.981113234118231 0.337528156731231 1 100562.605586932 88782.193885191 0.882854947592251 133529.738016389 138919.562637038 1.04036422673118 0.75311018414931 100202.135048182 129020.703176253 1.2876043321254 1.23764764208689 8.35141776941199e-09 1 149784.842 170421.452681818 412842.862427273 138852.492818182 108659.804318182 68194.667409091 -9829.92872727285 -874.215515151503 73751.1908181821 20636.6106818185 263058.020427274 -10932.349181818 -41125.0376818175 -81590.1745909087 -159614.770727273 -150659.057515151 -76033.6511818176 242421.409745455 -31568.9598636365 -61761.648363636 -102226.785272727 -180251.381409091 -171295.66819697 -96670.2618636361 -273990.369609092 -304183.058109091 -344648.195018182 -422672.791154546 -413717.077942425 -339091.671609091 -30192.6884999995 -70657.8254090908 -148682.421545455 -139726.708333333 -65101.3019999996 -40465.1369090913 -118489.733045455 -109534.019833334 -34908.6135000002 -78024.5961363638 -69068.8829242425 5556.52340909111 8955.71321212135 83581.119545455 74625.4063333336 0.114855980904386 0.116035571333521 0.000698790830754581 0.191858987722038 0.705973831048521 1 1 1 1 1 1 1 1 1 0.0229453018053966 0.0429528252680188 1 1 1 1 1 0.015277616942808 0.0380691272939169 1 1 1 1 4.64437829959345e-05 0.000211122065598297 1 1 1 0.0482551154177424 0.0771487162850107 1 1 0.201711313363453 0.550575916899293 1 0.947858190247145 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0.124358737031243 0.0320848289843802 -0.123144170686283 0.032523467474272 0.979401357659007 0.00146627886560696 0.0142970181348073 -0.0161319372307179 0.0587887139901319 -0.0177423400401371 -0.00396121252442922 -0.0228257069088631 -0.00544531353875334 -0.00529029679459196 -0.0043364130562687 +M183T540 M182.875T539.78 182.875 182.875 182.875 539.783325195312 538.963256835938 540.933837890625 31 0 3 0 4 6 5 4 4 3 0 0 2 [M+H-CO]+ 209.866 102 0.984538389507236 0.272856584064167 1 318081.213891104 362282.683355709 1.13896284198581 487682.426012392 514018.73149851 1.05400298243564 0.652230215658871 286740.992464335 406059.984367249 1.4161211512782 1.34356465292514 2.65838950158583e-08 1 404740.758229022 890671.952250002 947099.793464289 616022.058766027 875313.95157372 284793.799791668 23485.5042045458 -1178.1545909088 365558.567795454 485931.19402098 542359.035235267 211281.300537005 470573.193344699 -119946.958437353 -381255.254024476 -405918.91281993 -39182.1904335675 56427.841214287 -274649.893483975 -15358.0006762815 -605878.152458334 -867186.448045456 -891850.106840911 -525113.384454548 -331077.734698262 -71785.8418905685 -662305.993672621 -923614.289259743 -948277.948055197 -581541.225668835 259291.892807693 -331228.258974359 -592536.554561481 -617200.213356936 -250463.490970573 -590520.151782052 -851828.447369174 -876492.106164629 -509755.383778266 -261308.295587122 -285971.954382577 80764.768003786 -24663.6587954546 342073.063590908 366736.722386363 0.190000291626463 0.00525188940601879 0.00263714943088874 0.0913859392741086 0.00320948797034482 0.484956062562708 1 1 1 1 1 1 1 1 0.809623653443725 0.158583999678539 1 1 1 1 1 0.0440855306111766 0.00508593104528542 1 1 1 1 0.056234102161744 0.00384079132054405 1 1 1 0.566413940497949 0.0771487162850107 1 1 0.068895633153238 0.0107139054859003 1 1 0.861913132117375 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0.123881814728143 0.0238639795711642 -0.122133301890962 0.0237102845976672 0.831073082892667 -0.00924516534081758 -0.00255928417013021 0.0242318421256662 0.00854993232049586 -0.0135641253663558 0.0522903322610117 -0.0481105434281733 0.00268832503326889 -0.0118120732832043 -0.00339364598690961 +M185T338 M184.875T337.57 184.875 184.875 184.875 337.572830200195 337.059295654297 338.192321777344 30 0 6 0 5 4 6 3 4 2 0 0 0 [M+H-CH2]+ 197.874 70 0.756733507648156 0.156023245919422 1 221339.281145251 190885.190173242 0.862409912897369 297380.972634402 257067.317577246 0.864437678375888 0.744295370293795 213035.237592571 163933.082574175 0.769511581401838 0.890187460185218 4.30277547543493e-08 1 309376.34597436 297031.169583332 595671.323028848 263931.002109847 230254.185907051 159582.545746213 -31817.7728825759 582304.378458331 115038.601848484 -12345.1763910275 286294.977054488 -45445.3438645125 -79122.160067309 -149793.800228147 -341194.118856936 272928.032483971 -194337.744125876 298640.153445516 -33100.167473485 -66776.9836762815 -137448.62383712 -328848.942465908 285273.208874999 -181992.567734848 -331740.320919001 -365417.137121797 -436088.777282635 -627489.095911424 -13366.9445705166 -480632.721180364 -33676.8162027965 -104348.456363635 -295748.774992423 318373.376348484 -148892.400261363 -70671.640160838 -262071.958789627 352050.19255128 -115215.584058566 -191400.318628789 422721.832712119 -44543.9438977285 614122.151340907 146856.37473106 -467265.776609847 0.0878136231136391 0.110008848926653 0.000479589205589254 0.410638476805011 0.713902557758242 1 1 0.0100792514380421 1 1 1 1 1 1 0.0233156465308424 1 1 1 1 1 1 0.0192386196102813 1 1 1 1 0.731926152362486 4.64437829959345e-05 1 0.749354263169383 1 1 0.12708657812719 1 1 1 0.270007242411539 1 1 1 1 1 0.00212047724993832 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0.0815396661710861 -0.0744396111710504 -0.0794871462293693 -0.075411802431673 0.967552704532223 -0.00688860605982796 0.0177657303822179 0.00655232743415891 0.0407891087823827 -0.0212647929692199 -0.0169284792339249 -0.026292130562648 -0.0125845394855961 0.0293249986793716 -0.0143946096789495 +M188T229 M187.875T229.42 187.875 187.875 187.875 229.415451049805 220.334167480469 236.685607910156 65 0 9 8 5 5 5 6 6 5 8 5 2 [M+H]+ 186.864 118 0.574830107684628 0.160203076897211 1 587588.490400883 512974.388180215 0.873016399334571 491805.806813936 333750.72841914 0.678622992642719 1.19475712214025 434751.099673283 314060.756307389 0.722392091804729 1.06449692927669 8.43364271370043e-09 1 -671575.414645456 -503398.436318182 -411025.794545455 -516182.269645454 -867667.996578789 -650706.840145455 -182914.074212122 -763380.427829546 -804093.139470455 168176.978327274 260549.6201 155393.145000002 -196092.581933333 20868.5745 488661.340433334 -91805.0131840904 -132517.724824999 92372.6417727264 -12783.8333272721 -364269.560260607 -147308.403827274 320484.36210606 -259981.991511364 -300694.703152273 -105156.475099999 -456642.202033333 -239681.0456 228111.720333333 -352354.63328409 -393067.344925 -351485.726933334 -134524.570500001 333268.195433332 -247198.158184092 -287910.869825001 216961.156433333 684753.922366666 104287.568749243 63574.8571083335 467792.765933333 -112673.58768409 -153386.299325 -580466.353617424 -621179.065258333 -40712.711640909 0.0267764927729452 0.546282971060308 0.985030081343979 0.896433797543962 1.6607415922835e-05 0.0303103404900952 1 0.00624703252364336 0.0497342931413399 1 1 1 1 1 0.165791992268157 1 1 1 1 0.642275051796166 1 1 1 1 1 0.336004787546739 1 1 1 1 0.336343012621292 1 1 1 1 1 0.00116117136079064 1 1 0.185858271050253 1 1 0.0887442802113674 0.144822221733723 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.0901377229613864 0.11145768935974 0.0930121899390556 0.109633309744159 0.919247162871453 0.0242672462415661 -0.0141788919019078 -0.00413010253675154 0.0264147156296959 0.006507223084323 -0.0351793577427557 -0.00430988831004004 0.0138608090081098 -0.00674950373419256 -0.00893648749137109 +M191T254 M190.875T254.15 190.875 190.875 190.875 254.148574829102 253.383026123047 254.922256469727 23 0 5 1 3 1 1 2 2 3 2 1 2 148 0.404847049588055 0.271347213789449 1 322582.480573131 224297.781761307 0.69531916724925 263542.627130545 142313.612339216 0.540002252723699 1.22402392389198 240781.48511596 153339.464517391 0.636840762251895 1.17932982508824 0.000209826666110165 1 99018.6636499985 87331.326922727 8343.68073181849 81503.9980499985 133486.561350001 48173.805322727 102146.933368181 -87374.56395 139383.360459091 -11687.3367272715 -90674.98291818 -17514.6656 34467.897700002 -50844.8583272715 3128.26971818251 -186393.227599999 40364.696809092 -78987.6461909085 -5827.32887272851 46155.2344272735 -39157.5216 14815.606445454 -174705.890872727 52052.0335363635 73160.31731818 125142.880618182 39830.1245909085 93803.2526363625 -95718.2446818185 131039.679727272 51982.563300002 -33330.1927272715 20642.9353181825 -168878.561999999 57879.362409092 -85312.7560272735 -31339.6279818195 -220861.125300001 5896.79910909 53973.128045454 -135548.369272727 91209.5551363635 -189521.497318181 37236.4270909095 226757.924409091 1 1 1 1 0.82943345411117 1 1 1 1 1 1 1 1 1 1 0.0333847573571752 1 1 1 1 1 1 0.105774876071327 1 1 1 1 0.706151770095151 1 1 1 1 1 0.0771487162850107 1 1 1 0.0109198413823081 1 1 0.836239897866615 1 0.0210853582417561 1 0.21480765421534 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0.00946255196218957 0.0753307940379584 0.00656641331324368 0.0771824272695015 0.827311725980695 0.00266788050328887 0.00695318826643804 -0.01929744715762 -0.0193574814458455 0.0259269605825563 0.0605087830677183 -0.0311279917065008 0.000511684918057805 -0.0245155415243571 -0.00311986538526846 +M199T338 M198.875T337.61 198.875 198.875 198.875 337.610885620117 336.874603271484 338.05908203125 34 0 4 0 6 2 8 6 5 3 0 0 0 [M+K+NH3]+ 142.886 [M+H]+ 197.874 [M+H-CO]+ 225.865 70 0.801050633257363 0.230839447881815 1 377551.65864252 340230.499398709 0.901149529105505 462088.036237293 414793.750267103 0.897650918739859 0.817055688601811 341068.735645944 319563.397155118 0.936947200833001 1.04377679705192 4.40385233462652e-09 1 523059.969332136 493303.089616882 1039276.59284092 539200.915231933 349481.953390907 195642.824079544 -67458.7093636378 -52931.4740909105 125675.711681817 -29756.8797152531 516216.623508782 16140.9458997974 -173578.015941228 -327417.145252592 -590518.678695773 -575991.443423046 -397384.257650318 545973.503224035 45897.8256150505 -143821.136225975 -297660.265537338 -560761.79898052 -546234.563707793 -367627.377935065 -500075.677608985 -689794.63945001 -843633.768761374 -1106735.30220456 -1092208.06693183 -913600.8811591 -189718.961841025 -343558.091152389 -606659.624595571 -592132.389322843 -413525.203550115 -153839.129311364 -416940.662754545 -402413.427481818 -223806.24170909 -263101.533443182 -248574.298170454 -69967.1123977265 14527.2352727272 193134.421045455 178607.185772728 0.0739421336647729 0.204800752894711 0.000698790830754581 0.179529056239855 0.767797200276359 1 1 1 1 1 1 1 1 1 0.0153492689390872 0.0131187682996511 1 1 1 1 1 0.0225571652648505 0.0380691272939169 1 1 1 0.731926152362486 4.13963413771479e-05 0.000149769065836414 0.749354263169383 1 1 0.0464933307248466 0.0387986667727642 1 1 0.201711313363453 0.4124843153618 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0.129687175695514 0.0417552391008915 -0.128919721616638 0.0425352413272899 0.979839402487761 0.000666987469551953 0.0150569193952422 -0.0240915509498865 0.0557710583353772 0.00155942595506129 0.00767951026825945 -0.0273763975721311 -0.00988714881965948 -0.00615093912554464 -0.0181799614720364 +M208T219 M207.875T218.83 207.875 207.875 207.875 218.831649780273 217.784088134766 220.879348754883 37 0 6 0 4 0 1 2 6 2 7 8 1 71 1.89347377218659 0.2079478839614 1 538848.873807638 1304563.25377995 2.42101879987534 732559.863008257 1450137.19495832 1.97954770413347 0.735569747972343 1182720.52733162 2067199.91378608 1.74783464564529 0.882946463980464 4.40385233462652e-09 1 200808.298195455 47524.8770500002 18937.90745 127596.97985 362941.476549999 214542.257750001 1410956.70018409 5476376.75916923 157245.4989 -153283.421145455 -181870.390745455 -73211.318345455 162133.178354544 13733.9595545455 1210148.40198864 5275568.46097378 -43562.799295455 -28586.9696000002 80072.1027999998 315416.599499999 167017.3807 1363431.82313409 5428851.88211923 109720.62185 108659.0724 344003.569099999 195604.350300001 1392018.79273409 5457438.85171923 138307.59145 235344.496699999 86945.2779000005 1283359.72033409 5348779.77931923 29648.51905 -148399.218799998 1048015.22363409 5113435.28261923 -205695.977649999 1196414.44243409 5261834.50141923 -57296.7588500005 4065420.05898514 -1253711.20128409 -5319131.26026923 0.190000291626463 1 1 0.926494815762478 0.0163895051135988 0.146013066171816 0.000601534063783668 4.11867923433284e-06 1 1 1 1 1 1 1 0.442333822115335 1 1 1 0.78294591403514 1 0.0206454304822157 0.0014860546705725 1 1 0.542591974695788 1 0.00410065165675984 0.000211122065598297 1 1 1 0.440343074447589 0.0517596102615853 1 1 1 1 1 1 0.901555351856074 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0668558245141369 -0.154451684382133 0.0689846954227871 -0.157766604437008 0.992726666636549 -0.0139343733223543 0.00796259967653043 0.0128095427407027 -0.00671722294435951 -0.0101224119887554 -0.0192398404361658 -0.0201993729354328 0.00695252902708673 0.0461925542081828 -0.0050906666115269 +M209T337 M208.875T337.41 208.875 208.875 208.875 337.40852355957 336.457580566406 338.129730224609 26 0 3 0 4 5 7 3 2 1 0 0 1 [3M+H+K]2+ 125.917 [M+H]+ 207.865 70 0.754478258465669 0.199726952759496 1 201781.282909747 167632.708758783 0.830764411552295 219401.174087426 186704.980298475 0.850975301636616 0.919690989572108 153300.258429242 133456.238034669 0.870554553541525 1.02300801429519 8.43364271370043e-09 1 331054.769690561 308273.911313635 410132.730700173 259972.318204546 180316.334113637 119532.793265152 5267.44921969695 55867.6117386369 109780.858079546 -22780.858376926 79077.9610096125 -71082.4514860151 -150738.435576924 -211521.976425409 -325787.320470864 -275187.157951924 -221273.911611015 101858.819386538 -48301.5931090891 -127957.577199998 -188741.118048483 -303006.462093938 -252406.299574998 -198493.053234089 -150160.412495628 -229816.396586536 -290599.937435022 -404865.281480476 -354265.118961536 -300351.872620628 -79655.9840909085 -140439.524939394 -254704.868984849 -204104.706465909 -150191.460125 -60783.5408484855 -175048.88489394 -124448.722375 -70535.4760340915 -114265.344045455 -63665.1815265147 -9751.93518560601 50600.1625189399 104513.408859849 53913.2463409087 0.0153518034982578 0.00765410902822879 0.000214532654363442 0.0709833796124271 0.15296941387555 0.665048480940815 1 1 1 1 1 1 1 1 0.0205696439022416 0.155750088928498 1 1 1 1 1 0.0104379347606139 0.127210308844544 1 1 1 1 0.000108523214829174 0.00771493938108056 1 1 1 0.0925319211333083 0.545046987828237 1 1 0.19992767477345 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.13623177466429 0.0262949938818135 -0.135199746170418 0.0267902710851241 0.854628760380888 -0.00624000723473142 0.0208336844754679 0.0109710359800133 0.0396353739130002 -0.024013905967025 2.50520000256525e-05 -0.0255140179658199 -0.0032715601204584 -0.00301298349696148 -0.012936479719355 +M211T540 M210.875T539.75 210.875 210.875 210.875 539.753051757812 538.963256835938 540.476623535156 39 0 5 0 4 8 8 3 7 3 0 0 1 [M+H]+ 209.866 102 0.97666460292933 0.162248152889309 1 395241.706499745 423278.298086186 1.07093530648557 636277.449189822 654050.280959354 1.02793251873402 0.621178240723461 367238.07778498 590922.058629171 1.60909800583141 1.56537318987936 2.06498874786457e-08 1 590850.520647433 1240676.0934359 1229920.35264744 648088.7151234 1258791.96737821 373431.987769232 -1549.7868269232 -3592.39798076925 458007.171528844 649825.572788464 639069.832000009 57238.1944759665 667941.446730774 -217418.532878201 -592400.307474356 -594442.918628203 -132843.349118589 -10755.7407884551 -592587.378312498 18115.87394231 -867244.105666665 -1242225.88026282 -1244268.49141667 -782668.921907053 -581831.637524043 28871.6147307651 -856488.36487821 -1231470.13947437 -1233512.75062821 -771913.181118598 610703.252254808 -274656.727354167 -649638.501950323 -651681.113104169 -190081.543594555 -885359.979608975 -1260341.75420513 -1262384.36535898 -800784.795849363 -374981.774596156 -377024.385750002 84575.183759612 -2042.61115384605 459556.958355768 461599.569509614 0.421848099148631 0.00887756487397576 0.00859315624251939 0.345069696168096 0.0115564461485147 1 1 1 1 1 1 1 1 1 0.306811499885921 0.235812873422256 1 1 1 1 1 0.00607560596235777 0.00606397299007602 1 1 1 1 0.00461072785354993 0.00625443846225319 1 1 1 0.250853365204562 0.212273688265833 1 1 0.0104234316213117 0.0109198413823081 1 1 0.987167828926748 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 -0.126836472533248 0.024847100582248 -0.12538276563495 0.024919120711162 0.905382406478193 -0.0102894976711771 0.0018132279780817 0.0422143167636322 0.00936302825874624 -0.0323892118121599 0.0484360562535515 -0.0506046149371074 0.0060024052432277 -0.0111506000667918 -0.00466613239394512 +M221T389 M220.875T389.45 220.875 220.875 220.875 389.445724487305 386.593811035156 389.9482421875 54 0 8 0 6 7 6 8 8 7 0 0 4 86 0.896070559321904 0.215887776262466 1 757684.122810023 692126.317974857 0.913476074182428 873200.052835654 895056.8868119 1.02503072910414 0.867709662120953 743076.818579559 769352.761872553 1.03536100526352 1.01007801606925 2.8700174532842e-08 1 1279158.26570833 768677.422473518 817253.252826926 1208677.00016987 1124580.04886217 1692641.1129391 -47554.9115416668 -80958.0734280302 1430634.36720833 -510480.843234809 -461905.012881401 -70481.2655384529 -154578.216846153 413482.847230777 -1326713.17724999 -1360116.33913636 151476.101500002 48575.830353408 439999.577696356 355902.626388656 923963.690465585 -816232.334015185 -849635.495901548 661956.944734811 391423.747342948 307326.796035248 875387.860112177 -864808.164368593 -898211.326254956 613381.114381402 -84096.9513077 483964.11276923 -1256231.91171154 -1289635.0735979 221957.367038455 568061.06407693 -1172134.96040384 -1205538.1222902 306054.318346155 -1740196.02448077 -1773599.18636713 -262006.745730775 -33403.1618863634 1478189.27875 1511592.44063636 0.162970273430902 1 0.866961552991033 0.154002054065049 0.218998969623031 0.0515897017982164 1 1 0.689059112519385 1 1 1 1 1 0.0732051552336819 0.00869571739036901 1 1 1 1 1 1 0.353191318252519 1 1 1 1 0.54531223968222 0.156470828398264 1 1 1 0.0713925658780487 0.0103877193954534 1 1 0.107602156923831 0.0166734340595285 1 0.0211087298101045 0.00376750568684553 1 1 0.445230375421418 0.0875623297320344 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 -0.103417279739064 0.0152737164946881 -0.104256167340277 0.0167424274552888 1.10665696271234 0.00140869771772265 0.00244720944943401 -0.0710464641259798 -0.0102024583342774 0.0477494804424062 0.00095793831531844 0.0885518954377525 -0.0361301750977017 -0.0223424064799844 -0.00191548124731728 +M222T621 M222T620.62 222 222 222 620.623107910156 619.89501953125 621.689270019531 16 0 5 4 1 1 0 3 0 0 2 0 0 68 3.67622970170739 0.150093167047399 1 307323.040891166 739959.880649664 2.40775920511508 171909.573986546 765163.662915304 4.45096596525325 1.78770171878395 198310.966727491 545911.04604636 2.752803110463 0.618473188056914 1.07108117872419e-07 1 -122882.682833334 -88918.9295189391 -151897.116314394 -74424.7333371204 -148140.804859848 -154788.33455303 -65020.9383749992 -90603.1667499999 -138682.665125 33963.7533143945 -29014.4334810604 48457.9494962132 -25258.1220265147 -31905.6517196967 57861.7444583344 32279.5160833337 -15799.9822916664 -62978.1867954549 14494.1961818187 -59221.8753409092 -65869.4050340911 23897.99114394 -1684.23723106076 -49763.7356060609 77472.3829772736 3756.31145454565 -2891.21823863625 86876.1779393949 61293.9495643941 13214.451189394 -73716.0715227279 -80363.6012159098 9403.79496212129 -16178.4334128795 -64257.9317878796 -6647.5296931819 83119.8664848492 57537.6381098484 9458.1397348483 89767.3961780311 64185.1678030304 16105.6694280302 -25582.2283750007 -73661.7267500009 -48079.4983750001 1 1 0.0183369438587421 1 0.101959863279964 0.081980451939507 1 1 1 1 1 1 1 1 1 1 1 0.390408587868349 1 0.433295680015968 0.529296101591271 1 1 1 0.292063779798137 1 1 0.00806393151780875 0.0504971807430101 1 0.336343012621292 0.517596102615853 1 1 1 1 0.0510107022104233 0.243975384120829 1 0.0589956630003782 0.313978604784821 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.021853290189746 0.045132110753873 0.0218636837074085 0.0450299361283009 0.896826015825492 0.0120023672172764 -0.0183962387809008 -0.0743754991898128 -0.00284274185493784 0.104609931487585 0.0239695336047686 -0.01184638084654 -0.0246705860758619 -0.00237426545492418 -0.00835082833122313 +M223T302 M222.875T301.85 222.875 222.875 222.875 301.848937988281 301.030853271484 302.604919433594 78 0 10 3 8 8 8 8 8 8 5 8 4 [1][M]+ 40 0.64998458256605 0.143580213856744 1 2425825.37833189 1913689.70574924 0.788881888549281 2888508.33075612 2310063.8858389 0.799742850398565 0.839819415614042 2715591.19937183 2077679.47125926 0.765092872498583 0.956673600917204 4.19978742001211e-08 1 3531534.85332517 3334258.06367133 2680603.5377803 3184254.28035402 4921058.34559442 4414562.31274825 108125.825479024 1917746.7612771 3903443.6207867 -197276.78965384 -850931.31554487 -347280.57297115 1389523.49226925 883027.459423084 -3423409.02784614 -1613788.09204807 371908.767461535 -653654.52589103 -150003.78331731 1586800.28192309 1080304.24907692 -3226132.2381923 -1416511.30239423 569185.557115375 503650.74257372 2240454.80781412 1733958.77496795 -2572477.71230127 -762856.776503195 1222840.08300641 1736804.0652404 1230308.03239423 -3076128.45487499 -1266507.51907691 719189.340432685 -506496.032846166 -4812932.52011539 -3003311.58431732 -1017614.72480772 -4306436.48726923 -2496815.55147115 -511118.691961549 1809620.93579808 3795317.79530768 1985696.8595096 0.0267764927729452 0.122368296821158 0.559645944203555 0.29233117852073 0.000798069823217951 0.00546339240731242 1 1 0.220504248594156 1 1 1 1 1 0.0385889502053039 0.589294332415026 1 1 1 1 1 0.122223852432579 1 1 1 1 1 0.721505616960892 1 1 1 1 0.367370555961558 1 1 1 0.00251564699071649 0.17218181552716 1 0.0105116015507002 0.556378394845581 1 1 0.307593643658727 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 -0.119395131182336 -0.0263527023691348 -0.118892276542838 -0.0257916732710747 0.921234538536723 -0.00845064534731845 0.0174805192269838 -0.0064772982299072 -0.0206908757713118 -0.0159650273402864 0.011182115201374 0.0533994434729428 -0.0221943331699575 -0.00950497621063093 0.00167821142142014 +M223T251 M222.875T250.98 222.875 222.875 222.875 250.982147216797 249.959533691406 251.723999023438 56 0 9 0 6 6 6 7 7 8 3 0 4 155 0.513797501186424 0.191427566915579 1 351375.947359659 236172.641080782 0.672136618500644 361298.885182739 235430.473951376 0.651622475481205 0.972535376581468 289159.84165697 228557.04692375 0.790417665240278 1.21299938995594 4.24978107828238e-07 1 293047.550813636 231547.663677272 302466.701780303 334034.232363635 243172.782363637 490899.852563636 11873.267945454 16542.072472727 426931.938238635 -61499.8871363645 9419.15096666652 40986.681549999 -49874.768449999 197852.30175 -281174.282868182 -276505.478340909 133884.387424999 70919.038103031 102486.568686364 11625.1186863655 259352.188886364 -219674.395731818 -215005.591204545 195384.274561363 31567.5305833325 -59293.9194166655 188433.150783333 -290593.433834849 -285924.629307576 124465.236458332 -90861.449999998 156865.6202 -322160.964418181 -317492.159890908 92897.7058749995 247727.070199999 -231299.514418183 -226630.70989091 183759.155874998 -479026.584618182 -474357.780090909 -63967.914325001 4668.80452727302 415058.670293181 410389.865765908 0.416701608105464 1 0.432717869460653 0.167966415235898 0.791091484560623 0.012499556400217 1 1 0.220504248594156 1 1 1 1 1 0.374664284310931 0.205924404272402 1 1 1 1 1 1 0.73344583435415 1 1 1 1 0.45425377168063 0.366192322274499 1 1 1 0.167393537027227 0.0802919068843935 1 1 0.919572544652132 0.704941958615046 1 0.0128307897410501 0.00803621997676973 1 1 0.272157453958819 0.111241447268848 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 -0.104079389519349 0.0119057228101115 -0.105792463790524 0.0143892653822166 1.09968791167829 -0.000844576296600369 -0.0066126411077666 -0.0410734491647545 -0.00525194481623592 0.0288712439467856 -0.0333487539636196 0.102354460975837 -0.0319788330150987 -0.0208006970090383 0.0119366525353279 +M223T584 M222.875T584.13 222.875 222.875 222.875 584.130615234375 583.216064453125 586.021728515625 53 0 7 0 7 8 7 7 8 7 0 0 2 15 1.04701665755012 0.219189968192738 1 964233.60359779 1064302.79502003 1.10378106617406 1133743.6616676 1317093.8859172 1.16172105780941 0.850486433749511 717563.579909616 730513.840511469 1.01804754444684 0.876327012929 2.09297104124653e-08 1 1447775.33903572 1713698.81714288 895300.818995881 1754950.97529121 1202324.87441483 1895144.50942858 36651.3011593402 83253.9484587903 1043913.98440935 265923.478107165 -552474.520039835 307175.636255495 -245450.464620885 447369.17039286 -1411124.03787638 -1364521.39057693 -403861.354626367 -818397.998147001 41252.1581483299 -511373.94272805 181445.692285695 -1677047.51598354 -1630444.86868409 -669784.832733532 859650.15629533 307024.055418951 999843.690432696 -858649.517836541 -812046.87053709 148613.165413468 -552626.10087638 140193.534137365 -1718299.67413187 -1671697.02683242 -711036.990881862 692819.635013745 -1165673.57325549 -1119070.92595604 -158410.890005482 -1858493.20826924 -1811890.56096979 -851230.525019228 46602.6472994502 1007262.68325001 960660.035950559 0.0187410975709301 0.00150700227473821 0.284337567883728 0.00519804149451478 0.0776780483829923 0.00491390102484709 1 1 1 1 1 1 1 1 0.0936980610884037 0.240975701213034 1 1 1 1 1 0.00706527037967482 0.0335573565016449 1 1 1 1 0.865921783425981 1 1 1 1 0.0482551154177424 0.131789033492782 1 1 0.283048611075974 0.945772052458004 1 0.027534362166476 0.221937281094264 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0.113885460828245 0.0338914630894571 -0.111904348349784 0.0333490357313774 0.863182511151785 -0.00998942220590499 0.0155139111450051 0.0246024553889589 -0.0243251962598477 -0.00683313593562596 -0.0347478415366367 0.0555774948026706 -0.00951131915254739 -0.0095433789787465 -0.001021935460978 +M224T302 M223.875T301.89 223.875 223.875 223.875 301.892364501953 301.314971923828 302.604919433594 29 0 4 0 4 3 2 2 4 6 0 1 3 [1][M+1]+ 40 0.74981832832384 0.169780738401642 1 276542.968837121 233885.480274805 0.845747339946147 359004.991950098 311286.588185866 0.867081503504928 0.77030396523166 252318.897116262 187439.562730791 0.742867715708283 0.856744968847166 1.81214124879043e-07 1 390558.20910985 417854.642818181 321822.833704545 328903.948 579014.011972732 614230.139287879 -1718.23279090875 243957.72815 432216.761227269 27296.433708331 -68735.3754053049 -61654.26110985 188455.802862882 223671.930178029 -392276.441900759 -146600.48095985 41658.5521174185 -96031.809113636 -88950.694818181 161159.369154551 196375.496469698 -419572.87560909 -173896.914668182 14362.1184090875 7081.11429545499 257191.178268187 292407.305583333 -323541.066495454 -77865.1055545455 110393.927522723 250110.063972732 285326.191287878 -330622.180790909 -84946.2198500005 103312.813227268 35216.1273151465 -580732.244763641 -335056.283822733 -146797.250745464 -615948.372078787 -370272.411137879 -182013.37806061 245675.960940908 433934.994018177 188259.033077269 0.0520303745315453 0.156012642922554 0.561335391009766 0.22660217291154 0.0031179499431329 0.00469152737667881 1 1 0.588066279796376 1 1 1 1 1 0.0650379681644316 0.949700840088349 1 1 1 1 1 0.127210308844544 1 1 1 1 1 0.645213093114674 1 1 1 1 0.243704223697317 1 1 1 0.00584615614337418 0.518701233858961 1 0.00469152737667881 0.594406729658818 1 1 0.718747675306682 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 -0.109208862384284 -0.0207880454618235 -0.108198838509507 -0.0206921236567175 0.941551725641102 -0.00528140710171225 0.0154590017427064 -0.0190442998815238 -0.0181288362205413 -0.00732723100708936 -0.00207174678138697 0.0742044087822575 -0.0238773437706658 -0.0100163120783903 -0.00538234837743607 +M224T687 M224T687.49 224 224 224 687.493957519531 686.777526855469 688.337890625 30 0 10 3 2 5 0 3 1 2 2 0 2 7 5.67532566101817 0.180897284183331 1 498150.219859948 785718.516662038 1.57727224708028 2609422.43877967 13502883.2081496 5.17466356059403 0.190904398021853 167601.595703846 301675.942909858 1.79995865578108 0.347840711710821 6.28019579671287e-08 1 -242216.465583334 5160.07085256244 -353480.704352565 8113.90392948745 -353452.169929488 -305581.352371795 -230807.294537879 -349330.081429488 95286.0473243609 247376.536435896 -111264.238769231 250330.369512821 -111235.704346154 -63364.8867884611 11409.1710454555 -107113.615846154 337502.512907695 -358640.775205127 2953.83307692502 -358612.24078205 -310741.423224358 -235967.365390441 -354490.15228205 90125.9764717985 361594.608282052 28.5344230771007 47899.3519807698 122673.409814686 4150.622923077 448766.751676926 -361566.073858975 -313695.256301283 -238921.198467366 -357443.985358975 87172.1433948735 47870.8175576927 122644.875391609 4122.0884999999 448738.217253849 74774.0578339166 -43748.7290576928 400867.399696156 -118522.786891609 326093.341862239 444616.128753849 1 1 0.0299560345919346 1 0.096583438487779 0.881287594335867 1 0.0369711501868467 1 1 1 1 1 1 1 0.5802037386472 1 0.168869838480836 1 0.292043497476492 1 1 0.00890180874724319 1 0.292063779798137 1 1 0.637736075952888 1 0.329000949375124 0.295769201494773 1 1 0.0232466653624233 1 1 1 1 0.760409608825299 1 1 1 0.890379564254393 1 0.0875623297320344 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0.0132813020051836 0.0221910927923224 -0.0135512135118903 0.0217320581609634 1.24625156212321 0.00217486185969 -0.026120448321899 -0.103547955160044 -0.00610246700069756 0.149545694986276 0.0336549339505577 -0.0187607511933132 -0.0284340056876944 -0.00172845002785298 -0.000936513147873186 +M227T338 M226.875T337.58 226.875 226.875 226.875 337.581817626953 336.875305175781 338.150177001953 43 0 6 0 6 6 7 5 7 4 0 0 2 [2][M]+ [M+K+HCOOH]+ 141.91 [M+Na+HCOOH]+ 157.884 [M+H+HCOOH]+ 179.866 [M+H]+ 225.865 70 0.986229507217535 0.232345192832512 1 1033964.11015913 1109622.71431469 1.07317333688102 1204865.31542605 1311151.8242449 1.08821443148711 0.858157419689277 834146.655382961 1090522.39521065 1.30735091745946 1.20137252331132 4.40385233462652e-09 1 1955975.93366434 1688585.35403146 3727684.4528409 1670411.95481818 1490954.79793357 684711.189401511 -15412.2355454547 -27197.6358484849 689056.342136366 -267390.57963288 1771708.51917656 -285563.978846165 -465021.13573077 -1271264.74426283 -1971388.1692098 -1983173.56951283 -1266919.59152798 2039099.09880944 -18173.3992132852 -197630.55609789 -1003874.16462995 -1703997.58957692 -1715782.98987995 -999529.011895096 -2057272.49802273 -2236729.65490733 -3042973.26343939 -3743096.68838636 -3754882.08868939 -3038628.11070454 -179457.156884605 -985700.765416665 -1685824.19036363 -1697609.59066666 -981355.61268181 -806243.60853206 -1506367.03347903 -1518152.43378206 -801898.455797205 -700123.424946966 -711908.825249996 4345.15273485507 -11785.4003030302 704468.577681821 716253.977984851 0.0662093247050997 0.173000726922042 0.000502334091579404 0.283774813779326 0.435216979222943 1 1 1 1 1 1 1 1 1 0.0206205138104043 0.0114275799456898 1 1 1 1 1 0.0321589209587451 0.0285543587846227 1 1 1 0.731926152362486 5.1191131458031e-05 9.2887565991869e-05 0.749354263169383 1 1 0.0933019745582415 0.0532375347093203 1 1 0.165082954730744 0.186515991301677 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.133020250193382 0.0340554032934015 -0.13247629350402 0.0349913497529916 1.00279033693218 -0.000569460884880202 0.0159758217443712 -0.0215915042437728 0.0565055155700939 -0.00710139266476601 0.0151799506464746 -0.0330694014289961 -0.00700917029857247 -0.00730793699599191 -0.0151351256024216 +M228T1015 M228T1015.11 228 228 228 1015.10528564453 1014.01623535156 1016.30590820312 91 16 8 6 8 7 8 7 7 6 6 7 4 [3M+2Na+K-H]2+ 124.032 80 0.285468277109378 0.166851621623893 1 2546717.51297606 811080.771829102 0.318480855334946 2406266.11110982 921068.082394224 0.382778977828603 1.05836902295127 2607797.80657126 949465.867104471 0.364087225133773 0.951168288287767 0.00861547299587116 1 536758.226639675 177923.464775665 519641.617335175 314991.403406605 215392.71028754 356621.97238464 -112535.79516482 159400.57747255 1465697.83769233 -358834.76186401 -17116.6093044998 -221766.82323307 -321365.516352135 -180136.254255035 -649294.021804495 -377357.649167125 928939.61105265 341718.15255951 137067.93863094 37469.245511875 178698.507608975 -290459.259940485 -18522.8873031149 1287774.37291666 -204650.21392857 -304248.907047635 -163019.644950535 -632177.412499995 -360241.039862625 946056.22035715 -99598.6931190649 41630.5689780349 -427527.198571425 -155590.825934055 1150706.43428572 141229.2620971 -327928.50545236 -55992.1328149899 1250305.12740478 -469157.76754946 -197221.39491209 1109075.86530768 271936.37263737 1578233.63285714 1306297.26021977 0.785593844230855 1 0.973637600983286 1 1 1 1 1 0.244843573226488 1 1 1 1 1 0.503746033615199 1 1 1 1 1 1 1 1 1 1 1 1 0.800918022761534 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.227000408099834 0.665909551604991 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.044338654397043 -0.00902501377670319 -0.0478047927536492 -0.00545807037526273 0.943103535474312 -0.00252946473594677 0.00202791319593959 -0.00908461287737081 0.0106770624395242 0.00651701832307739 -0.0344469712413637 -0.0150585213516782 -0.0153568982292881 -0.000412743721158633 0.0792560105889958 +M229T1015 M229T1015.02 229 229 229 1015.02197265625 1013.82305908203 1016.19293212891 37 9 5 2 3 3 5 2 2 4 0 1 1 37 0.360333352924585 0.208145277315178 1 383317.880399165 165324.480685949 0.431298640475081 336562.643356668 143957.378153132 0.427728332287238 1.13891986518821 423085.013303749 137591.681399631 0.32521048269996 0.760320180243678 0.00618370051692817 1 90370.4638636345 26173.470113634 186518.400273893 28057.419469695 84042.7013636355 45624.2645815835 -29583.4178030295 155575.181363635 206955.941666663 -64196.9937500005 96147.9364102585 -62313.0443939395 -6327.76249999902 -44746.199282051 -119953.881666664 65204.7175 116585.477803029 160344.930160259 1883.94935606103 57869.2312500015 19450.7944679495 -55756.8879166635 129401.711250001 180782.471553029 -158460.980804198 -102475.698910258 -140894.13569231 -216101.818076923 -30943.2189102585 20437.54139277 55985.2818939405 17566.8451118885 -57640.8372727245 127517.76189394 178898.522196968 -38418.436782052 -113626.119166665 71532.4799999991 122913.240303028 -75207.682384613 109950.916782051 161331.67708508 185158.599166664 236539.359469693 51380.7603030285 1 1 0.563138922804635 1 1 1 1 1 1 1 1 1 1 1 0.490778302836757 1 1 1 1 1 1 1 1 1 1 1 1 0.0397243067414785 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.404564471369492 0.272157453958819 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0361333744877717 -0.0510467925214001 -0.0377946765532089 -0.0489770740245191 0.792012335640663 0.00470801959680193 0.00593902477539162 -0.0447736715755812 0.03138618765114 0.00929657786681806 0.000863848539188484 -0.0182673069213605 -0.0255281712529799 0.00965492759520821 0.0367239022052539 +M237T589 M237T588.7 237 237 237 588.702331542969 588.25146484375 589.793701171875 33 0 8 0 8 2 0 6 1 7 0 0 1 62 1.81372670037139 0.173017998017958 1 471456.606255951 700450.027146888 1.48571473567732 516530.140711984 811624.468540371 1.57130127473613 0.912737842570226 984267.219310835 2418480.91825938 2.45713854003261 1.56376029189262 5.1755786000237e-09 1 1192656.51881732 152329.795983972 6335.41290064099 737390.794009613 107959.613275642 1279845.65746017 -16352.751823718 4753.80838141 355670.194278847 -1040326.72283335 -1186321.10591668 -455265.724807704 -1084696.90554168 87189.1386428503 -1209009.27064104 -1187902.71043591 -836986.324538471 -145994.383083331 585060.998025641 -44370.1827083305 1127515.8614762 -168682.54780769 -147575.987602562 203340.398294875 731055.381108972 101624.200375001 1273510.24455953 -22688.164724359 -1581.604519231 349334.781378206 -629431.180733972 542454.863450555 -753743.545833331 -732636.985628203 -381720.599730766 1171886.04418453 -124312.36509936 -103205.804894232 247710.581003205 -1296198.40928389 -1275091.84907876 -924175.463181321 21106.560205128 372022.946102565 350916.385897437 0.0153518034982578 0.588977482932942 1 0.0174848764770531 0.713902557758242 0.0131684273847224 1 1 1 1 0.142771793923114 1 1 1 0.0119347965151171 0.0235182841927279 1 1 1 1 1 0.190075339499036 0.755489147227918 1 0.813363470312501 1 0.348847367968538 1 1 1 1 1 0.0153631652821762 0.0387986667727642 1 1 0.376852597053223 1 1 0.00469152737667881 0.0575608640749083 1 1 0.965002670501975 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 -0.0425287134497358 0.0129290457662705 -0.0415645512098049 0.0120129403372293 1.22353814767589 0.0020670378053379 0.00266980596402906 -0.0616900986174283 -0.020721223364349 0.0578485584194845 -0.0382286963337422 0.109048683288971 -0.0293794067948767 -0.011010931318389 -0.0145734316315373 +M237T507 M237T506.53 237 237 237 506.528350830078 505.624542236328 507.116790771484 25 0 4 0 4 8 1 5 0 3 0 0 0 127 1.01865281763957 0.235510690078879 1 266747.756433983 246188.472324805 0.922926121726291 395195.698150977 426118.430841148 1.07824663283242 0.674976366600218 171228.554719805 159284.30294444 0.930243808955165 0.862737504230857 1.29888166922749e-08 1 558788.105475646 729535.345511362 227793.725511363 858237.884415213 164774.147397727 207174.440352272 -5934.20173863664 30928.6415113636 233988.748261363 170747.240035716 -330994.379964283 299449.778939567 -394013.958077919 -351613.665123374 -564722.307214283 -527859.463964283 -324799.357214283 -501741.619999999 128702.538903851 -564761.198113635 -522360.90515909 -735469.547249999 -698606.703999999 -495546.597249999 630444.15890385 -63019.5781136365 -20619.285159091 -233727.92725 -196865.084 6195.02275 -693463.737017486 -651063.444062941 -864172.08615385 -827309.24290385 -624249.13615385 42400.2929545455 -170708.349136364 -133845.505886363 69214.6008636365 -213108.642090909 -176245.798840909 26814.307909091 36862.8432500003 239922.95 203060.10675 0.0187410975709301 0.00338351772061892 0.274421379152007 0.00362352531530441 0.852536488474477 0.19497635500955 1 1 1 1 1 1 1 1 0.0153492689390872 0.0640807210680339 1 1 1 1 1 0.00209637249226374 0.0156681247002895 1 1 1 1 0.209044471003802 0.989664916837192 1 1 1 0.00832133958057202 0.024459015560437 1 1 0.831101406879003 1 1 0.258036266265595 0.939922611486728 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0.105185350016504 0.0466218615750193 -0.104115153831864 0.0467357796330289 0.891833906654555 -0.0137272439333442 0.00967200917063598 0.0230135919642622 -0.0235782037750281 0.0405376583149518 -0.0357171453843086 0.0173451149222268 -0.0120735609763845 -0.00178039267908318 -0.00507393174834298 +M245T458 M245T457.72 245 245 245 457.721374511719 457.333526611328 458.681579589844 17 0 5 2 1 0 0 1 2 1 4 0 1 58 1.52447574918459 0.334348661020358 1 1430940.98768608 2258010.24516098 1.57798977357712 846819.034346843 1253911.39993487 1.48073124135905 1.68978368417259 883292.908953789 1776285.13300152 2.01098085923211 1.35809983814915 1.60047485244443e-07 1 -3764670.28512823 -4275675.93275322 -4281606.83916989 -3524208.64991989 -3823742.67633655 -4135895.3621661 -2660050.50923078 -4332831.72071155 -4036715.1502911 -511005.647624996 -516936.554041662 240461.635208337 -59072.3912083295 -371225.077037875 1104619.77589744 -568161.435583329 -272044.865162875 -5930.90641666634 751467.282833333 451933.256416667 139780.570587121 1615625.42352244 -57155.7879583331 238960.782462122 757398.189249999 457864.162833333 145711.477003788 1621556.3299391 -51224.8815416667 244891.688878788 -299534.026416666 -611686.712246211 864158.140689104 -808623.070791666 -512506.500371211 -312152.685829545 1163692.16710577 -509089.044375 -212972.473954545 1475844.85293532 -196936.358545455 99180.211875 -1672781.21148077 -1376664.64106032 296116.570420455 0.986579945203516 0.00765410902822879 0.00611999351372969 1 0.875610020800817 0.19497635500955 1 2.2258987798305e-05 1 1 1 1 1 1 1 0.135089521109692 1 1 1 1 1 0.0450471447540403 1 1 1 1 1 0.0609239595160724 1 1 1 1 1 0.0623584685898382 1 1 1 0.187662739102251 1 1 0.972199260281788 1 0.000816615822179768 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.0916984744893706 0.0951129097817655 0.0945020820042159 0.0926417695467078 0.85314626213304 0.0266370998785443 -0.00756509324717087 -0.0583653844484794 0.00163357932352279 0.035652056721652 0.036273167883196 -0.02012919253789 0.0025631750156681 -0.0156922589926474 -0.00138419472224557 +M246T512 M246T512.25 246 246 246 512.251037597656 511.492340087891 513.263793945312 48 0 7 4 3 4 0 5 2 6 8 8 1 225 1.36086854087834 0.161038610753495 1 602860.498952085 811567.686370073 1.34619482912012 759852.758985677 1101614.20629598 1.44977325313199 0.793391208787396 390439.831645514 565254.077160012 1.4477367095917 0.998595267545533 3.20989182410439e-06 1 -279702.961270082 -170213.894114315 -442271.669197647 -220202.362289314 -352226.138322647 111688.840356842 2226561.72179914 1573733.0231453 -308258.062739314 109489.067155768 -162568.707927565 59500.598980768 -72523.177052565 391391.801626924 2506264.68306922 1853435.98441538 -28555.101469232 -272057.775083332 -49988.4681749995 -182012.244208333 281902.734471156 2396775.61591346 1743946.91725961 -138044.168625 222069.306908333 90045.5308749996 553960.509554489 2668833.39099679 2016004.69234294 134013.606458333 -132023.776033333 331891.202646156 2446764.08408846 1793935.38543461 -88055.70045 463914.978679489 2578787.86012179 1925959.16146794 43968.075583333 2114872.8814423 1462044.18278845 -419946.903096156 -652828.698653845 -2534819.78453846 -1881991.08588461 1 1 0.17221765141277 1 1 1 1 1 1 1 1 1 1 1 0.47812569548436 0.505407207722699 1 1 1 1 1 0.332597440281889 0.41905309463558 1 1 1 0.731926152362486 0.000174572533440998 0.000403003770794362 1 1 1 0.352690438013638 0.366340491295074 1 1 0.0481762727143938 0.086475463891154 1 1 1 1 1 1 0.981228837017391 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.0785637324739241 -0.0615174512918641 0.0814402941927495 -0.0663789463548332 0.885121104823677 -0.0122943578093426 0.00284085924818777 0.0248209847093911 -0.0121946145226485 -0.0306542958069354 -0.0387324649701559 0.0128695431749367 0.0371786719940852 0.0154873374949238 0.000932284329303806 +M246T490 M246T490.33 246 246 246 490.332672119141 489.325378417969 491.331573486328 20 0 1 6 1 0 0 1 1 1 5 4 0 104 1.45774245205707 0.248906664746694 1 193966.462671027 323651.087764569 1.66859303050492 135031.53956809 187343.420868419 1.38740490901351 1.43645301898687 62694.2149545455 56646.7427714119 0.903540188077669 0.651244767989265 3.43759495488573e-07 1 -391000.171213284 -430211.228406466 -438470.22816783 -393458.492948133 -415742.31566783 -418630.019535254 -221348.990874124 -248618.02375874 -410765.200554194 -39211.0571931817 -47470.0569545457 -2458.3217348484 -24742.1444545457 -27629.8483219699 169651.180339161 142382.147454545 -19765.0293409092 -8258.999761364 36752.7354583333 14468.9127386359 11581.2088712117 208862.237532343 181593.204647727 19446.0278522725 45011.7352196973 22727.9124999999 19840.2086325757 217121.237293707 189852.204409091 27705.0276136365 -22283.8227196973 -25171.5265871215 172109.502074009 144840.469189393 -17306.7076060608 -2887.7038674242 194393.324793707 167124.291909091 4977.11511363655 197281.028661131 170011.995776515 7864.81898106075 -27269.032884616 -189416.20968007 -162147.176795454 0.53884006951412 0.00525188940601879 0.000214532654363442 0.339954842830098 0.178851598723933 0.249609355839394 1 1 1 1 1 1 1 1 1 0.994905086161942 1 1 1 1 1 0.0300572197732871 0.0405363212480202 1 1 1 1 0.00231083133864827 0.0043478586951845 1 1 1 1 1 1 1 0.788062887003309 0.960464783082816 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.103348998569405 0.0517718558846239 0.107080298618677 0.0486478982957395 0.657783344147598 0.0249914397296833 -0.00523388425714745 -0.0316015649626693 0.00114272784392066 0.00905302797008989 0.0083192795878198 -0.0053418762792199 0.000169868998959489 -0.000635177928272007 -0.00118723548761828 +M247T433 M247T433.32 247 247 247 433.317993164062 432.237213134766 438.034820556641 53 0 7 5 5 6 1 7 7 4 7 0 4 [3][M]+ 3 1.59824448907224 0.193410302605114 1 16684736.0538948 21487152.7308117 1.28783294272107 22804654.5731282 38293603.669807 1.67920121512957 0.731637306778377 10984823.9642482 16518883.6528089 1.50379138587674 0.895539719914213 2.30096479208929e-08 1 -15368268.7206155 -27403775.7084616 -28553751.8890321 -25651729.2067308 6156102.3217281 -25900719.4467308 91430912.8263166 -28781467.2721155 -22979366.8823462 -12035506.9878461 -13185483.1684166 -10283460.4861153 21524371.0423436 -10532450.7261153 106799181.546932 -13413198.5514999 -7611098.1617307 -1149976.18057051 1752046.50173078 33559878.0301897 1503056.26173078 118834688.534778 -1377691.56365384 4424408.82611538 2902022.68230129 34709854.2107602 2653032.4423013 119984664.715349 -227715.383083333 5574385.00668589 31807831.5284589 -248990.239999995 117082642.033047 -3129738.06538462 2672362.3243846 -32056821.7684589 85274810.5045885 -34937569.5938435 -29135469.2040743 117331632.273047 -2880747.82538463 2921352.5643846 -120212380.098432 -114410279.708663 5802100.38976923 1 0.62637216720255 0.0517450788648141 0.63810379062818 1 0.906506087404006 1 0.000465860553836387 1 1 1 1 1 1 0.778802790281718 0.0651929444348308 1 1 1 1 1 0.0321589209587451 0.821844493207784 1 1 0.542591974695788 1 0.00137351006067186 1 1 1 1 0.0713925658780487 0.806309117180248 1 1 1 0.00480728521235152 1 0.185858271050253 0.951415916965706 1 1.09325036254382e-05 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0.0766795727698551 0.0330822866661399 0.0768546282256959 0.0300845688416268 1.0239054136662 -0.00759402142613454 0.00493982148200861 0.00404343175197649 -0.00490847690144063 -0.0244140030729876 0.0353044499280766 -0.041537190937431 0.0542320294808649 -0.0166770225737309 -0.00465775935761223 +M247T452 M247T451.94 247 247 247 451.937652587891 450.494750976562 452.778442382812 42 0 7 5 4 2 0 4 7 2 7 1 3 2 1.8377037387191 0.244212966980515 1 19304952.0532017 33519245.0029629 1.73630293981507 26880324.4295464 50698463.1885802 1.88608077709261 0.718181512421852 11819323.2613698 17126211.9235465 1.44900105909801 0.768260340011335 2.49219151582956e-08 1 -33753647.3201108 -47935476.7556905 -48398434.5852921 -44493130.4251136 -26009907.6709789 -47899330.2753187 79150613.6447565 -48380365.685652 -45919891.3204432 -14181829.4355797 -14644787.2651813 -10739483.1050028 7743739.6491319 -14145682.9552079 112904260.964867 -14626718.3655412 -12166244.0003324 -462957.82960165 3442346.33057691 21925569.0847116 36146.480371793 127086090.400447 -444888.92996154 2015585.43524726 3905304.16017856 22388526.9143132 499104.309973443 127549048.230049 18068.89964011 2478543.26484891 18483222.7541347 -3406199.85020512 123643744.06987 -3887235.26053845 -1426760.89532966 -21889422.6043398 105160521.315735 -22370458.0146731 -19909983.6494643 127049943.920075 -481035.410333333 1979438.95487547 -127530979.330409 -125070504.9652 2460474.3652088 1 0.142860249286221 0.00340361641125619 0.623482950882014 1 0.145573456625699 1 0.00100452749709622 1 1 0.853616919920412 1 1 1 1 0.135089521109692 1 1 1 1 1 0.0192386196102813 1 1 1 0.753731737479433 1 0.000195532482727151 1 1 1 1 0.167393537027227 1 1 1 1 0.16435353379916 1 0.0368763865055973 1 1 0.000218074803729207 0.952292907483213 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0.091753767865359 0.0446838070450432 0.092301955312918 0.0415876509851634 0.955182473964829 -0.00347714415713541 0.00486365058095565 0.00566371621314946 -0.00219648342173977 -0.0227149030736593 0.019556875728226 -0.0385409138583456 0.051452931197038 -0.0134572941942532 -0.00158112169303428 +M248T433 M248T433.34 248 248 248 433.344421386719 432.868927001953 434.076232910156 21 0 2 4 4 2 1 2 3 1 1 0 1 [3][M+1]+ 3 1.59105092227126 0.195371307889308 1 2480421.37630339 3152657.65535375 1.27101696730747 3650972.15175104 6060161.14033005 1.65987602436889 0.679386550542094 1475786.50491227 2195945.58877151 1.4879832424691 0.896442397277746 4.773430784793e-08 1 -2739827.41789012 -4955739.00484205 -5230013.3627424 -4680735.35170831 -290587.31514015 -4793582.28301512 11405571.3388791 -5244229.58089013 -4366350.91241285 -2215911.58695193 -2490185.94485228 -1940907.93381819 2449240.10274997 -2053754.865125 14145398.7567692 -2504402.16300001 -1626523.49452274 -274274.35790035 275003.653133739 4665151.6897019 162156.721826926 16361310.3437212 -288490.576048077 589388.092429193 549278.011034089 4939426.04760225 436431.079727275 16635584.7016215 -14216.2181477271 863662.450329543 4390148.03656816 -112846.931306813 16086306.6905874 -563494.229181816 314384.439295454 -4502994.96787497 11696158.6540193 -4953642.26574998 -4075763.5972727 16199153.6218942 -450647.297875002 427231.370602268 -16649800.9197692 -15771922.251292 877878.66847727 1 0.484956062562708 0.0198799385219586 0.572663311384915 1 0.818139520392214 1 0.000670032036274832 1 1 1 1 1 1 1 0.0855114980718842 1 1 1 1 1 0.0451868594618056 1 1 1 0.511110245388196 1 0.00122458360600508 1 1 1 1 0.102255603050087 0.995768466265046 1 1 1 0.0109198413823081 1 0.286627885894778 1 1 6.71566038179527e-05 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0.0754386891546208 0.0389644791000116 0.0761626600718895 0.0355489196859176 0.982410254264297 -0.0052484689379685 0.00562640551091897 0.00057722146859454 -0.0047664319253731 -0.0231805850209919 0.0360495254609746 -0.0415532546203595 0.0506421498287382 -0.0163366643818511 -0.00248746602677586 +M251T497 M251T497.27 251 251 251 497.265563964844 496.463073730469 498.130004882812 40 0 10 0 7 5 8 6 4 0 0 0 0 [4][M]+ 48 1.96330612768638 0.192700519895792 1 594224.888258475 760181.506434167 1.27928250979536 830581.94802374 1732410.35548682 2.08577896450659 0.715431980760423 470765.000605745 589833.527563223 1.25292561427521 0.600699132360655 4.40385233462652e-09 1 1134403.32500595 588126.095775001 2271314.33274221 681184.090368591 222643.283208332 115010.017125 20934.5024455127 118566.445916667 147021.61709936 -546277.229230951 