2
|
1 #/bin/perl
|
|
2
|
|
3 use strict;
|
|
4 use warnings;
|
|
5 use Getopt::Std;
|
|
6 use File::Basename;
|
|
7 use File::Path qw(make_path remove_tree);
|
|
8 $| = 1;
|
|
9
|
|
10 # Grab and set all options
|
11
|
11 my %OPTIONS = (a => "glm", d => "tag", f => "BH", r => 5, u => "movingave");
|
2
|
12
|
11
|
13 getopts('a:d:e:f:h:lmn:o:r:tu:', \%OPTIONS);
|
2
|
14
|
|
15 die qq(
|
|
16 Usage: edgeR.pl [OPTIONS] factor::factor1::levels [factor::factor2::levels ...] cp::cont_pred1::values [cp::cont_pred2::values ...] cnt::contrast1 [cnt::contrast2] matrix
|
|
17
|
|
18 OPTIONS: -a STR Type Of Analysis [glm, pw, limma] (default: $OPTIONS{a})
|
|
19 -d STR The dispersion estimate to use for GLM analysis [tag, trend, common] (default: $OPTIONS{d})
|
|
20 -e STR Path to place additional output files
|
|
21 -f STR False discovery rate adjustment method [BH, holm, hochberg, hommel, BY, none] (default: $OPTIONS{f})
|
|
22 -h STR Name of html file for additional files
|
|
23 -l Output the normalised digital gene expression matrix in log2 format (only applicable when using limma and -n is also specified)
|
|
24 -m Perform all pairwise comparisons
|
|
25 -n STR File name to output the normalised digital gene expression matrix (only applicable when usinf glm or limma model)
|
|
26 -o STR File name to output csv file with results
|
|
27 -r INT Common Dispersion Rowsum Filter, ony applicable when 1 factor analysis selected (default: $OPTIONS{r})
|
|
28 -t Estimate Tagwise Disp when performing 1 factor analysis
|
|
29 -u STR Method for allowing the prior distribution for the dispersion to be abundance- dependent ["movingave", "tricube", "none"] (default: $OPTIONS{u})
|
|
30
|
|
31 ) if(!@ARGV);
|
|
32
|
|
33 my $matrix = pop @ARGV;
|
|
34
|
|
35 make_path($OPTIONS{e});
|
11
|
36 open(Rcmd,">$OPTIONS{e}/r_script.R") or die "Cannot open $OPTIONS{e}/r_script.R\n\n";
|
2
|
37 print Rcmd "
|
11
|
38 zz <- file(\"$OPTIONS{e}/r_script.err\", open=\"wt\")
|
|
39 sink(zz)
|
|
40 sink(zz, type=\"message\")
|
|
41
|
|
42 library(edgeR)
|
|
43 library(limma)
|
2
|
44
|
11
|
45 # read in matrix and groups
|
|
46 toc <- read.table(\"$matrix\", sep=\"\\t\", comment=\"\", as.is=T)
|
|
47 groups <- sapply(toc[1, -1], strsplit, \":\")
|
|
48 for(i in 1:length(groups)) { g <- make.names(groups[[i]][2]); names(groups)[i] <- g; groups[[i]] <- groups[[i]][-2] }
|
|
49 colnames(toc) <- make.names(toc[2,])
|
|
50 toc[,1] <- gsub(\",\", \".\", toc[,1])
|
|
51 tagnames <- toc[-(1:2), 1]
|
|
52 rownames(toc) <- toc[,1]
|
|
53 toc <- toc[-(1:2), -1]
|
|
54 for(i in colnames(toc)) toc[, i] <- as.numeric(toc[,i])
|
|
55 norm_factors <- calcNormFactors(as.matrix(toc))
|
2
|
56
|
11
|
57 pw_tests <- list()
|
|
58 uniq_groups <- unique(names(groups))
|
|
59 for(i in 1:(length(uniq_groups)-1)) for(j in (i+1):length(uniq_groups)) pw_tests[[length(pw_tests)+1]] <- c(uniq_groups[i], uniq_groups[j])
|
|
60 DGE <- DGEList(toc, lib.size=norm_factors*colSums(toc), group=names(groups))
|
|
61 pdf(\"$OPTIONS{e}/MA_plots_normalisation.pdf\", width=14)
