Mercurial > repos > florianbegusch > qiime2_all
view qiime_sample-classifier_regress-samples.xml @ 0:09b7bcb72fa7 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 24 May 2018 02:11:44 -0400 |
parents | |
children |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_sample-classifier_regress-samples" name="qiime sample-classifier regress-samples" version="2018.4"> <description> - Supervised learning regressor.</description> <requirements> <requirement type="package" version="2018.4">qiime2</requirement> </requirements> <command> <![CDATA[ qiime sample-classifier regress-samples --i-table=$itable #def list_dict_to_string(list_dict): #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') #for d in list_dict[1:]: #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') #end for #return $file_list #end def --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) --m-metadata-column="$mmetadatacolumn" #set $pnjobs = '${GALAXY_SLOTS:-4}' #if str($pnjobs): --p-n-jobs="$pnjobs" #end if #if $pstep: --p-step=$pstep #end if #if $pstratify: --p-stratify #else --p-no-stratify #end if #if $poptimizefeatureselection: --p-optimize-feature-selection #else --p-no-optimize-feature-selection #end if #if $ptestsize: --p-test-size=$ptestsize #end if --o-visualization=ovisualization #if str($pestimator) != 'None': --p-estimator=$pestimator #end if #if $pnestimators: --p-n-estimators=$pnestimators #end if #if str($cmdconfig) != 'None': --cmd-config=$cmdconfig #end if #if $pcv: --p-cv=$pcv #end if #if $pparametertuning: --p-parameter-tuning #else --p-no-parameter-tuning #end if #if str($prandomstate): --p-random-state="$prandomstate" #end if ; qiime tools export ovisualization.qzv --output-dir out && mkdir -p '$ovisualization.files_path' && cp -r out/* '$ovisualization.files_path' && mv '$ovisualization.files_path/index.html' '$ovisualization' ]]> </command> <inputs> <param format="qza,no_unzip.zip" label="--i-table: FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [required]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> </repeat> <param label="--m-metadata-column: MetadataColumn[Numeric] Column from metadata file or artifact viewable as metadata. Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> <param label="--p-test-size: Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" name="ptestsize" optional="True" type="float" value="0.2"/> <param label="--p-step: If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05"/> <param label="--p-cv: Number of k-fold cross-validations to perform. [default: 5]" name="pcv" optional="True" type="integer" value="5"/> <param label="--p-random-state: Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="text"/> <param label="--p-n-estimators: Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100"/> <param label="--p-estimator: Estimator method to use for sample prediction. [default: RandomForestRegressor]" name="pestimator" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="Ridge">Ridge</option> <option value="RandomForestRegressor">RandomForestRegressor</option> <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> <option value="AdaBoostRegressor">AdaBoostRegressor</option> <option value="LinearSVR">LinearSVR</option> <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> <option value="KNeighborsRegressor">KNeighborsRegressor</option> <option value="SVR">SVR</option> <option value="ElasticNet">ElasticNet</option> <option value="Lasso">Lasso</option> </param> <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" checked="False" type="boolean"/> <param label="--p-stratify: --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" checked="False" type="boolean"/> <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" checked="False" type="boolean"/> <param label="--cmd-config: Use config file for command options" name="cmdconfig" optional="True" type="data"/> </inputs> <outputs> <data format="html" label="${tool.name} on ${on_string}: visualization.qzv" name="ovisualization"/> </outputs> <help> <![CDATA[ Supervised learning regressor. ------------------------------- Predicts a continuous sample metadata column using a supervised learning regressor. Splits input data into training and test sets. The training set is used to train and test the estimator using a stratified k-fold cross- validation scheme. This includes optional steps for automated feature extraction and hyperparameter optimization. The test set validates classification accuracy of the optimized estimator. Outputs classification results for test set. For more details on the learning algorithm, see http://scikit-learn.org/stable/supervised_learning.html Parameters ---------- table : FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. metadata : MetadataColumn[Numeric] Numeric metadata column to use as prediction target. test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional Fraction of input samples to exclude from training set and use for classifier testing. step : Float % Range(0.0, 1.0, inclusive_start=False), optional If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. cv : Int % Range(1, None), optional Number of k-fold cross-validations to perform. random_state : Int, optional Seed used by random number generator. n_estimators : Int % Range(1, None), optional Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. estimator : Str % Choices({'AdaBoostRegressor', 'ElasticNet', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'KNeighborsRegressor', 'Lasso', 'LinearSVR', 'RandomForestRegressor', 'Ridge', 'SVR'}), optional Estimator method to use for sample prediction. optimize_feature_selection : Bool, optional Automatically optimize input feature selection using recursive feature elimination. stratify : Bool, optional Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. parameter_tuning : Bool, optional Automatically tune hyperparameters using random grid search. Returns ------- visualization : Visualization \ ]]> </help> </tool>