1136911.00773626 -453219.23463736 -911760.041797619 -1019393.30788095 -1113468.82256044 -1015836.87908928 -987381.707906592 1683188.23696721 93057.9945935905 -365482.812566668 -473116.078650001 -567191.593329488 -469559.649858334 -441104.478675641 -1590130.24237362 -2048671.04953388 -2156304.31561721 -2250379.8302967 -2152747.88682554 -2124292.71564285 -458540.807160259 -566174.073243591 -660249.587923079 -562617.644451924 -534162.473269232 -107633.266083333 -201708.78076282 -104076.837291665 -75621.6661089725 -94075.514679487 3556.42879166751 32011.59997436 97631.9434711545 126087.114653847 28455.1711826925 0.00167856221956239 0.0423819319773948 0.000180194833037384 0.0126014251063582 0.130663082205757 1 1 1 1 1 1 1 1 1 0.0119347965151171 0.167152646122065 1 1 1 1 1 0.0736009146440274 1 1 1 1 0.348847367968538 9.72490468141253e-05 0.0342305095602272 0.839196132637624 1 1 0.0482551154177424 0.663202132762032 1 1 0.257440023468061 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0.0796581437347518 0.0142906583647421 -0.0786307180833142 0.0145006539974833 1.02928876647475 0.00595945208680263 0.0105091897933218 -0.0412767508271973 0.0672067515661371 -0.00259731666322669 0.0034343444116026 -0.0305368378746691 -0.00479150392731767 -0.000205182851374312 -0.0105855867743487 +M257T1014 M257.125T1013.9 257.125 257.125 257.125 1013.90087890625 1012.74542236328 1014.60961914062 73 0 7 7 6 6 7 5 8 7 8 8 4 [6][M]+ 249 0.881053983255579 0.186470621075041 1 2202927.69616102 2148769.26942137 0.975415249972102 2007043.93637984 1762758.42680569 0.878285918336807 1.09759814233788 2962754.71167807 3892125.71725248 1.31368476165481 1.49573701937805 0.000735874327862404 1 360206.855659325 209756.191802205 571728.23862636 488120.774230775 430960.14299267 595510.248154765 421896.24071429 1297235.2564286 9971716.53213556 -150450.66385712 211521.382967035 127913.91857145 70753.287333345 235303.39249544 61689.385054965 937028.400769275 9611509.67647623 361972.046824155 278364.58242857 221203.951190465 385754.05635256 212140.048912085 1087479.0646264 9761960.34033335 -83607.4643955848 -140768.09563369 23782.009528405 -149831.99791207 725507.01780224 9399988.2935092 -57160.631238105 107389.47392399 -66224.533516485 809114.482197825 9483595.75790478 164550.105162095 -9063.90227838 866275.11343593 9540756.38914289 -173614.007440475 701725.008273835 9376206.28398079 875339.01571431 9549820.29142127 8674481.27570696 1 1 1 1 1 1 1 0.0229412592270268 0.0668266484078959 1 1 1 1 1 1 0.637446710130497 1 1 1 1 1 1 0.0904684115481689 0.356408471275657 1 1 1 1 1 1 1 1 1 1 1 1 1 0.639059057632441 1 1 1 1 1 0.864938217980779 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0083626096415401 -0.0416427934267406 -0.0106486882570648 -0.039765504390462 1.72565015970653 -0.00477543679721769 -0.0281135207826401 -0.0119711230496188 -0.0122760173542411 0.0145888092804331 -0.0294872643686666 -0.0529647825012226 -0.00758914454936816 0.00100245807777303 0.180847689248479 +M261T332 M261T331.57 261 261 261 331.569473266602 330.826965332031 332.320007324219 46 0 9 0 6 5 5 5 5 7 0 0 4 [7][M]+ 57 1.04326999694138 0.221252808937921 1 1146683.03090926 1186248.76846245 1.03450451126133 1145403.0063442 1327072.12823314 1.1586071634898 1.0011175320459 919208.931999451 1174249.82975397 1.27745694028425 1.10257987395527 4.40385233462652e-09 1 3708696.83879167 1199629.11970834 1182375.57066666 2175988.65623076 1469656.86694872 622503.69551282 292955.338295453 -112722.763935607 558652.956707152 -2509067.71908333 -2526321.26812501 -1532708.18256091 -2239039.97184295 -3086193.14327885 -3415741.50049621 -3821419.60272727 -3150043.88208451 -17253.5490416749 976359.536522425 270027.747240385 -577125.424195516 -906673.781412883 -1312351.88364394 -640976.163001184 993613.0855641 287281.29628206 -559871.875153841 -889420.232371208 -1295098.33460227 -623722.613959509 -706331.78928204 -1553484.96071794 -1883033.31793531 -2288711.42016637 -1617335.69952361 -847153.171435901 -1176701.52865327 -1582379.63088433 -911003.910241569 -329548.357217367 -735226.459448427 -63850.7388056681 -405678.10223106 265697.618411698 671375.720642759 0.00139002475692429 0.218861820635036 0.193929048539156 0.00482795212523277 0.0509098162949605 1 1 1 1 1 1 1 1 1 0.0191097224190392 2.03460175168813e-05 1 1 1 1 1 0.887240474852222 0.0308625758419715 1 1 1 1 0.942236742973925 0.0420005984433424 1 1 1 0.0713925658780487 0.000728869250554339 1 1 0.350219990140754 0.0109198413823081 1 1 0.951550886136829 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 -0.0955479004664773 0.0474159124863094 -0.0956108691815066 0.0479267590250545 1.1753217493328 -0.0082863984982916 0.0640358876530409 -0.0618603905583846 -0.00919670186957342 0.0539591279777716 0.045494114757647 -0.0516806945814743 -0.0130716890731868 -0.00514638420130288 -0.0195804521557219 +M263T323 M263T323.29 263 263 263 323.286376953125 317.427062988281 324.498107910156 95 0 10 8 7 3 1 8 7 5 8 2 3 [8][M]+ 25 1.24549325872202 0.169688974744568 1 4856126.41100817 6417229.02375924 1.32147075274076 3269419.74893288 4306448.22482372 1.31719037490653 1.48531751317437 2850327.25225239 3833675.62917697 1.34499490405795 1.02110896775524 1.30827348411226e-07 1 -10747041.5308823 -13490591.7476515 -13452461.0366136 -11300186.1489015 -11332369.7322848 -12211498.8419752 -4048990.23979574 -13581671.4958788 -12655268.6170606 -2743550.21676924 -2705419.50573137 -553144.618019246 -585328.201402571 -1464457.31109296 6698051.29108652 -2834629.96499652 -1908227.08617834 38130.711037879 2190405.59875 2158222.01536667 1279092.90567629 9441601.50785576 -91079.748227274 835323.13059091 2152274.88771212 2120091.3043288 1240962.19463841 9403470.79681788 -129210.459265153 797192.419553031 -32183.583383325 -911312.69307371 7251195.90910576 -2281485.34697727 -1355082.46815909 -879129.109690385 7283379.49248909 -2249301.76359395 -1322898.88477576 8162508.60217947 -1370172.65390356 -443769.77508538 -9532681.25608304 -8606278.37726485 926402.878818184 1 0.00765410902822879 0.00267847637147507 0.838782008701031 0.660394577658549 0.19497635500955 1 0.00012469466674357 0.627859985085531 1 1 1 1 1 1 0.182190863683119 1 1 1 1 1 0.0192386196102813 1 1 1 1 1 0.00908419374209192 1 1 1 1 1 0.367815979832692 1 1 1 0.632284650795659 1 0.753705194106446 1 1 0.000950448517736164 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.10766040080656 0.100365831043394 0.108802051106214 0.0987892780891889 0.861169551654294 0.0236849274997751 0.00167571590625499 -0.0522278718910634 0.00931335493080596 0.0263424077901622 0.0245391324631854 -0.0190290011300382 0.0116801484011658 -0.0161456190570957 -0.0135144337547376
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/w4m_general_purpose_routines.R Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,283 @@ +# prepare.data.matrix - Prepare x.datamatrix for multivariate statistical analaysis (MVA) +# - Motivation: +# - Selection: +# - You may want to exclude several samples from your analysis: +# - If so, set the argument 'exclude.samples' to a vector of sample names +# - You may want to exclude several features or features from your analysis: +# - If so, set the argument 'exclude.features' to a vector of feature names +# - Renaming samples: +# - You may want to rename several samples from your analysis: +# - If so, set the argument 'sample.rename.function' to a function accepting a vector +# of sample names and producing a vector of strings of equivalent length +# - MVA is confounded by missing values. +# - By default, this function imputes missing values as zero. +# - For a different imputation, set the 'data.imputation' argument to a function +# accepting a single matrix argument and returning a matrix of the same +# dimensions as the argument. +# - Transformation +# - It may be desirable to transform the intensity data to reduce the range. +# - By default, this function performs an eigth-root transformation: +# - Any root-tranformation has the advantage of never being negative. +# - Calculation of the eight-root is four times faster in my hands than log10. +# - However, it has the disadvantage that calculation of fold-differences +# is not additive as with log-transformation. +# - Rather, you must divide the values and raise to the eighth power. +# - For a different transformation, set the 'data.transformation' argument +# to a function accepting a single matrix argument. +# - The function should be written to return a matrix of the same dimensions +# as the argument. +# arguments: +# - x.matrix - matrix of intensities (or data.frame of sample metadata) +# - one row per sample +# - one column per feature or metadata attribute +# - exclude.samples - vector of labels of matrix rows (samples) to omit from analysis +# - exclude.features - vector of labels of matrix columnss (features) to omit from analysis +# - sample.rename.function - function to be used to rename rows if necessary, or NULL +# - e.g., sample.rename.function = function(x) { +# sub("(.*)_.*","\\1", row.names(x)) +# } +# - data.imputation - function applied to matrix to impute missing values +# - e.g., data.imputation = function(m) { +# m[is.na(m)] <- min(m, na.rm = TRUE) / 100 +# return (m) +# } +# - data.transformation - function applied to matrix cells +# - e.g., data.transformation = function(x) { return( log10(x) ) } +# or, data.transformation = log10 +# result value: +# transformed, imputed x.datamatrix with renamed rows and with neither excluded values nor features +# +################################ +## +## Notes regarding the effectiveness and performance of the data transformation method. +## +## The two transformations that I tried (log10 and 8th root) required different imputation methods. +## +## For the LCMS resin data set that I was working with, separation in MVA was nearly equivalent for: +## data.imputation <- function(x.matrix) { +## x.matrix[is.na(x.matrix)] <- 0 +## return (x.matrix) +## } +## data.transformation <- function(x) { +## sqrt( sqrt( sqrt(x) ) ) +## } +## and +## data.imputation <- function(x.matrix) { +## x.matrix[is.na(x.matrix)] <- min(x.matrix, na.rm = TRUE) / 100 +## return (x.matrix) +## } +## data.transformation <- function(x) { +## log10(x) +## } +## +## Note further that triple application of the square root: +## - may be four times faster than log10: +## - may be three times faster than log2: +## +## system.time( junk <- sqrt( sqrt( sqrt(1:100000000) ) ) ) +## user system elapsed +## 0.832 0.236 1.069 +## system.time( junk <- log10(1:100000000) ) +## user system elapsed +## 3.936 0.400 4.337 +## system.time( junk <- log2(1:100000000) ) +## user system elapsed +## 2.784 0.320 3.101 +## +################################ +# +prepare.data.matrix <- function( + x.matrix +, exclude.samples = NULL +, exclude.features = NULL +, sample.rename.function = NULL +, data.imputation = + function(m) { + # replace NA values with zero + m[is.na(m)] <- 0 + # replace negative values with zero, if applicable (It should never be applicable!) + if (min(m < 0)) { + m <- matrix(lapply(X = m, FUN = function(z) {max(z,0)}), nrow = nrow(m) ) + } + # return matrix as the result + return (m) + } +, data.transformation = function(x) { + sqrt( sqrt( sqrt(x) ) ) + } +, en = new.env() +) { + # MatVar - Compute variance of rows or columns of a matrix + # ref: http://stackoverflow.com/a/25100036 + # For row variance, dim == 1, for col variance, dim == 2 + MatVar <- function(x, dim = 1) { + if (dim == 1) { + dim.x.2 <- dim(x)[2] + if ( dim.x.2 == 0 ) + stop("MatVar: there are zero columns") + if ( dim.x.2 == 1 ) { + stop("MatVar: a single column is insufficient to calculate a variance") + # return ( rep.int(x = 0, times = nrow(x)) ) + } else { + return ( rowSums( (x - rowMeans(x))^2 ) / ( dim(x)[2] - 1 ) ) + } + } else if (dim == 2) { + dim.x.1 <- dim(x)[1] + if ( dim.x.1 == 0 ) { + stop("MatVar: there are zero rows") + } + if ( dim.x.1 == 1 ) { + stop("MatVar: a single row is insufficient to calculate a variance") + # return ( rep.int(x = 0, times = ncol(x)) ) + } else { + return ( rowSums( (t(x) - colMeans(x))^2 ) / ( dim(x)[1] - 1 ) ) + } + } else stop("Please enter valid dimension, for rows, dim = 1; for colums, dim = 2") + } + + nonzero.var <- function(x) { + if (nrow(x) == 0) { + print(str(x)) + stop("matrix has no rows") + } + if (ncol(x) == 0) { + print(str(x)) + stop("matrix has no columns") + } + if ( is.numeric(x) ) { + # exclude any rows with zero variance + row.vars <- MatVar(x, dim = 1) + nonzero.row.vars <- row.vars > 0 + nonzero.rows <- row.vars[nonzero.row.vars] + if ( length(rownames(x)) != length(rownames(nonzero.rows)) ) { + row.names <- attr(nonzero.rows,"names") + x <- x[ row.names, , drop = FALSE ] + } + + # exclude any columns with zero variance + column.vars <- MatVar(x, dim = 2) + nonzero.column.vars <- column.vars > 0 + nonzero.columns <- column.vars[nonzero.column.vars] + if ( length(colnames(x)) != length(colnames(nonzero.columns)) ) { + column.names <- attr(nonzero.columns,"names") + x <- x[ , column.names, drop = FALSE ] + } + } + return (x) + } + + if (is.null(x.matrix)) { + stop("FATAL ERROR - prepare.data.matrix was called with null x.matrix") + } + + en$xpre <- x <- x.matrix + + # exclude any samples as indicated + if ( !is.null(exclude.features) ) { + my.colnames <- colnames(x) + my.col.diff <- setdiff(my.colnames, exclude.features) + x <- x[ , my.col.diff , drop = FALSE ] + } + + # exclude any features as indicated + if ( !is.null(exclude.samples) ) { + my.rownames <- rownames(x) + my.row.diff <- setdiff(my.rownames, exclude.samples) + x <- x[ my.row.diff, , drop = FALSE ] + } + + # rename rows if desired + if ( !is.null(sample.rename.function) ) { + renamed <- sample.rename.function(x) + rownames(x) <- renamed + } + + # save redacted x.datamatrix to environment + en$redacted.data.matrix <- x + + # impute values missing from the x.datamatrix + if ( !is.null(data.imputation) ) { + x <- data.imputation(x) + } + + # perform transformation if desired + if ( !is.null(data.transformation) ) { + x <- data.transformation(x) + } else { + x <- x + } + + # purge rows and columns that have zero variance + if ( is.numeric(x) ) { + x <- nonzero.var(x) + } + + # save imputed, transformed x.datamatrix to environment + en$imputed.transformed.data.matrix <- x + + return(x) +} + + +##----------------------------------------------- +## helper functions for error detection/reporting +##----------------------------------------------- + +# log-printing to stderr +log_print <- function(x, ...) { + cat( + format(Sys.time(), "%Y-%m-%dT%H:%M:%S%z") + , " " + , c(x, ...) + , "\n" + , sep="" + , file=stderr() + ) +} + +# tryCatchFunc produces a list +# On success of expr(), tryCatchFunc produces +# list(success TRUE, value = expr(), msg = "") +# On failure of expr(), tryCatchFunc produces +# list(success = FALSE, value = NA, msg = "the error message") +tryCatchFunc <- function(expr) { + # format error for logging + format_error <- function(e) { + paste(c("Error { message:", e$message, ", call:", e$call, "}"), collapse = " ") + } + my_expr <- expr + retval <- NULL + tryCatch( + expr = { + retval <- ( list( success = TRUE, value = my_expr(), msg = "" ) ) + } + , error = function(e) { + retval <<- list( success = FALSE, value = NA, msg = format_error(e) ) + } + ) + return (retval) +} + +# tryCatchProc produces a list +# On success of expr(), tryCatchProc produces +# list(success TRUE, msg = "") +# On failure of expr(), tryCatchProc produces +# list(success = FALSE, msg = "the error message") +tryCatchProc <- function(expr) { + # format error for logging + format_error <- function(e) { + paste(c("Error { message:", e$message, ", call:", e$call, "}"), collapse = " ") + } + retval <- NULL + tryCatch( + expr = { + expr() + retval <- ( list( success = TRUE, msg = "" ) ) + } + , error = function(e) { + retval <<- list( success = FALSE, msg = format_error(e) ) + } + ) + return (retval) +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/w4mkmeans.xml Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,319 @@ +<tool id="w4mkmeans" name="Kmeans_for_W4M" version="0.98.1"> + <description>Calculate K-means for dataMatrix features or samples</description> + + <requirements> + <requirement type="package" version="3.3.2">r-base</requirement> + <requirement type="package" version="1.1_4">r-batch</requirement> + </requirements> + + <stdio> + <exit_code range="1:" level="fatal" /> + </stdio> + + + <command detect_errors="aggressive"><![CDATA[ + Rscript $__tool_directory__/w4mkmeans_wrapper.R + tool_directory $__tool_directory__ + data_matrix_path '$dataMatrix_in' + variable_metadata_path '$variableMetadata_in' + sample_metadata_path '$sampleMetadata_in' + ksamples '$ksamples' + kfeatures '$kfeatures' + iter_max '$iter_max' + nstart '$nstart' + algorithm '$algorithm' + scores_out '$scores_out' + sampleMetadata_out '$sampleMetadata_out' + variableMetadata_out '$variableMetadata_out' + slots "\${GALAXY_SLOTS:-1}" + ; echo exit code $? + ]]></command> + + <inputs> + <param name="dataMatrix_in" label="Data matrix file" type="data" format="tabular" help="variable x sample, decimal: '.', missing: NA, mode: numerical, separator: tab" /> + <param name="sampleMetadata_in" label="Sample metadata file" type="data" format="tabular" help="sample x metadata columns, separator: tab" /> + <param name="variableMetadata_in" label="Variable metadata file" type="data" format="tabular" help="variable x metadata columns, separator: tab" /> + <param name="ksamples" label="K value(s) for samples" type="text" value = "0" help="[ksamples] Single K or comma-separated Ks for samples, or 0 for none." /> + <param name="kfeatures" label="K value(s) for features" type="text" value = "0" help="[kfeatures] Single K or comma-separated Ks for features (variables), or 0 for none." /> + <param name="iter_max" label="Max number of iterations" type="text" value = "10" help="[iter_max] The maximum number of iterations allowed; default 10." /> + <param name="nstart" label="Number of random sets" type="text" value = "1" help="[nstart] How many random sets should be chosen; default 1." /> + <param name="algorithm" label="Algorithm for clustering" type="select" value = "Hartigan-Wong" help="[algorithm] K-means clustering algorithm, default 'Hartigan-Wong'; alternatives 'Lloyd', 'MacQueen'; 'Forgy' is a synonym for 'Lloyd', see references for further info."> + <option value="Forgy">Forgy</option> + <option value="Hartigan-Wong" selected="True">Hartigan-Wong</option> + <option value="Lloyd">Lloyd</option> + <option value="MacQueen">MacQueen</option> + </param> + </inputs> + + <outputs> + <data name="sampleMetadata_out" label="${tool.name}_${sampleMetadata_in.name}" format="tabular" ></data> + <data name="variableMetadata_out" label="${tool.name}_${variableMetadata_in.name}" format="tabular" ></data> + <data name="scores_out" label="${tool.name}_${dataMatrix_in.name}.kmeans" format="tabular" ></data> + </outputs> + + <tests> + <test> + <param name="dataMatrix_in" value="input_dataMatrix.tsv"/> + <param name="sampleMetadata_in" value="input_sampleMetadata.tsv"/> + <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> + <param name="ksamples" value="3,4"/> + <param name="kfeatures" value="5,6,7"/> + <param name="iter_max" value="10"/> + <param name="nstart" value="1"/> + <param name="algorithm" value="Hartigan-Wong"/> + <output name="scores_out"> + <assert_contents> + <has_text text="proportion" /> + <has_text text="0.87482" /> + <has_text text="0.89248" /> + <has_text text="0.95355" /> + <has_text text="0.95673" /> + <has_text text="0.95963" /> + </assert_contents> + </output> + </test> + </tests> + + <help> + <![CDATA[ + +**Author** - Arthur Eschenlauer (University of Minnesota, esch0041@umn.edu) + +--------------------------------------------------------------------------- + + +**Source** - The source code for the w4mkmeans tool is available (from the Hegeman lab github repository) at https://github.com/HegemanLab/w4mkmeans_galaxy_wrapper + +**R code used** - The R code invoked by this wrapper is the R 'stats::kmeans' package + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------- + + +**Tool updates** + +See the **NEWS** section at the bottom of this page + +--------------------------------------------------- + +=========================== +K-means for W4M data matrix +=========================== + +----------- +Description +----------- + +Calculate K-means for sample-clusters (or feature-clusters, or both) using W4M dataMatrix (i.e., XCMS-preprocessed data files) as input. + +*Please note that XCMS refers to features as 'variables'. This documentation does not use either term consistently.* + + +----------------- +Workflow Position +----------------- + + - Tool category: Statistical Analysis + - Upstream tool category: Preprocessing + - Downstream tool categories: Statistical Analysis + + +---------- +Motivation +---------- + +This tool clusters samples, features (variables), or both from the W4M dataMatrix and writes the results to new columns in sampleMetadata, variableMetadata, or both, respectively. + + - If several, comma-separated K's are supplied, then one column is added for each K. + - This clustering is **not** hierarchical; each member of a cluster is not a member of any other cluster. + - For feature-clustering, each feature is assigned to a cluster such that the feature's response for all samples is closer to the mean of all features for that cluster than to the mean for any other cluster. + - For sample-clustering, each sample is assigned to a cluster such that the sample's response for all features is closer to the mean of all samples for that cluster than to the mean for any other cluster. + + +----------- +Input files +----------- + ++--------------------------------------------+------------+ +| File | Format | ++============================================+============+ +| Data matrix | tabular | ++--------------------------------------------+------------+ +| Sample metadata | tabular | ++--------------------------------------------+------------+ +| Variable (i.e., feature) metadata | tabular | ++--------------------------------------------+------------+ + + +---------- +Parameters +---------- + +**Data matrix** - input-file dataset + + - XCMS variable x sample 'dataMatrix' (tabular separated values) file of the numeric data matrix, with . as decimal, and NA for missing values; the table must not contain metadata apart from row and column names; the row and column names must be identical to the rownames of the sample and feature metadata, respectively (see below) + +**Sample metadata** - input-file dataset + + - XCMS sample x metadata 'sampleMetadata' (tabular separated values) file of the numeric and/or character sample metadata, with . as decimal and NA for missing values + +**Feature metadata** - input-file dataset + + - XCMS variable x metadata 'variableMetadata' (tabular separated values) file of the numeric and/or character feature metadata, with . as decimal and NA for missing values + +**kfeatures** - K or K's for features (default = 0) + + - integer or comma-separated integers ; zero (the default) or less will result in no calculation. + +**ksamples** - K or K-range for samples (default = 0) + + - integer or comma-separated integers ; zero (the default) or less will result in no calculation. + +**iter_max** - maximum_iterations (default = 10) + + - maximum number of iterations per calculation (see https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html). + +**nstart** - how many random sets should be chosen (default = 1) + + - maximum number of iterations per calculation (see https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html). + +------------ +Output files +------------ + +**XCMS sampleMetadata** - (tabular separated values) file identical to the Sample metadata file given as an input argument, excepting one column added for each K + + - **k#** - cluster number for clustering samples with K = # + +**XCMS variableMetadata** - (tabular separated values) file identical to the Feature metadata file given as an input argument, excepting one column added for each K + + - **k#** - cluster number for clustering features with K = # + +**scores** - (tabular separated values) file with one line for each K. + + - **clusterOn** - what was clustered - either 'sample' or 'feature' + - **k** - the chosen K for clustering + - **totalSS** - total (*between-treatements* plus total of *within-treatements*) sum of squares + - **betweenSS** - *between-treatements* sum of squares + - **proportion** - betweenSS / totalSS + +--------------- +Working example +--------------- + +**Input files** + ++-------------------+-------------------------------------------------------------------------------------------------------------------+ +| Input File | Download from URL | ++===================+===================================================================================================================+ +| Data matrix | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_dataMatrix.tsv | ++-------------------+-------------------------------------------------------------------------------------------------------------------+ +| Sample metadata | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_sampleMetadata.tsv | ++-------------------+-------------------------------------------------------------------------------------------------------------------+ +| Feature metadata | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_variableMetadata.tsv | ++-------------------+-------------------------------------------------------------------------------------------------------------------+ + +**Other input parameters** + ++-----------------+---------------+ +| Input Parameter | Value | ++=================+===============+ +| ksamples | 3,4 | ++-----------------+---------------+ +| kfeatures | 5,6,7 | ++-----------------+---------------+ +| iter_max | 10 | ++-----------------+---------------+ +| nstart | 1 | ++-----------------+---------------+ +| algorithm | Hartigan-Wong | ++-----------------+---------------+ + +---- +NEWS +---- + +August 2017, Version 0.98.1 - First release + +--------- +Citations +--------- + + ]]> + </help> + <citations> + <citation type="bibtex"><![CDATA[ +@incollection{RCoreTeam2017, + title = {stats::kmeans - K-Means Clustering}, + booktitle = {R: A Language and Environment for Statistical Computing}, + author = {{R Core Team}}, + publisher = {R Foundation for Statistical Computing}, + address = {Vienna, Austria}, + year = {2017}, + url = {https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html}, +} + ]]></citation> + <!