|
|
62 for(i in 1:length(pw_tests)) {
|
|
63 j <- c(which(names(groups) == pw_tests[[i]][1])[1], which(names(groups) == pw_tests[[i]][2])[1])
|
|
64 par(mfrow = c(1, 2))
|
|
65 maPlot(toc[, j[1]], toc[, j[2]], normalize = TRUE, pch = 19, cex = 0.2, ylim = c(-10, 10), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]]))
|
|
66 grid(col = \"blue\")
|
|
67 abline(h = log2(norm_factors[j[2]]), col = \"red\", lwd = 4)
|
|
68 maPlot(DGE\$counts[, j[1]]/DGE\$samples\$lib.size[j[1]], DGE\$counts[, j[2]]/DGE\$samples\$lib.size[j[2]], normalize = FALSE, pch = 19, cex = 0.2, ylim = c(-8, 8), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]], \"Normalised\"))
|
|
69 grid(col = \"blue\")
|
|
70 }
|
|
71 dev.off()
|
|
72 pdf(file=\"$OPTIONS{e}/MDSplot.pdf\")
|
|
73 plotMDS(DGE, main=\"MDS Plot\", col=as.numeric(factor(names(groups)))+1, xlim=c(-3,3))
|
|
74 dev.off()
|
|
75 tested <- list()
|
2
|
76 ";
|
|
77
|
|
78 my $all_cont;
|
|
79 my @add_cont;
|
|
80 my @fact;
|
|
81 my @fact_names;
|
|
82 my @cp;
|
|
83 my @cp_names;
|
|
84 if(@ARGV) {
|
|
85 foreach my $input (@ARGV) {
|
|
86 my @tmp = split "::", $input;
|
|
87 if($tmp[0] eq "factor") {
|
|
88 $tmp[1] =~ s/[ \?\(\)\[\]\/\\=+<>:;\"\',\*\^\|\&-]/./g;
|
|
89 push @fact_names, $tmp[1];
|
|
90 $tmp[2] =~ s/:/\", \"/g;
|
|
91 $tmp[2] = "\"".$tmp[2]."\"";
|
|
92 push @fact, $tmp[2];
|
|
93 } elsif($tmp[0] eq "cp") {
|
|
94 $tmp[1] =~ s/[ \?\(\)\[\]\/\\=+<>:;\"\',\*\^\|\&-]/./g;
|
|
95 push @cp_names, $tmp[1];
|
|
96 $tmp[2] =~ s/:/, /g;
|
|
97 push @cp, $tmp[2];
|
|
98 } elsif($tmp[0] eq "cnt") {
|
|
99 push @add_cont, $tmp[1];
|
|
100 } else {
|
|
101 die("Unknown Input: $input\n");
|
|
102 }
|
|
103 }
|
|
104 }
|
|
105
|
|
106 if($OPTIONS{a} eq "pw") {
|
|
107 print Rcmd "
|
11
|
108 disp <- estimateCommonDisp(DGE, rowsum.filter=$OPTIONS{r})
|
|
109 ";
|
2
|
110 if(defined $OPTIONS{t}) {
|
|
111 print Rcmd "
|
11
|
112 disp <- estimateTagwiseDisp(disp, trend=\"$OPTIONS{u}\")
|
|
113 pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\")
|
|
114 plotBCV(disp, cex=0.4)
|
|
115 abline(h=disp\$common.dispersion, col=\"firebrick\", lwd=3)
|
|
116 dev.off()
|
|
117 ";
|
2
|
118 }
|
|
119 print Rcmd "
|
11
|
120 for(i in 1:length(pw_tests)) {
|
|
121 tested[[i]] <- exactTest(disp, pair=pw_tests[[i]])
|
|
122 names(tested)[i] <- paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")
|
|
123 }
|
|
124 pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\")
|
|
125 for(i in 1:length(pw_tests)) {
|
|
126 dt <- decideTestsDGE(tested[[i]], p.value=0.05, adjust.method=\"$OPTIONS{f}\")
|
|
127 if(sum(dt) > 0) {
|
|
128 de_tags <- rownames(disp)[which(dt != 0)]
|
|
129 ttl <- \"Diff. Exp. Genes With adj. Pvalue < 0.05\"
|
|
130 } else {
|
|
131 de_tags <- rownames(topTags(tested[[i]], n=100)\$table)
|
|
132 ttl <- \"Top 100 tags\"
|
|
133 }
|
|
134
|
|
135 if(length(dt) < 5000) {
|
|
136 pointcex = 0.5
|
|
137 } else {
|
|
138 pointcex = 0.2
|
|
139 }
|
|
140 plotSmear(disp, pair=pw_tests[[i]], de.tags = de_tags, main = paste(\"Smear Plot\", names(tested)[i]), cex=0.5)
