Mercurial > repos > florianbegusch > qiime2_suite_zmf
diff qiime2-2020.8/qiime_longitudinal_maturity-index.xml @ 0:5c352d975ef7 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 09:33:04 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/qiime2-2020.8/qiime_longitudinal_maturity-index.xml Thu Sep 03 09:33:04 2020 +0000 @@ -0,0 +1,299 @@ +<?xml version="1.0" ?> +<tool id="qiime_longitudinal_maturity-index" name="qiime longitudinal maturity-index" + version="2020.8"> + <description>Microbial maturity index prediction.</description> + <requirements> + <requirement type="package" version="2020.8">qiime2</requirement> + </requirements> + <command><![CDATA[ +qiime longitudinal maturity-index + +--i-table=$itable +# if $input_files_mmetadatafile: + # def list_dict_to_string(list_dict): + # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') + # for d in list_dict[1:]: + # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') + # end for + # return $file_list + # end def +--m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) +# end if + +#if '__ob__' in str($pstatecolumn): + #set $pstatecolumn_temp = $pstatecolumn.replace('__ob__', '[') + #set $pstatecolumn = $pstatecolumn_temp +#end if +#if '__cb__' in str($pstatecolumn): + #set $pstatecolumn_temp = $pstatecolumn.replace('__cb__', ']') + #set $pstatecolumn = $pstatecolumn_temp +#end if +#if 'X' in str($pstatecolumn): + #set $pstatecolumn_temp = $pstatecolumn.replace('X', '\\') + #set $pstatecolumn = $pstatecolumn_temp +#end if +#if '__sq__' in str($pstatecolumn): + #set $pstatecolumn_temp = $pstatecolumn.replace('__sq__', "'") + #set $pstatecolumn = $pstatecolumn_temp +#end if +#if '__db__' in str($pstatecolumn): + #set $pstatecolumn_temp = $pstatecolumn.replace('__db__', '"') + #set $pstatecolumn = $pstatecolumn_temp +#end if + +--p-state-column=$pstatecolumn + + +--p-group-by=$pgroupby + +--p-control=$pcontrol + +#if '__ob__' in str($pindividualidcolumn): + #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__ob__', '[') + #set $pindividualidcolumn = $pindividualidcolumn_temp +#end if +#if '__cb__' in str($pindividualidcolumn): + #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__cb__', ']') + #set $pindividualidcolumn = $pindividualidcolumn_temp +#end if +#if 'X' in str($pindividualidcolumn): + #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('X', '\\') + #set $pindividualidcolumn = $pindividualidcolumn_temp +#end if +#if '__sq__' in str($pindividualidcolumn): + #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__sq__', "'") + #set $pindividualidcolumn = $pindividualidcolumn_temp +#end if +#if '__db__' in str($pindividualidcolumn): + #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__db__', '"') + #set $pindividualidcolumn = $pindividualidcolumn_temp +#end if + +#if str($pindividualidcolumn): + --p-individual-id-column=$pindividualidcolumn +#end if + +#if str($pestimator) != 'None': +--p-estimator=$pestimator +#end if + +--p-n-estimators=$pnestimators + +--p-test-size=$ptestsize + +--p-step=$pstep + +--p-cv=$pcv + +#if str($prandomstate): + --p-random-state=$prandomstate +#end if +--p-n-jobs=$pnjobs + +#if $pparametertuning: + --p-parameter-tuning +#end if + +#if $poptimizefeatureselection: + --p-optimize-feature-selection +#end if + +#if $pstratify: + --p-stratify +#end if + +#if str($pmissingsamples) != 'None': +--p-missing-samples=$pmissingsamples +#end if + +--p-feature-count=$pfeaturecount + +--o-sample-estimator=osampleestimator + +--o-feature-importance=ofeatureimportance + +--o-predictions=opredictions + +--o-model-summary=omodelsummary + +--o-accuracy-results=oaccuracyresults + +--o-maz-scores=omazscores + +--o-clustermap=oclustermap + +--o-volatility-plots=ovolatilityplots + +#if str($examples) != 'None': +--examples=$examples +#end if + +; +cp omazscores.qza $omazscores + +; +qiime tools export oclustermap.qzv --output-path out +&& mkdir -p '$oclustermap.files_path' +&& cp -r out/* '$oclustermap.files_path' +&& mv '$oclustermap.files_path/index.html' '$oclustermap' + +; +qiime tools export ovolatilityplots.qzv --output-path out +&& mkdir -p '$ovolatilityplots.files_path' +&& cp -r out/* '$ovolatilityplots.files_path' +&& mv '$ovolatilityplots.files_path/index.html' '$ovolatilityplots' + + ]]></command> + <inputs> + <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> + <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> + <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA... (multiple arguments will be merged) [required]" name="additional_input" optional="False" type="data" /> + </repeat> + <param label="--p-state-column: TEXT Numeric metadata column containing sampling time (state) data to use as prediction target. [required]" name="pstatecolumn" optional="False" type="text" /> + <param label="--p-group-by: TEXT Categorical metadata column to use for plotting and significance testing between main treatment groups. [required]" name="pgroupby" optional="False" type="text" /> + <param label="--p-control: TEXT Value of group-by to use as control group. The regression model will be trained using only control group data, and the maturity scores of other groups consequently will be assessed relative to this group. [required]" name="pcontrol" optional="False" type="text" /> + <param label="--p-individual-id-column: TEXT Optional metadata column containing IDs for individual subjects. Adds individual subject (spaghetti) vectors to volatility charts if a column name is provided. [optional]" name="pindividualidcolumn" optional="False" type="text" /> + <param label="--p-estimator: " name="pestimator" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="RandomForestRegressor">RandomForestRegressor</option> + <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> + <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> + <option value="AdaBoostRegressor">AdaBoostRegressor</option> + <option value="ElasticNet">ElasticNet</option> + <option value="Ridge">Ridge</option> + <option value="Lasso">Lasso</option> + <option value="KNeighborsRegressor">KNeighborsRegressor</option> + <option value="LinearSVR">LinearSVR</option> + <option value="SVR">SVR</option> + </param> + <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> + <param exclude_min="True" label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.5]" max="1.0" min="0.0" name="ptestsize" optional="True" type="float" value="0.5" /> + <param