-- Forgy algorithm --> + <citation type="bibtex"><![CDATA[ +@article{forgy65, + added-at = {2006-03-23T12:22:43.000+0100}, + author = {Forgy, E.}, + biburl = {https://www.bibsonomy.org/bibtex/21e31409932ce91df646c4731350e1207/hotho}, + interhash = {c86383cba8cfe00d5e6ef200016aca3f}, + intrahash = {1e31409932ce91df646c4731350e1207}, + journal = {Biometrics}, + keywords = {clustering kmeans}, + number = 3, + pages = {768-769}, + timestamp = {2006-03-23T12:22:43.000+0100}, + title = {Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of Classification}, + volume = 21, + year = 1965 +} + ]]></citation> + <!-- W4M 3.0 - Guitton et al. 2017--> + <citation type="doi">10.1016/j.biocel.2017.07.002</citation> + <!-- W4M 2.5 - Giacomini et al. 2014 --> + <citation type="doi">10.1093/bioinformatics/btu813</citation> + <!-- Hartigan and Wong algorithm --> + <citation type="bibtex"><![CDATA[ +@article{Hartigan79, + added-at = {2007-02-27T16:22:09.000+0100}, + author = {Hartigan, J. and Wong, M.}, + biburl = {https://www.bibsonomy.org/bibtex/23d8bfc440c5725783876929c022f67ce/pierpaolo.pk81}, + description = {WSD}, + interhash = {10d6d33920d9af578a4d0a556dc1477d}, + intrahash = {3d8bfc440c5725783876929c022f67ce}, + journal = {Applied Statistics}, + keywords = {imported}, + pages = {100-108}, + timestamp = {2007-02-27T16:22:11.000+0100}, + title = {Algorithm AS136: A k-means clustering algorithm}, + volume = 28, + year = 1979 +} + ]]></citation> + <!-- Lloyd algorithm --> + <citation type="doi">10.1109/TIT.1982.1056489</citation> + <!-- MacQueen algorithm --> + <citation type="bibtex"><![CDATA[ +@inproceedings{MacQueen1967, + added-at = {2011-01-11T13:35:01.000+0100}, + author = {MacQueen, J. B.}, + biburl = {https://www.bibsonomy.org/bibtex/25dcdb8cd9fba78e0e791af619d61d66d/enitsirhc}, + booktitle = {Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability}, + editor = {Cam, L. M. Le and Neyman, J.}, + interhash = {8d7d4dfe7d3a06b8c9c3c2bb7aa91e28}, + intrahash = {5dcdb8cd9fba78e0e791af619d61d66d}, + keywords = {kmeans clustering}, + pages = {281-297}, + publisher = {University of California Press}, + timestamp = {2011-01-11T13:35:01.000+0100}, + title = {Some Methods for Classification and Analysis of MultiVariate Observations}, + volume = 1, + year = 1967 +} + ]]></citation> + </citations> + <!-- + vim:et:sw=2:ts=2: +--> </tool>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/w4mkmeans_routines.R Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,216 @@ +##------------------------------------------------------------------------------------------------------ +## these are the batch-independent and file-structure-independent routines to support the w4mkmeans tool +##------------------------------------------------------------------------------------------------------ + +library(parallel) + +w4kmeans_usage <- function() { + return ( + c( + "w4mkmeans: bad input.", + "# contract:", + " required - caller will provide an environment comprising:", + " log_print - a logging function with the signature function(x, ...) expecting strings as x and ...", + " variableMetadata - the corresponding W4M data.frame having feature metadata", + " sampleMetdata - the corresponding W4M data.frame having sample metadata", + " dataMatrix - the corresponding W4M matrix", + " slots - the number of parallel slots for calculating kmeans", + " optional - environment may comprise:", + " kfeatures - an array of integers, the k's to apply for clustering by feature (default, empty array)", + " ksamples - an array of integers, the k's to apply for clustering by sample (default, empty array)", + " iter.max - the maximum number of iterations when calculating a cluster (default = 10)", + " nstart - how many random sets of centers should be chosen (default = 1)", + " algorithm - string from c('Hartigan-Wong', 'Lloyd', 'Forgy', 'MacQueen') (default = Hartigan-Wong)", + " ", + " this routine will return a list comprising:", + " variableMetadata - the input variableMetadata data.frame with updates, if any", + " sampleMetadata - the input sampleMetadata data.frame with updates, if any", + " scores - an array of strings, each representing a line of a tsv having the following header:", + " clusterOn TAB k TAB totalSS TAB betweenSS TAB proportion" + ) + ) +} + +w4mkmeans <- function(env) { + # abort if 'env' is null or is not an environment + if ( is.null(env) || ! is.environment(env) ) { + lapply(w4kmeans_usage(),print) + } + # supply default arguments + if ( ! exists("iter.max" , env) ) env$iter.max <- 10 + if ( ! exists("nstart" , env) ) env$nstart <- 1 + if ( ! exists("algorithm", env) ) env$algorithm <- 'Hartigan-Wong' + if ( ! exists("ksamples" , env) ) env$ksamples <- c() + if ( ! exists("kfeatures", env) ) env$kfeatures <- c() + # check mandatory arguments + expected <- c( + "log_print" + , "variableMetadata" + , "sampleMetadata" + , "dataMatrix" + , "slots" + ) + missing_from_env <- setdiff(expected, (ls(env))) + if ( length(missing_from_env) > 0 ) { + print(paste(c('expected environment members not found: ', as.character(missing_from_env)), collapse = ", ")) + lapply(w4kmeans_usage(),print) + stop("w4mkmeans: contract has been broken") + } + # extract parameters from 'env' + failure_action <- env$log_print + scores <- c( "clusterOn\tk\ttotalSS\tbetweenSS\tproportion" ) + sampleMetadata <- env$sampleMetadata + featureMetadata <- env$variableMetadata + ksamples <- as.numeric(env$ksamples) + kfeatures <- as.numeric(env$kfeatures) + slots <- env$slots + + myLapply <- parLapply + # uncomment the next line to mimic parLapply, but without parallelization (for testing/experimentation) + # myLapply <- function(cl, ...) lapply(...) + cl <- NULL + if ( identical(myLapply, parLapply) ) { + failure_action(sprintf("w4mkmeans: using parallel evaluation with %d slots", slots)) + failure_action(names(cl)) + cl <- makePSOCKcluster(names = slots) + # from ?makePSOCKcluster: "It is good practice to shut down the workers by calling stopCluster." + clusterExport( + cl = cl + , varlist = c( + "tryCatchFunc" + , "calc_kmeans_one_dimension_one_k" + , "prepare.data.matrix" + ) + ) + final <- function(cl) { + # from ?makePSOCKcluster: "It is good practice to shut down the workers by calling stopCluster." + if ( !is.null(cl) ) { + failure_action("w4mkmeans: stopping cluster used for parallel evaluation") + stopCluster(cl) + } + } + } else { + failure_action("w4mkmeans: using sequential evaluation (1 slot)") + final <- function(cl) { } + } + + tryCatch( + expr = { + # These myLapply calls produce lists of lists of results: + # - The outer list has no keys and its members are accessed by index + # - The inner list has keys "clusters" and "scores" + + # for each $i in ksamples, append column 'k$i' to data frame sampleMetadata + ksamples_length <- length(ksamples) + if ( ksamples_length > 0 ) { + smpl_result_list <- myLapply( + cl = cl + , ksamples + , calc_kmeans_one_dimension_one_k + , env = env + , dimension = "samples" + ) + for ( i in 1:ksamples_length ) { + result <- smpl_result_list[[i]] + if (result$success) { + sampleMetadata[sprintf("k%d",ksamples[i])] <- result$value$clusters + scores <- c(scores, result$value$scores) + } + } + } + + # for each $i in kfeatures, append column 'k$i' to data frame featureMetadata + kfeatures_length <- length(kfeatures) + if ( kfeatures_length > 0 ) { + feat_result_list <- myLapply( + cl = cl + , kfeatures + , calc_kmeans_one_dimension_one_k + , env = env + , dimension = "features" + ) + for ( i in 1:kfeatures_length ) { + result <- feat_result_list[[i]] + if (result$success) { + featureMetadata[sprintf("k%d",kfeatures[i])] <- result$value$clusters + scores <- c(scores, result$value$scores) + } + } + } + + return ( + list( + variableMetadata = featureMetadata + , sampleMetadata = sampleMetadata + , scores = scores + ) + ) + } + , finally = final(cl) + ) +} + +# calculate k-means for features or samples +# - recall that the dataMatrix has features in rows and samples in columns +# return value: +# list(clusters = km$cluster, scores = scores) +# arguments: +# env: +# environment having dataMatrix +# dimension: +# - "samples": produce clusters column to add to the sampleMetadata table +# - this is the default case +# - "variables": produce clusters column to add to the variableMetadata table +# k: +# integer, the number of clusters to make +calc_kmeans_one_dimension_one_k <- function(k, env, dimension = "samples") { + # abort if environment is not as expected + if ( is.null(env) || ! is.environment(env) ) { + stop("calc_kmeans_one_dimension_one_k - argument 'env' is not an environment") + } + if ( ! exists("log_print", env) || ! is.function(env$log_print) ) { + stop("calc_kmeans_one_dimension_one_k - argument 'env' - environment does not include log_print or it is not a function") + } + # abort if k is not as expected + if ( ! is.numeric(k) ) { + stop(sprintf("calc_kmeans_one_dimension_one_k - expected numeric argument 'k' but type is %s", typeof(k))) + } + k <- as.integer(k) + # abort if dimension is not as expected + if ( ! is.character(dimension) + || ! Reduce( f =`|`, x = sapply(X = c("features","samples"), FUN = `==`, dimension), init = FALSE) ) { + stop("calc_kmeans_one_dimension_one_k - argument 'dimension' is neither 'features' nor 'samples'") + } + dm <- env$dataMatrix + iter.max <- env$iter.max + nstart <- env$nstart + algorithm <- env$algorithm + dim_features <- dimension == "features" + # tryCatchFunc produces a list + # On success of expr(), tryCatchFunc produces + # list(success TRUE, value = expr(), msg = "") + # On failure of expr(), tryCatchFunc produces + # list(success = FALSE, value = NA, msg = "the error message") + result_list <- tryCatchFunc( expr = function() { + # kmeans clusters the rows; features are the columns of args_env$dataMatrix; samples, the rows + # - to calculate sample-clusters, no transposition is needed because samples are rows + # - to calculate feature-clusters, transposition is needed so that features will be the rows + if ( ! dim_features ) dm <- t(dm) + dm <- prepare.data.matrix( x.matrix = dm, data.transformation = function(x) { x } ) + # need to set.seed to get reproducible results from kmeans + set.seed(4567) + # do the k-means clustering + km <- kmeans( x = dm, centers = k, iter.max, nstart = nstart, algorithm = algorithm ) + scores <- + sprintf("%s\t%d\t%0.5e\t%0.5e\t%0.5f" + , dimension + , k + , km$totss + , km$betweenss + , km$betweenss/km$totss + ) + list(clusters = km$cluster, scores = scores) + }) + return ( result_list ) +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/w4mkmeans_wrapper.R Tue Aug 08 15:30:38 2017 -0400 @@ -0,0 +1,370 @@ +#!