Mercurial > repos > galaxy-australia > alphafold2
view scripts/outputs.py @ 22:3f188450ca4f draft default tip
planemo upload for repository https://github.com/usegalaxy-au/tools-au commit d626bb28203543a70d3fc60d662cb054bc3cef7c
author | galaxy-australia |
---|---|
date | Wed, 30 Oct 2024 21:46:34 +0000 |
parents | e7f1b552a695 |
children |
line wrap: on
line source
"""Generate additional output files not produced by AlphaFold. Currently this is includes: - model confidence scores - per-residue confidence scores (pLDDTs - optional output) - model_*.pkl files renamed with rank order N.B. There have been issues with this script breaking between AlphaFold versions due to minor changes in the output directory structure across minor versions. It will likely need updating with future releases of AlphaFold. This code is more complex than you might expect due to the output files 'moving around' considerably, depending on run parameters. You will see that several output paths are determined dynamically. """ import argparse import json import numpy as np import os import pickle as pk import shutil from pathlib import Path from typing import Dict, List from matplotlib import pyplot as plt # Output file paths OUTPUT_DIR = 'extra' OUTPUTS = { 'model_pkl': OUTPUT_DIR + '/ranked_{rank}.pkl', 'model_pae': OUTPUT_DIR + '/pae_ranked_{rank}.csv', 'model_plot': OUTPUT_DIR + '/ranked_{rank}.png', 'model_confidence_scores': OUTPUT_DIR + '/model_confidence_scores.tsv', 'plddts': OUTPUT_DIR + '/plddts.tsv', 'relax': OUTPUT_DIR + '/relax_metrics_ranked.json', 'msa': OUTPUT_DIR + '/msa_coverage.png', } HTML_PATH = Path(__file__).parent / "alphafold.html" HTML_OUTPUT_FILENAME = 'alphafold.html' HTML_BUTTON_ATTR = 'class="btn" id="btn-ranked_{rank}"' HTML_BUTTON_ATTR_DISABLED = ( 'class="btn disabled" id="btn-ranked_{rank}" disabled') class PLDDT_KEY: """Dict keys for accessing confidence data from JSON/pkl files." Changes depending on which model PRESET was used. """ monomer = 'plddts' multimer = 'iptm+ptm' class PRESETS: monomer = 'monomer' monomer_ptm = 'monomer_ptm' multimer = 'multimer' class Settings: """Parse and store settings/config.""" def __init__(self): self.workdir = None self.output_confidence_scores = True self.output_residue_scores = False self.is_multimer = False self.parse() def parse(self) -> None: parser = argparse.ArgumentParser() parser.add_argument( "workdir", help="alphafold output directory", type=str, ) parser.add_argument( "-s", "--confidence-scores", help="output per-residue confidence scores (pLDDTs)", action="store_true", ) parser.add_argument( "--pkl", help="rename model pkl outputs with rank order", action="store_true", ) parser.add_argument( "--pae", help="extract PAE from pkl files to CSV format", action="store_true", ) parser.add_argument( "--plot", help="Plot pLDDT and PAE for each model", action="store_true", ) parser.add_argument( "--plot-msa", help="Plot multiple-sequence alignment coverage as a heatmap", action="store_true", ) args = parser.parse_args() self.workdir = Path(args.workdir.rstrip('/')) self.output_residue_scores = args.confidence_scores self.output_model_pkls = args.pkl self.output_model_plots = args.plot self.output_pae = args.pae self.plot_msa = args.plot_msa self.model_preset = self._sniff_model_preset() self.output_dir = self.workdir / OUTPUT_DIR os.makedirs(self.output_dir, exist_ok=True) def _sniff_model_preset(self) -> bool: """Check if the run was multimer or monomer.""" for path in self.workdir.glob('*.pkl'): if 'feature' not in path.name: if '_multimer_' in path.name: return PRESETS.multimer if '_ptm_' in path.name: return PRESETS.monomer_ptm return PRESETS.monomer class ExecutionContext: """Collect file paths etc.""" def __init__(self, settings: Settings): self.settings = settings if settings.model_preset == PRESETS.multimer: self.plddt_key = PLDDT_KEY.multimer else: self.plddt_key = PLDDT_KEY.monomer def get_model_key(self, ix: int) -> str: """Return json key for model index. The key format