|
|
141 abline(h = c(-1, 1), col = \"blue\")
|
|
142 legend(\"topright\", c(\"2 Fold Change\", ttl) , lty=c(1, NA), pch=c(NA, 19), pt.cex=0.5, col=c(\"blue\", \"red\"), bty=\"n\")
|
|
143 }
|
|
144 dev.off()
|
|
145 ";
|
2
|
146 } elsif($OPTIONS{a} eq "glm") {
|
|
147 for(my $fct = 0; $fct <= $#fact_names; $fct++) {
|
|
148 print Rcmd "
|
11
|
149 $fact_names[$fct] <- c($fact[$fct])
|
|
150 ";
|
2
|
151 }
|
|
152 for(my $fct = 0; $fct <= $#cp_names; $fct++) {
|
|
153 print Rcmd "
|
11
|
154 $cp_names[$fct] <- c($cp[$fct])
|
|
155 ";
|
2
|
156 }
|
|
157 my $all_fact = "";
|
|
158 if(@fact_names) {
|
|
159 foreach (@fact_names) {
|
|
160 $all_fact .= " + factor($_)";
|
|
161 }
|
|
162 }
|
|
163 my $all_cp = "";
|
|
164 if(@cp_names) {
|
|
165 $all_cp = " + ".join(" + ", @cp_names);
|
|
166 }
|
|
167 print Rcmd "
|
11
|
168 group_fact <- factor(names(groups))
|
|
169 design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp})
|
|
170 colnames(design) <- sub(\"group_fact\", \"\", colnames(design))
|
|
171 ";
|
2
|
172 foreach my $fct (@fact_names) {
|
|
173 print Rcmd "
|
11
|
174 colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design)))
|
|
175 ";
|
2
|
176 }
|
|
177 print Rcmd "
|
11
|
178 disp <- estimateGLMCommonDisp(DGE, design)
|
|
179 ";
|
2
|
180 if($OPTIONS{d} eq "tag" || $OPTIONS{d} eq "trend") {
|
|
181 print Rcmd "
|
11
|
182 disp <- estimateGLMTrendedDisp(disp, design)
|
|
183 ";
|
2
|
184 }
|
|
185 if($OPTIONS{d} eq "tag") {
|
|
186 print Rcmd "
|
11
|
187 disp <- estimateGLMTagwiseDisp(disp, design)
|
|
188 fit <- glmFit(disp, design)
|
|
189 pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\")
|
|
190 plotBCV(disp, cex=0.4)
|
|
191 dev.off()
|
|
192 ";
|
2
|
193 }
|
|
194 if(@add_cont) {
|
|
195 $all_cont = "\"".join("\", \"", @add_cont)."\"";
|
|
196 print Rcmd "
|
11
|
197 cont <- c(${all_cont})
|
|
198 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont)
|
|
199 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont)
|
|
200 ";
|
2
|
201 } else {
|
|
202 print Rcmd "
|
11
|
203 cont <- NULL
|
|
204 ";
|
2
|
205 }
|
|
206 if(defined $OPTIONS{m}) {
|
|
207 print Rcmd "
|
11
|
208 for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\"))
|
|
209 ";
|
2
|
210 }
|
|
211 if(!defined $OPTIONS{m} && !@add_cont){
|
|
212 die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n");
|
|
213 }
|
|
214 print Rcmd "
|
11
|
215 fit <- glmFit(disp, design)
|
|
216 cont <- makeContrasts(contrasts=cont, levels=design)
|
|
217 for(i in colnames(cont)) tested[[i]] <- glmLRT(fit, contrast=cont[,i])
|
|
218 pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\")
|
|
219 for(i in colnames(cont)) {
|
|
220 dt <- decideTestsDGE(tested[[i]], p.value=0.05, adjust.method=\"$OPTIONS{f}\")
|
|
221 if(sum(dt) > 0) {
|
|
222 de_tags <- rownames(disp)[which(dt != 0)]
|
|
223 ttl <- \"Diff. Exp. Genes With adj. Pvalue < 0.05\"
|
|
224 } else {
|
|
225 de_tags <- rownames(topTags(tested[[i]], n=100)\$table)
|
|
226 ttl <- \"Top 100 tags\"
|
|
227 }
|
|
228
|
|