/usr/bin/env Rscript + +# references: +# what this does: +# - [stats::kmeans](https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html) +# - [stats::p.adjust](https://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html) +# how this does what it does: +# - [parallel::clusterApply](https://stat.ethz.ch/R-manual/R-devel/library/parallel/html/clusterApply.html) + +# invocation: +# Rscript $__tool_directory__/w4mkmeans_wrapper.R \ +# tool_directory $__tool_directory__ +# data_matrix_path '$dataMatrix_in' \ +# variable_metadata_path '$variableMetadata_in' \ +# sample_metadata_path '$sampleMetadata_in' \ +# kfeatures '$kfeatures' \ +# ksamples '$ksamples' \ +# iter_max '$iter_max' \ +# nstart '$nstart' \ +# algorithm '$algorithm' \ +# scores '$scores' \ +# sampleMetadata_out '$sampleMetadata_out' \ +# variableMetadata_out '$variableMetadata_out' \ +# slots "\${GALAXY_SLOTS:-1}" \ +# +# <inputs> +# <param name="dataMatrix_in" label="Data matrix file" type="data" format="tabular" help="variable x sample, decimal: '.', missing: NA, mode: numerical, separator: tab" /> +# <param name="sampleMetadata_in" label="Sample metadata file" type="data" format="tabular" help="sample x metadata columns, separator: tab" /> +# <param name="variableMetadata_in" label="Variable metadata file" type="data" format="tabular" help="variable x metadata columns, separator: tab" /> +# <param name="kfeatures" label="K value(s) for features" type="text" value="0" help="Single or min,max value(s) for K for features (variables), or 0 for none." /> +# <param name="ksamples" label="K value(s) for samples" type="text" value="0" help="Single or min,max value(s) for K for samples, or 0 for none." /> +# <param name="iter_max" label="Max number of iterations" type="text" value="10" help="The maximum number of iterations allowed; default 10." /> +# <param name="nstart" label="Number of random sets" type="text" value="1" help="How many random sets should be chosen; default 1." /> +# <param name="algorithm" label="Algorithm for clustering" type="select" value = "Hartigan-Wong" help="K-means clustering algorithm, default 'Hartigan-Wong'; alternatives 'Lloyd', 'MacQueen'; 'Forgy' is a synonym for 'Lloyd', see stats::kmeans reference for further info and references."> +# <option value="Hartigan-Wong" selected="TRUE">Hartigan-Wong</option> +# <option value="Lloyd">Lloyd</option> +# <option value="MacQueen">MacQueen</option> +# <option value="Forgy">Forgy</option> +# </param> +# </inputs> +# <outputs> +# <data name="sampleMetadata_out" label="${tool.name}_${sampleMetadata_in.name}" format="tabular" ></data> +# <data name="variableMetadata_out" label="${tool.name}_${variableMetadata_in.name}" format="tabular" ></data> +# </outputs> + +##------------------------ +## libraries for this file +##------------------------ + +library(batch) ## for 'parseCommandArgs' + +##------------------- +## Pre-initialization +##------------------- + +argVc <- unlist(parseCommandArgs(evaluate=FALSE)) +if ( Reduce( `|`, grepl("tool_directory",names(argVc)) ) ) { + tool_directory <- as.character(argVc["tool_directory"]) +} else { + tool_directory <- "." +} +r_path <- function(f) paste( tool_directory, f, sep = "/" ) + +##---------------------------------------------------------- +## Computation - source general and module-specific routines +##---------------------------------------------------------- + +log_print <- function(x, ...) { + cat( + format(Sys.time(), "%Y-%m-%dT%H:%M:%S%z") + , " " + , c(x, ...) + , "\n" + , sep="" + , file=stderr() + ) +} + +# log_print(sprintf("tool_directory is %s", tool_directory)) + +w4m_general_purpose_routines_path <- r_path("w4m_general_purpose_routines.R") +# log_print(sprintf("w4m_general_purpose_routines_path is %s", w4m_general_purpose_routines_path)) +if ( ! file.exists(w4m_general_purpose_routines_path) ) { + log_print("cannot find file w4m_general_purpose_routines.R") + q(save = "no", status = 1, runLast = TRUE) +} +# log_print("sourcing ",w4m_general_purpose_routines_path) +source(w4m_general_purpose_routines_path) +if ( ! exists("prepare.data.matrix") ) { + log_print("'prepare.data.matrix' was not read from file w4m_general_purpose_routines.R") + q(save = "no", status = 1, runLast = TRUE) +} + +w4mkmeans_routines_path <- r_path("w4mkmeans_routines.R") +# log_print(sprintf("w4mkmeans_routines_path is %s", w4mkmeans_routines_path)) +if ( ! file.exists(w4mkmeans_routines_path) ) { + log_print("cannot find file w4mkmeans_routines.R") + q(save = "no", status = 1, runLast = TRUE) +} +# log_print("sourcing ",w4mkmeans_routines_path) +source(w4mkmeans_routines_path) +if ( ! exists("w4mkmeans") ) { + log_print("'w4mkmeans' was not read from file w4mkmeans_routines.R") + q(save = "no", status = 1, runLast = TRUE) +} + +##----------------------------------------- +## Computation - W4m data-suppport routines +##----------------------------------------- + +# read_data_frame - read a w4m data frame from a tsv, with error handling +# e.g., data_matrix_input_env <- read_data_frame(dataMatrix_in, "data matrix input") +read_data_frame <- function(file_path, kind_string, failure_action = log_print) { + my.env <- new.env() + my.env$success <- FALSE + my.env$msg <- sprintf("no message reading %s", kind_string) + tryCatch( + expr = { + my.env$data <- utils::read.delim( fill = FALSE, file = file_path ) + my.env$success <- TRUE + } + , error = function(e) { + my.env$msg <<- sprintf("%s read failed", kind_string) + } + ) + if (!my.env$success) { + failure_action(my.env$msg) + } + return (my.env) +} + +# write_result - write a w4m data frame to a tsv +write_result <- function(result, file_path, kind_string, failure_action = log_print) { + my.env <- new.env() + my.env$success <- FALSE + my.env$msg <- sprintf("no message writing %s", kind_string) + tryCatch( + expr = { + write.table( + x = result + , sep = "\t" + , file = file_path + , quote = FALSE + , row.names = FALSE + ) + my.env$success <- TRUE + } + , error = function(e) { + my.env$msg <<- sprintf("%s write failed", kind_string) + } + ) + if (!my.env$success) { + failure_action(my.env$msg) + return (my.env) + } + return (my.env) +} + +# read the three input files +read_input_data <- function(env, failure_action = log_print) { + kind_string <- "none" + tryCatch( + expr = { + # read in the sample metadata + kind_string <- "sample metadata input" + smpl_metadata_input_env <- + read_data_frame( + file_path = env$sample_metadata_path + , kind_string = kind_string + , failure_action = failure_action + ) + if (!smpl_metadata_input_env$success) { + failure_action(smpl_metadata_input_env$msg) + return ( FALSE ) + } + env$sampleMetadata <- smpl_metadata_input_env$data + + # read in the variable metadata + kind_string <- "variable metadata input" + vrbl_metadata_input_env <- + read_data_frame( + file_path = env$variable_metadata_path + , kind_string = kind_string + , failure_action = failure_action + ) + if (!vrbl_metadata_input_env$success) { + failure_action(vrbl_metadata_input_env$msg) + return ( FALSE ) + } + env$variableMetadata <- vrbl_metadata_input_env$data + + # read in the data matrix + kind_string <- "data matrix input" + data_matrix_input_env <- + read_data_frame( + file_path = env$data_matrix_path + , kind_string = kind_string + , failure_action = failure_action + ) + if (!data_matrix_input_env$success) { + failure_action(data_matrix_input_env$msg) + return ( FALSE ) + } + # data frame for dataMatrix has rownames in first column + data_matrix_df <- data_matrix_input_env$data + rownames(data_matrix_df) <- data_matrix_df[,1] + data_matrix <- data_matrix_df[,2:ncol(data_matrix_df)] + env$dataMatrix <- as.matrix(data_matrix) + + } + , error = function(e) { + failure_action( sprintf("read_input_data failed for '%s' - %s", kind_string, format_error(e)) ) + return ( FALSE ) + } + ) + return ( TRUE ) +} + + +read_input_failure_action <- function(x, ...) { + log_print("Failure reading input for '", modNamC, "' Galaxy module call") + log_print(x, ...) +} + +##-------------------------- +## Computation - Entry Point +##-------------------------- + +##---------- +## Constants +##---------- + +modNamC <- "w4mkmeans" ## module name + +## options +##-------- + +# Set the handler for R error-handling +options( show.error.messages = F + , error = function () { + log_print( "Fatal error in '", modNamC, "': ", geterrmessage() ) + q( "no", 1, F ) + } + , warn = -1 + ) + +# strings as factors? - not by default! +# save old value +strAsFacL <- options()$stringsAsFactors +options(stringsAsFactors = FALSE) + + +## log file +##--------- + +log_print("Start of the '", modNamC, "' Galaxy module call") + +## arguments +##---------- + +args_env <- new.env() + +# files + +log_print("PARAMETERS (raw):") +invisible( + lapply( + X = 1:length(argVc) + , FUN = function(i) { + log_print(sprintf(" - %s: %s", names(argVc)[i], argVc[i])) + } + ) +) + +# write.table(as.matrix(argVc), col.names=F, quote=F, sep='\t') + +## output files +sampleMetadata_out <- as.character(argVc["sampleMetadata_out"]) +variableMetadata_out <- as.character(argVc["variableMetadata_out"]) +scores_out <- as.character(argVc["scores_out"]) +## input files +args_env$data_matrix_path <- as.character(argVc["data_matrix_path"]) +args_env$variable_metadata_path <- as.character(argVc["variable_metadata_path"]) +args_env$sample_metadata_path <- as.character(argVc["sample_metadata_path"]) + +# other parameters + +# multi-string args - split csv: "1,2,3" -> c("1","2","3") +args_env$kfeatures <- strsplit(x = as.character(argVc['kfeatures']), split = ",", fixed = TRUE)[[1]] +args_env$ksamples <- strsplit(x = as.character(argVc['ksamples' ]), split = ",", fixed = TRUE)[[1]] +# numeric args +args_env$iter_max <- as.numeric( argVc['iter_max' ]) +args_env$nstart <- as.numeric( argVc['nstart' ]) +args_env$slots <- as.numeric( argVc['slots' ]) +# string args +args_env$algorithm <- as.character( argVc['algorithm']) +args_env$log_print <- log_print + +log_print("PARAMETERS (parsed):") +for (member in ls(args_env)) { + value <- get(member, args_env) + value <- ifelse(length(value) == 1, value, sprintf("c(%s)", paste(value, collapse=", "))) + + log_print(sprintf(" - %s: %s", member, ifelse( !is.function(value) , value, "function" ))) +} +log_print("") + +##--------------------------------------------------------- +## Computation - attempt to read input data +##--------------------------------------------------------- +if ( ! read_input_data(args_env, failure_action = read_input_failure_action) ) { + result <- -1 +} else { + log_print("Input data was read successfully.") + result <- w4mkmeans(env = args_env) + log_print("returned from call to w4mkmeans.") +} + +if ( length(result) == 0 ) { + log_print("no results were produced") + # exit with status code non-zero to indicate error + q(save = "no", status = 1, runLast = FALSE) +} else if ( ! setequal(names(result),c("variableMetadata","sampleMetadata","scores")) ) { + log_print(sprintf("unexpected result keys %s", names(result))) + # exit with status code non-zero to indicate error + q(save = "no", status = 1, runLast = FALSE) +} else if ( ! write_result(result = result$variableMetadata, file_path = variableMetadata_out, kind_string = "clustered variableMetadata")$success ) { + log_print("failed to write output file for clustered variableMetadata") + # exit with status code non-zero to indicate error + q(save = "no", status = 1, runLast = FALSE) +} else if ( ! write_result(result = result$sampleMetadata, file_path = sampleMetadata_out, kind_string = "clustered sampleMetadata")$success ) { + log_print("failed to write output file for clustered sampleMetadata") + # exit with status code non-zero to indicate error + q(save = "no", status = 1, runLast = FALSE) +} else { + tryCatch( + expr = { + fileConn<-file(scores_out) + writeLines(result$scores, fileConn) + close(fileConn) + } + , error = function(e) { + log_print(sprintf("failed to write output file for cluster scores - %s", format_error(e))) + # exit with status code non-zero to indicate error + q(save = "no", status = 1, runLast = FALSE) + } + ) +} + +##-------- +## Closing +##-------- + + +if (!file.exists(sampleMetadata_out)) { + log_print(sprintf("ERROR %s::w4m_kmeans_wrapper - file '%s' was not created", modNamC, sampleMetadata_out)) +} + +if (!file.exists(variableMetadata_out)) { + log_print(sprintf("ERROR %s::w4m_kmeans_wrapper - file '%s' was not created", modNamC, variableMetadata_out)) +} + +if (!file.exists(scores_out)) { + log_print(sprintf("ERROR %s::w4m_kmeans_wrapper - file '%s' was not created", modNamC, scores_out)) +} + +log_print("Normal termination of '", modNamC, "' Galaxy module call") + +# exit with status code zero +q(save = "no", status = 0, runLast = FALSE)