changed between minor AlphaFold versions so this function determines the correct key. """ with open(self.ranking_debug) as f: data = json.load(f) model_keys = list(data[self.plddt_key].keys()) for k in model_keys: if k.startswith(f"model_{ix}_"): return k return KeyError( f'Could not find key for index={ix} in' ' ranking_debug.json') @property def ranking_debug(self) -> str: return self.settings.workdir / 'ranking_debug.json' @property def relax_metrics(self) -> str: return self.settings.workdir / 'relax_metrics.json' @property def relax_metrics_ranked(self) -> str: return self.settings.workdir / 'relax_metrics_ranked.json' @property def model_pkl_paths(self) -> List[str]: return sorted([ self.settings.workdir / f for f in os.listdir(self.settings.workdir) if f.startswith('result_model_') and f.endswith('.pkl') ]) class ResultModelPrediction: """Load and manipulate data from result_model_*.pkl files.""" def __init__(self, path: str, context: ExecutionContext): self.context = context self.path = path self.name = os.path.basename(path).replace('result_', '').split('.')[0] with open(path, 'rb') as path: self.data = pk.load(path) @property def plddts(self) -> List[float]: """Return pLDDT scores for each residue.""" return list(self.data['plddt']) class ResultRanking: """Load and manipulate data from ranking_debug.json file.""" def __init__(self, context: ExecutionContext): self.path = context.ranking_debug self.context = context with open(self.path, 'r') as f: self.data = json.load(f) @property def order(self) -> List[str]: """Return ordered list of model indexes.""" return self.data['order'] def get_plddt_for_rank(self, rank: int) -> List[float]: """Get pLDDT score for model instance.""" return self.data[self.context.plddt_key][self.data['order'][rank - 1]] def get_rank_for_model(self, model_name: str) -> int: """Return 0-indexed rank for given model name. Model names are expressed in result_model_*.pkl file names. """ return self.data['order'].index(model_name) def write_confidence_scores(ranking: ResultRanking, context: ExecutionContext): """Write per-model confidence scores.""" outfile = context.settings.workdir / OUTPUTS['model_confidence_scores'] scores: Dict[str, list] = {} header = ['model', context.plddt_key] for i, path in enumerate(context.model_pkl_paths): rank = int(path.name.split('model_')[-1][0]) scores_ls = [ranking.get_plddt_for_rank(rank)] with open(path, 'rb') as f: data = pk.load(f) if 'ptm' in data: scores_ls.append(data['ptm']) if i == 0: header += ['ptm'] if 'iptm' in data: scores_ls.append(data['iptm']) if i == 0: header += ['iptm'] scores[rank] = scores_ls with open(outfile, 'w') as f: f.write('\t'.join(header) + '\n') for rank, score_ls in scores.items(): row = [f"ranked_{rank - 1}"] + [str(x) for x in score_ls] f.write('\t'.join(row) + '\n') def write_per_residue_scores( ranking: ResultRanking, context: ExecutionContext, ): """Write per-residue plddts for each model. A row of plddt values is written for each model in tabular format. """ model_plddts = {} for i, path in enumerate(context.model_pkl_paths): model = ResultModelPrediction(path, context) rank = ranking.get_rank_for_model(model.name) model_plddts[rank] = model.plddts path = context.settings.workdir / OUTPUTS['plddts'] with open(path, 'w') as f: for i in sorted(list(model_plddts.keys())): row = [f'ranked_{i}'] + [ str(x) for x in model_plddts[i] ] f.write('\t'.join(row) + '\n') def rename_model_pkls(ranking: ResultRanking, context: ExecutionContext): """Rename model.pkl files so the rank order is implicit.""" for path in context.model_pkl_paths: model = ResultModelPrediction(path, context) rank = ranking.get_rank_for_model(model.name) new_path = ( context.settings.workdir / OUTPUTS['model_pkl'].format(rank=rank) ) shutil.copyfile(path, new_path) def extract_pae_to_csv(ranking: ResultRanking, context: ExecutionContext): """Extract predicted alignment error matrix from pickle files. Creates a CSV file for each of five ranked models. """ for path in