229 if(length(dt) < 5000) {
|
|
230 pointcex = 0.5
|
|
231 } else {
|
|
232 pointcex = 0.2
|
|
233 }
|
|
234 plotSmear(disp, de.tags = de_tags, main = paste(\"Smear Plot\", i), cex=pointcex)
|
|
235 abline(h = c(-1, 1), col = \"blue\")
|
|
236 legend(\"topright\", c(\"2 Fold Change\", ttl) , lty=c(1, NA), pch=c(NA, 19), pt.cex=0.5, col=c(\"blue\", \"red\"), bty=\"n\")
|
|
237 }
|
|
238 dev.off()
|
|
239 ";
|
2
|
240 if(defined $OPTIONS{n}) {
|
|
241 print Rcmd "
|
11
|
242 tab <- data.frame(ID=rownames(fit\$fitted.values), fit\$fitted.values, stringsAsFactors=F)
|
|
243 write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F)
|
|
244 ";
|
|
245 }
|
2
|
246 } elsif($OPTIONS{a} eq "limma") {
|
|
247 for(my $fct = 0; $fct <= $#fact_names; $fct++) {
|
|
248 print Rcmd "
|
11
|
249 $fact_names[$fct] <- c($fact[$fct])
|
|
250 ";
|
2
|
251 }
|
|
252 for(my $fct = 0; $fct <= $#cp_names; $fct++) {
|
|
253 print Rcmd "
|
11
|
254 $cp_names[$fct] <- c($cp[$fct])
|
|
255 ";
|
2
|
256 }
|
|
257 my $all_fact = "";
|
|
258 if(@fact_names) {
|
|
259 foreach (@fact_names) {
|
|
260 $all_fact .= " + factor($_)";
|
|
261 }
|
|
262 }
|
|
263 my $all_cp = "";
|
|
264 if(@cp_names) {
|
|
265 $all_cp = " + ".join(" + ", @cp_names);
|
|
266 }
|
|
267 print Rcmd "
|
11
|
268 group_fact <- factor(names(groups))
|
|
269 design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp})
|
|
270 colnames(design) <- sub(\"group_fact\", \"\", colnames(design))
|
|
271 ";
|
2
|
272 foreach my $fct (@fact_names) {
|
|
273 print Rcmd "
|
11
|
274 colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design)))
|
|
275 ";
|
2
|
276 }
|
|
277 print Rcmd "
|
11
|
278 isexpr <- rowSums(cpm(toc)>1) >= 2
|
|
279 toc <- toc[isexpr, ]
|
|
280 pdf(file=\"$OPTIONS{e}/LIMMA_voom.pdf\")
|
|
281 y <- voom(toc, design, plot=TRUE, lib.size=colSums(toc)*norm_factors)
|
|
282 dev.off()
|
2
|
283
|
11
|
284 pdf(file=\"$OPTIONS{e}/LIMMA_MDS_plot.pdf\")
|
|
285 plotMDS(y, labels=colnames(toc), col=as.numeric(factor(names(groups)))+1, gene.selection=\"common\")
|
|
286 dev.off()
|
|
287 fit <- lmFit(y, design)
|
|
288 ";
|
2
|
289 if(defined $OPTIONS{n}) {
|
|
290 if(defined $OPTIONS{l}) {
|
|
291 print Rcmd "
|
11
|
292 tab <- data.frame(ID=rownames(y\$E), y\$E, stringsAsFactors=F)
|
|
293 ";
|
2
|
294 } else {
|
|
295 print Rcmd "
|
11
|
296 tab <- data.frame(ID=rownames(y\$E), 2^y\$E, stringsAsFactors=F)
|
|
297 ";
|
2
|
298 }
|
|
299 print Rcmd "
|
11
|
300 write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F)
|
|
301 ";
|
|
302 }
|
2
|
303 if(@add_cont) {
|
|
304 $all_cont = "\"".join("\", \"", @add_cont)."\"";
|
|
305 print Rcmd "
|
11
|
306 cont <- c(${all_cont})
|
|
307 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont)
|
|
308 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont)
|
|
309 ";
|
2
|
310 } else {
|
|
311 print Rcmd "
|
11
|
312 cont <- NULL
|
|
313 ";
|
2
|
314 }
|
|
315 if(defined $OPTIONS{m}) {
|
|
316 print Rcmd "
|
11
|
317 for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\"))
|
|
318 ";
|
2
|
319 }
|
|
