Mercurial > repos > galaxy-australia > alphafold2
view docker/alphafold/run_alphafold_test.py @ 1:6c92e000d684 draft
"planemo upload for repository https://github.com/usegalaxy-au/galaxy-local-tools commit a510e97ebd604a5e30b1f16e5031f62074f23e86"
author | galaxy-australia |
---|---|
date | Tue, 01 Mar 2022 02:53:05 +0000 |
parents | |
children |
line wrap: on
line source
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for run_alphafold.""" import os from absl.testing import absltest from absl.testing import parameterized import run_alphafold import mock import numpy as np # Internal import (7716). class RunAlphafoldTest(parameterized.TestCase): @parameterized.named_parameters( ('relax', True), ('no_relax', False), ) def test_end_to_end(self, do_relax): data_pipeline_mock = mock.Mock() model_runner_mock = mock.Mock() amber_relaxer_mock = mock.Mock() data_pipeline_mock.process.return_value = {} model_runner_mock.process_features.return_value = { 'aatype': np.zeros((12, 10), dtype=np.int32), 'residue_index': np.tile(np.arange(10, dtype=np.int32)[None], (12, 1)), } model_runner_mock.predict.return_value = { 'structure_module': { 'final_atom_positions': np.zeros((10, 37, 3)), 'final_atom_mask': np.ones((10, 37)), }, 'predicted_lddt': { 'logits': np.ones((10, 50)), }, 'plddt': np.ones(10) * 42, 'ranking_confidence': 90, 'ptm': np.array(0.), 'aligned_confidence_probs': np.zeros((10, 10, 50)), 'predicted_aligned_error': np.zeros((10, 10)), 'max_predicted_aligned_error': np.array(0.), } model_runner_mock.multimer_mode = False amber_relaxer_mock.process.return_value = ('RELAXED', None, None) fasta_path = os.path.join(absltest.get_default_test_tmpdir(), 'target.fasta') with open(fasta_path, 'wt') as f: f.write('>A\nAAAAAAAAAAAAA') fasta_name = 'test' out_dir = absltest.get_default_test_tmpdir() run_alphafold.predict_structure( fasta_path=fasta_path, fasta_name=fasta_name, output_dir_base=out_dir, data_pipeline=data_pipeline_mock, model_runners={'model1': model_runner_mock}, amber_relaxer=amber_relaxer_mock if do_relax else None, benchmark=False, random_seed=0) base_output_files = os.listdir(out_dir) self.assertIn('target.fasta', base_output_files) self.assertIn('test', base_output_files) target_output_files = os.listdir(os.path.join(out_dir, 'test')) expected_files = [ 'features.pkl', 'msas', 'ranked_0.pdb', 'ranking_debug.json', 'result_model1.pkl', 'timings.json', 'unrelaxed_model1.pdb', ] if do_relax: expected_files.append('relaxed_model1.pdb') self.assertCountEqual(expected_files, target_output_files) # Check that pLDDT is set in the B-factor column. with open(os.path.join(out_dir, 'test', 'unrelaxed_model1.pdb')) as f: for line in f: if line.startswith('ATOM'): self.assertEqual(line[61:66], '42.00') if __name__ == '__main__': absltest.main()