exclude_min="True" label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" max="1.0" min="0.0" name="pstep" optional="True" type="float" value="0.05" /> + <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> + <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> + <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> + <param label="--p-optimize-feature-selection: --p-optimize-feature-selection: / --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean" /> + <param label="--p-stratify: --p-stratify: / --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" selected="False" type="boolean" /> + <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="error">error</option> + <option value="ignore">ignore</option> + </param> + <param label="--p-feature-count: INTEGER Range(0, None) Filter feature table to include top N most important features. Set to zero to include all features. [default: 50]" min="0" name="pfeaturecount" optional="True" type="integer" value="50" /> + <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> + + </inputs> + + <outputs> + <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator" /> + <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> + <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" /> + <data format="html" label="${tool.name} on ${on_string}: modelsummary.html" name="omodelsummary" /> + <data format="html" label="${tool.name} on ${on_string}: accuracyresults.html" name="oaccuracyresults" /> + <data format="qza" label="${tool.name} on ${on_string}: mazscores.qza" name="omazscores" /> + <data format="html" label="${tool.name} on ${on_string}: clustermap.html" name="oclustermap" /> + <data format="html" label="${tool.name} on ${on_string}: volatilityplots.html" name="ovolatilityplots" /> + + </outputs> + + <help><![CDATA[ +Microbial maturity index prediction. +############################################################### + +Calculates a "microbial maturity" index from a regression model trained on +feature data to predict a given continuous metadata column, e.g., to +predict age as a function of microbiota composition. The model is trained +on a subset of control group samples, then predicts the column value for +all samples. This visualization computes maturity index z-scores to compare +relative "maturity" between each group, as described in +doi:10.1038/nature13421. This method can be used to predict between-group +differences in relative trajectory across any type of continuous metadata +gradient, e.g., intestinal microbiome development by age, microbial +succession during wine fermentation, or microbial community differences +along environmental gradients, as a function of two or more different +"treatment" groups. + +Parameters +---------- +table : FeatureTable[Frequency] + Feature table containing all features that should be used for target + prediction. +metadata : Metadata +state_column : Str + Numeric metadata column containing sampling time (state) data to use as + prediction target. +group_by : Str + Categorical metadata column to use for plotting and significance + testing between main treatment groups. +control : Str + Value of group_by to use as control group. The regression model will be + trained using only control group data, and the maturity scores of other + groups consequently will be assessed relative to this group. +individual_id_column : Str, optional + Optional metadata column containing IDs for individual subjects. Adds + individual subject (spaghetti) vectors to volatility charts if a column + name is provided. +estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional + Regression model to use for prediction. +n_estimators : Int % Range(1, None), optional + Number of trees to grow for estimation. More trees will improve + predictive accuracy up to a threshold level, but will also increase + time and memory requirements. This parameter only affects ensemble + estimators, such as Random Forest, AdaBoost, ExtraTrees, and + GradientBoosting. +test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional + Fraction of input samples to exclude from training set and use for + classifier testing. +step : Float % Range(0.0, 1.0, inclusive_start=False), optional + If optimize_feature_selection is True, step is the percentage of + features to remove at each iteration. +cv : Int % Range(1, None), optional + Number of k-fold cross-validations to perform. +random_state : Int, optional + Seed used by random number generator. +n_jobs : Int, optional + Number of jobs to run in parallel. +parameter_tuning : Bool, optional + Automatically tune hyperparameters using random grid search. +optimize_feature_selection : Bool, optional + Automatically optimize input feature selection using recursive feature + elimination. +stratify : Bool, optional + Evenly stratify training and test data among metadata categories. If + True, all values in column must match at least two samples. +missing_samples : Str % Choices('error', 'ignore'), optional + How to handle missing samples in metadata. "error" will fail if missing + samples are detected. "ignore" will cause the feature table and + metadata to be filtered, so that only samples found in both files are + retained. +feature_count : Int % Range(0, None), optional + Filter feature table to include top N most important features. Set to + zero to include all features. + +Returns +------- +sample_estimator : SampleEstimator[Regressor] + Trained sample estimator. +feature_importance : FeatureData[Importance] + Importance of each input feature to model accuracy. +predictions : SampleData[RegressorPredictions] + Predicted target values for each input sample. +model_summary : Visualization + Summarized parameter and (if enabled) feature selection information for + the trained estimator. +accuracy_results : Visualization + Accuracy results visualization. +maz_scores : SampleData[RegressorPredictions] + Microbiota-for-age z-score predictions. +clustermap : Visualization + Heatmap of important feature abundance at each time point in each + group. +volatility_plots : Visualization + Interactive volatility plots of MAZ and maturity scores, target + (column) predictions, and the sample metadata. + ]]></help> + <macros> + <import>qiime_citation.xml</import> + </macros> + <expand macro="qiime_citation"/> +</tool> \ No newline at end of file