320 if(!defined $OPTIONS{m} && !@add_cont){
|
|
321 die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n");
|
|
322 }
|
|
323 print Rcmd "
|
11
|
324 cont <- makeContrasts(contrasts=cont, levels=design)
|
|
325 fit2 <- contrasts.fit(fit, cont)
|
|
326 fit2 <- eBayes(fit2)
|
|
327 ";
|
2
|
328 } else {
|
|
329 die("Anaysis type $OPTIONS{a} not found\n");
|
11
|
330
|
2
|
331 }
|
|
332
|
|
333 if($OPTIONS{a} ne "limma") {
|
|
334 print Rcmd "
|
11
|
335 options(digits = 6)
|
|
336 tab <- NULL
|
|
337 for(i in names(tested)) {
|
|
338 tab_tmp <- topTags(tested[[i]], n=Inf, adjust.method=\"$OPTIONS{f}\")[[1]]
|
|
339 colnames(tab_tmp) <- paste(i, colnames(tab_tmp), sep=\":\")
|
|
340 tab_tmp <- tab_tmp[tagnames,]
|
|
341 if(is.null(tab)) {
|
|
342 tab <- tab_tmp
|
|
343 } else tab <- cbind(tab, tab_tmp)
|
|
344 }
|
|
345 tab <- cbind(Feature=rownames(tab), tab)
|
|
346 ";
|
2
|
347 } else {
|
|
348 print Rcmd "
|
11
|
349 tab <- NULL
|
|
350 options(digits = 6)
|
|
351 for(i in colnames(fit2)) {
|
|
352 tab_tmp <- topTable(fit2, coef=i, n=Inf, sort.by=\"none\", adjust.method=\"$OPTIONS{f}\")
|
|
353 colnames(tab_tmp)[-1] <- paste(i, colnames(tab_tmp)[-1], sep=\":\")
|
|
354 if(is.null(tab)) {
|
|
355 tab <- tab_tmp
|
|
356 } else tab <- cbind(tab, tab_tmp[,-1])
|
|
357 }
|
|
358 ";
|
2
|
359 }
|
|
360 print Rcmd "
|
11
|
361 write.table(tab, \"$OPTIONS{o}\", quote=F, sep=\"\\t\", row.names=F)
|
|
362 sink(type=\"message\")
|
|
363 sink()
|
2
|
364 ";
|
|
365 close(Rcmd);
|
|
366 system("R --no-restore --no-save --no-readline < $OPTIONS{e}/r_script.R > $OPTIONS{e}/r_script.out");
|
|
367
|
|
368 open(HTML, ">$OPTIONS{h}");
|
|
369 print HTML "<html><head><title>EdgeR: Empirical analysis of digital gene expression data</title></head><body><h3>EdgeR Additional Files:</h3><p><ul>\n";
|
|
370 print HTML "<li><a href=MA_plots_normalisation.pdf>MA_plots_normalisation.pdf</a></li>\n";
|
|
371 print HTML "<li><a href=MDSplot.pdf>MDSplot.pdf</a></li>\n";
|
|
372 if($OPTIONS{a} eq "pw") {
|
|
373 if(defined $OPTIONS{t}) {
|
|
374 print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n";
|
|
375 }
|
|
376 print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n";
|
|
377 } elsif($OPTIONS{a} eq "glm" && $OPTIONS{d} eq "tag") {
|
|
378 print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n";
|
11
|
379 print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n";
|
|
380 } elsif($OPTIONS{a} eq "glm" && ($OPTIONS{d} eq "trend" || $OPTIONS{d} eq "common")) {
|
|
381 print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n";
|
2
|
382 } elsif($OPTIONS{a} eq "limma") {
|
|
383 print HTML "<li><a href=LIMMA_MDS_plot.pdf>LIMMA_MDS_plot.pdf</a></li>\n";
|
|
384 print HTML "<li><a href=LIMMA_voom.pdf>LIMMA_voom.pdf</a></li>\n";
|
|
385 }
|
|
386 print HTML "<li><a href=r_script.R>r_script.R</a></li>\n";
|
|
387 print HTML "<li><a href=r_script.out>r_script.out</a></li>\n";
|
|
388 print HTML "<li><a href=r_script.err>r_script.err</a></li>\n";
|
|
389 print HTML "</ul></p>\n";
|
|
390 close(HTML);
|
|
391
|