context.model_pkl_paths: model = ResultModelPrediction(path, context) rank = ranking.get_rank_for_model(model.name) with open(path, 'rb') as f: data = pk.load(f) if 'predicted_aligned_error' not in data: print("Skipping PAE output" f" - not found in {path}." " Running with model_preset=monomer?") return pae = data['predicted_aligned_error'] out_path = ( context.settings.workdir / OUTPUTS['model_pae'].format(rank=rank) ) with open(out_path, 'w') as f: for row in pae: f.write(','.join([str(x) for x in row]) + '\n') def rekey_relax_metrics(ranking: ResultRanking, context: ExecutionContext): """Replace keys in relax_metrics.json with 0-indexed rank.""" with open(context.relax_metrics) as f: data = json.load(f) for k in list(data.keys()): rank = ranking.get_rank_for_model(k) data[f'ranked_{rank}'] = data.pop(k) new_path = context.settings.workdir / OUTPUTS['relax'] with open(new_path, 'w') as f: json.dump(data, f) def plddt_pae_plots(ranking: ResultRanking, context: ExecutionContext): """Generate a pLDDT + PAE plot for each model.""" for path in context.model_pkl_paths: num_plots = 2 model = ResultModelPrediction(path, context) rank = ranking.get_rank_for_model(model.name) png_path = ( context.settings.workdir / OUTPUTS['model_plot'].format(rank=rank) ) plddts = model.data['plddt'] if 'predicted_aligned_error' in model.data: pae = model.data['predicted_aligned_error'] max_pae = model.data['max_predicted_aligned_error'] else: num_plots = 1 plt.figure(figsize=[8 * num_plots, 6]) plt.subplot(1, num_plots, 1) plt.plot(plddts) plt.title('Predicted LDDT') plt.xlabel('Residue') plt.ylabel('pLDDT') if num_plots == 2: plt.subplot(1, 2, 2) plt.imshow(pae, vmin=0., vmax=max_pae, cmap='Greens_r') plt.colorbar(fraction=0.046, pad=0.04) plt.title('Predicted Aligned Error') plt.xlabel('Scored residue') plt.ylabel('Aligned residue') plt.savefig(png_path) plt.close() def plot_msa(wdir: Path, dpi: int = 150): """Plot MSA as a heatmap.""" with open(wdir / 'features.pkl', 'rb') as f: features = pk.load(f) msa = features.get('msa') if msa is None: print("Could not plot MSA coverage - 'msa' key not found in" " features.pkl") return seqid = (np.array(msa[0] == msa).mean(-1)) seqid_sort = seqid.argsort() non_gaps = (msa != 21).astype(float) non_gaps[non_gaps == 0] = np.nan final = non_gaps[seqid_sort] * seqid[seqid_sort, None] plt.figure(figsize=(6, 4)) # plt.subplot(111) plt.title("Sequence coverage") plt.imshow(final, interpolation='nearest', aspect='auto', cmap="rainbow_r", vmin=0, vmax=1, origin='lower') plt.plot((msa != 21).sum(0), color='black') plt.xlim(-0.5, msa.shape[1] - 0.5) plt.ylim(-0.5, msa.shape[0] - 0.5) plt.colorbar(label="Sequence identity to query", ) plt.xlabel("Positions") plt.ylabel("Sequences") plt.tight_layout() plt.savefig(wdir / OUTPUTS['msa'], dpi=dpi) plt.close() def template_html(context: ExecutionContext): """Template HTML file. Remove buttons that are redundant with limited model outputs. """ print("Templating HTML file...") with open(HTML_PATH) as f: html = f.read() for i in range(len(context.model_pkl_paths), 5): btn_id = HTML_BUTTON_ATTR.format(rank=i) btn_attr_disabled = HTML_BUTTON_ATTR_DISABLED.format(rank=i) html = html.replace(btn_id, btn_attr_disabled) with open(context.settings.output_dir / HTML_OUTPUT_FILENAME, 'w') as f: f.write(html) def main(): """Parse output files and generate additional output files.""" settings = Settings() context = ExecutionContext(settings) ranking = ResultRanking(context) write_confidence_scores(ranking, context) rekey_relax_metrics(ranking, context) template_html(context) # Optional outputs if settings.output_model_pkls: rename_model_pkls(ranking, context) if settings.output_model_plots: plddt_pae_plots(ranking, context) if settings.output_pae: # Only created by monomer_ptm and multimer models extract_pae_to_csv(ranking, context) if settings.output_residue_scores: write_per_residue_scores(ranking, context) if settings.plot_msa: plot_msa(context.settings.workdir) if __name__ == '__main__': main()