Mercurial > repos > florianbegusch > qiime2_all
diff qiime_sample-classifier_regress-samples.xml @ 0:09b7bcb72fa7 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 24 May 2018 02:11:44 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/qiime_sample-classifier_regress-samples.xml Thu May 24 02:11:44 2018 -0400 @@ -0,0 +1,175 @@ +<?xml version="1.0" ?> +<tool id="qiime_sample-classifier_regress-samples" name="qiime sample-classifier regress-samples" version="2018.4"> + <description> - Supervised learning regressor.</description> + <requirements> + <requirement type="package" version="2018.4">qiime2</requirement> + </requirements> + <command> + <![CDATA[ + qiime sample-classifier regress-samples --i-table=$itable + + #def list_dict_to_string(list_dict): + #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') + #for d in list_dict[1:]: + #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') + #end for + #return $file_list + #end def + + --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) --m-metadata-column="$mmetadatacolumn" + #set $pnjobs = '${GALAXY_SLOTS:-4}' + + #if str($pnjobs): + --p-n-jobs="$pnjobs" + #end if + + + #if $pstep: + --p-step=$pstep + #end if + + #if $pstratify: + --p-stratify + #else + --p-no-stratify + #end if + + #if $poptimizefeatureselection: + --p-optimize-feature-selection + #else + --p-no-optimize-feature-selection + #end if + + #if $ptestsize: + --p-test-size=$ptestsize + #end if + --o-visualization=ovisualization + #if str($pestimator) != 'None': + --p-estimator=$pestimator + #end if + + #if $pnestimators: + --p-n-estimators=$pnestimators + #end if + + #if str($cmdconfig) != 'None': + --cmd-config=$cmdconfig + #end if + + #if $pcv: + --p-cv=$pcv + #end if + + #if $pparametertuning: + --p-parameter-tuning + #else + --p-no-parameter-tuning + #end if + + #if str($prandomstate): + --p-random-state="$prandomstate" + #end if + ; + qiime tools export ovisualization.qzv --output-dir out && mkdir -p '$ovisualization.files_path' + && cp -r out/* '$ovisualization.files_path' + && mv '$ovisualization.files_path/index.html' '$ovisualization' + ]]> + </command> + <inputs> + <param format="qza,no_unzip.zip" label="--i-table: FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> + <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> + <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [required]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> + </repeat> + <param label="--m-metadata-column: MetadataColumn[Numeric] Column from metadata file or artifact viewable as metadata. Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> + + <param label="--p-test-size: Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" name="ptestsize" optional="True" type="float" value="0.2"/> + + <param label="--p-step: If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05"/> + + <param label="--p-cv: Number of k-fold cross-validations to perform. [default: 5]" name="pcv" optional="True" type="integer" value="5"/> + + <param label="--p-random-state: Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="text"/> + + <param label="--p-n-estimators: Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100"/> + <param label="--p-estimator: Estimator method to use for sample + prediction. [default: + RandomForestRegressor]" name="pestimator" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="Ridge">Ridge</option> + <option value="RandomForestRegressor">RandomForestRegressor</option> + <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> + <option value="AdaBoostRegressor">AdaBoostRegressor</option> + <option value="LinearSVR">LinearSVR</option> + <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> + <option value="KNeighborsRegressor">KNeighborsRegressor</option> + <option value="SVR">SVR</option> + <option value="ElasticNet">ElasticNet</option> + <option value="Lasso">Lasso</option> + </param> + + <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" checked="False" type="boolean"/> + + <param label="--p-stratify: --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" checked="False" type="boolean"/> + + <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" checked="False" type="boolean"/> + + <param label="--cmd-config: Use config file for command options" name="cmdconfig" optional="True" type="data"/> + </inputs> + <outputs> + <data format="html" label="${tool.name} on ${on_string}: visualization.qzv" name="ovisualization"/> + </outputs> + <help> + <![CDATA[ +Supervised learning regressor. +------------------------------- + +Predicts a continuous sample metadata column using a supervised learning +regressor. Splits input data into training and test sets. The training set +is used to train and test the estimator using a stratified k-fold cross- +validation scheme. This includes optional steps for automated feature +extraction and hyperparameter optimization. The test set validates +classification accuracy of the optimized estimator. Outputs classification +results for test set. For more details on the learning algorithm, see +http://scikit-learn.org/stable/supervised_learning.html + +Parameters +---------- +table : FeatureTable[Frequency] + Feature table containing all features that should be used for target + prediction. +metadata : MetadataColumn[Numeric] + Numeric metadata column to use as prediction target. +test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional + Fraction of input samples to exclude from training set and use for + classifier testing. +step : Float % Range(0.0, 1.0, inclusive_start=False), optional + If optimize_feature_selection is True, step is the percentage of + features to remove at each iteration. +cv : Int % Range(1, None), optional + Number of k-fold cross-validations to perform. +random_state : Int, optional + Seed used by random number generator. +n_estimators : Int % Range(1, None), optional + Number of trees to grow for estimation. More trees will improve + predictive accuracy up to a threshold level, but will also increase + time and memory requirements. This parameter only affects ensemble + estimators, such as Random Forest, AdaBoost, ExtraTrees, and + GradientBoosting. +estimator : Str % Choices({'AdaBoostRegressor', 'ElasticNet', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'KNeighborsRegressor', 'Lasso', 'LinearSVR', 'RandomForestRegressor', 'Ridge', 'SVR'}), optional + Estimator method to use for sample prediction. +optimize_feature_selection : Bool, optional + Automatically optimize input feature selection using recursive feature + elimination. +stratify : Bool, optional + Evenly stratify training and test data among metadata categories. If + True, all values in column must match at least two samples. +parameter_tuning : Bool, optional + Automatically tune hyperparameters using random grid search. + +Returns +------- +visualization : Visualization + \ + ]]> + </help> +</tool>