0
|
1 <?xml version="1.0" ?>
|
|
2 <tool id="qiime_gneiss_gradient-clustering" name="qiime gneiss gradient-clustering" version="2019.4">
|
|
3 <description> - Hierarchical clustering using gradient information.</description>
|
|
4 <requirements>
|
|
5 <requirement type="package" version="2019.4">qiime2</requirement>
|
|
6 </requirements>
|
|
7 <command><![CDATA[
|
|
8 qiime gneiss gradient-clustering
|
|
9
|
|
10 --i-table=$itable
|
|
11 --m-gradient-column="$mgradientcolumn"
|
|
12
|
|
13
|
2
|
14 #if $input_files_mgradientfile:
|
0
|
15 #def list_dict_to_string(list_dict):
|
|
16 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name')
|
|
17 #for d in list_dict[1:]:
|
|
18 #set $file_list = $file_list + ',' + d['additional_input'].__getattr__('file_name')
|
|
19 #end for
|
|
20 #return $file_list
|
|
21 #end def
|
|
22 --m-gradient-file=$list_dict_to_string($input_files_mgradientfile)
|
2
|
23 #end if
|
0
|
24
|
|
25 #if $pnoweighted:
|
|
26 --p-no-weighted
|
|
27 #end if
|
|
28
|
|
29 --o-clustering=oclustering
|
|
30 ;
|
|
31 cp oclustering.qza $oclustering
|
|
32 ]]></command>
|
|
33 <inputs>
|
|
34 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency | RelativeFrequency | Composition] The feature table containing the samples in which the columns will be clustered. [required]" name="itable" optional="False" type="data"/>
|
|
35 <param label="--m-gradient-column: COLUMN MetadataColumn[Numeric] Contains gradient values to sort the features and samples. [required]" name="mgradientcolumn" optional="False" type="text"/>
|
|
36 <param label="--p-no-weighted : Specifies if abundance or presence/absence information should be used to perform the clustering. [default: False]" name="pnoweighted" selected="False" type="boolean"/>
|
|
37
|
|
38 <repeat name="input_files_mgradientfile" optional="False" title="--m-gradient-file">
|
|
39 <param label="--m-gradient-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [required]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" />
|
|
40 </repeat>
|
|
41
|
|
42 </inputs>
|
|
43 <outputs>
|
|
44 <data format="qza" label="${tool.name} on ${on_string}: clustering.qza" name="oclustering"/>
|
|
45 </outputs>
|
|
46 <help><![CDATA[
|
|
47 Hierarchical clustering using gradient information.
|
|
48 ###################################################
|
|
49
|
|
50 Build a bifurcating tree that represents a hierarchical clustering of
|
|
51 features. The hiearchical clustering uses Ward hierarchical clustering
|
|
52 based on the mean difference of gradients that each feature is observed in.
|
|
53 This method is primarily used to sort the table to reveal the underlying
|
|
54 block-like structures.
|
|
55
|
|
56 Parameters
|
|
57 ----------
|
|
58 table : FeatureTable[Frequency | RelativeFrequency | Composition]
|
|
59 The feature table containing the samples in which the columns will be
|
|
60 clustered.
|
|
61 gradient : MetadataColumn[Numeric]
|
|
62 Contains gradient values to sort the features and samples.
|
|
63 weighted : Bool, optional
|
|
64 Specifies if abundance or presence/absence information should be used
|
|
65 to perform the clustering.
|
|
66
|
|
67 Returns
|
|
68 -------
|
|
69 clustering : Hierarchy
|
|
70 A hierarchy of feature identifiers where each tip corresponds to the
|
|
71 feature identifiers in the table. This tree can contain tip ids that
|
|
72 are not present in the table, but all feature ids in the table must be
|
|
73 present in this tree.
|
|
74 ]]></help>
|
|
75 <macros>
|
|
76 <import>qiime_citation.xml</import>
|
|
77 </macros>
|
|
78 <expand macro="qiime_citation"/>
|
|
79 </tool>
|