Mercurial > repos > goeckslab > image_learner
diff constants.py @ 2:186424a7eca7 draft
planemo upload for repository https://github.com/goeckslab/gleam.git commit 91fa4aba245520fc0680088a07cead66bcfd4ed2
author | goeckslab |
---|---|
date | Thu, 03 Jul 2025 20:43:24 +0000 |
parents | |
children | 2c3a3dfaf1a9 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/constants.py Thu Jul 03 20:43:24 2025 +0000 @@ -0,0 +1,119 @@ +from typing import Any, Dict + +# --- Constants --- +SPLIT_COLUMN_NAME = "split" +LABEL_COLUMN_NAME = "label" +IMAGE_PATH_COLUMN_NAME = "image_path" +DEFAULT_SPLIT_PROBABILITIES = [0.7, 0.1, 0.2] +TEMP_CSV_FILENAME = "processed_data_for_ludwig.csv" +TEMP_CONFIG_FILENAME = "ludwig_config.yaml" +TEMP_DIR_PREFIX = "ludwig_api_work_" +MODEL_ENCODER_TEMPLATES: Dict[str, Any] = { + "stacked_cnn": "stacked_cnn", + "resnet18": {"type": "resnet", "model_variant": 18}, + "resnet34": {"type": "resnet", "model_variant": 34}, + "resnet50": {"type": "resnet", "model_variant": 50}, + "resnet101": {"type": "resnet", "model_variant": 101}, + "resnet152": {"type": "resnet", "model_variant": 152}, + "resnext50_32x4d": {"type": "resnext", "model_variant": "50_32x4d"}, + "resnext101_32x8d": {"type": "resnext", "model_variant": "101_32x8d"}, + "resnext101_64x4d": {"type": "resnext", "model_variant": "101_64x4d"}, + "resnext152_32x8d": {"type": "resnext", "model_variant": "152_32x8d"}, + "wide_resnet50_2": {"type": "wide_resnet", "model_variant": "50_2"}, + "wide_resnet101_2": {"type": "wide_resnet", "model_variant": "101_2"}, + "wide_resnet103_2": {"type": "wide_resnet", "model_variant": "103_2"}, + "efficientnet_b0": {"type": "efficientnet", "model_variant": "b0"}, + "efficientnet_b1": {"type": "efficientnet", "model_variant": "b1"}, + "efficientnet_b2": {"type": "efficientnet", "model_variant": "b2"}, + "efficientnet_b3": {"type": "efficientnet", "model_variant": "b3"}, + "efficientnet_b4": {"type": "efficientnet", "model_variant": "b4"}, + "efficientnet_b5": {"type": "efficientnet", "model_variant": "b5"}, + "efficientnet_b6": {"type": "efficientnet", "model_variant": "b6"}, + "efficientnet_b7": {"type": "efficientnet", "model_variant": "b7"}, + "efficientnet_v2_s": {"type": "efficientnet", "model_variant": "v2_s"}, + "efficientnet_v2_m": {"type": "efficientnet", "model_variant": "v2_m"}, + "efficientnet_v2_l": {"type": "efficientnet", "model_variant": "v2_l"}, + "regnet_y_400mf": {"type": "regnet", "model_variant": "y_400mf"}, + "regnet_y_800mf": {"type": "regnet", "model_variant": "y_800mf"}, + "regnet_y_1_6gf": {"type": "regnet", "model_variant": "y_1_6gf"}, + "regnet_y_3_2gf": {"type": "regnet", "model_variant": "y_3_2gf"}, + "regnet_y_8gf": {"type": "regnet", "model_variant": "y_8gf"}, + "regnet_y_16gf": {"type": "regnet", "model_variant": "y_16gf"}, + "regnet_y_32gf": {"type": "regnet", "model_variant": "y_32gf"}, + "regnet_y_128gf": {"type": "regnet", "model_variant": "y_128gf"}, + "regnet_x_400mf": {"type": "regnet", "model_variant": "x_400mf"}, + "regnet_x_800mf": {"type": "regnet", "model_variant": "x_800mf"}, + "regnet_x_1_6gf": {"type": "regnet", "model_variant": "x_1_6gf"}, + "regnet_x_3_2gf": {"type": "regnet", "model_variant": "x_3_2gf"}, + "regnet_x_8gf": {"type": "regnet", "model_variant": "x_8gf"}, + "regnet_x_16gf": {"type": "regnet", "model_variant": "x_16gf"}, + "regnet_x_32gf": {"type": "regnet", "model_variant": "x_32gf"}, + "vgg11": {"type": "vgg", "model_variant": 11}, + "vgg11_bn": {"type": "vgg", "model_variant": "11_bn"}, + "vgg13": {"type": "vgg", "model_variant": 13}, + "vgg13_bn": {"type": "vgg", "model_variant": "13_bn"}, + "vgg16": {"type": "vgg", "model_variant": 16}, + "vgg16_bn": {"type": "vgg", "model_variant": "16_bn"}, + "vgg19": {"type": "vgg", "model_variant": 19}, + "vgg19_bn": {"type": "vgg", "model_variant": "19_bn"}, + "shufflenet_v2_x0_5": {"type": "shufflenet_v2", "model_variant": "x0_5"}, + "shufflenet_v2_x1_0": {"type": "shufflenet_v2", "model_variant": "x1_0"}, + "shufflenet_v2_x1_5": {"type": "shufflenet_v2", "model_variant": "x1_5"}, + "shufflenet_v2_x2_0": {"type": "shufflenet_v2", "model_variant": "x2_0"}, + "squeezenet1_0": {"type": "squeezenet", "model_variant": "1_0"}, + "squeezenet1_1": {"type": "squeezenet", "model_variant": "1_1"}, + "swin_t": {"type": "swin_transformer", "model_variant": "t"}, + "swin_s": {"type": "swin_transformer", "model_variant": "s"}, + "swin_b": {"type": "swin_transformer", "model_variant": "b"}, + "swin_v2_t": {"type": "swin_transformer", "model_variant": "v2_t"}, + "swin_v2_s": {"type": "swin_transformer", "model_variant": "v2_s"}, + "swin_v2_b": {"type": "swin_transformer", "model_variant": "v2_b"}, + "vit_b_16": {"type": "vision_transformer", "model_variant": "b_16"}, + "vit_b_32": {"type": "vision_transformer", "model_variant": "b_32"}, + "vit_l_16": {"type": "vision_transformer", "model_variant": "l_16"}, + "vit_l_32": {"type": "vision_transformer", "model_variant": "l_32"}, + "vit_h_14": {"type": "vision_transformer", "model_variant": "h_14"}, + "convnext_tiny": {"type": "convnext", "model_variant": "tiny"}, + "convnext_small": {"type": "convnext", "model_variant": "small"}, + "convnext_base": {"type": "convnext", "model_variant": "base"}, + "convnext_large": {"type": "convnext", "model_variant": "large"}, + "maxvit_t": {"type": "maxvit", "model_variant": "t"}, + "alexnet": {"type": "alexnet"}, + "googlenet": {"type": "googlenet"}, + "inception_v3": {"type": "inception_v3"}, + "mobilenet_v2": {"type": "mobilenet_v2"}, + "mobilenet_v3_large": {"type": "mobilenet_v3_large"}, + "mobilenet_v3_small": {"type": "mobilenet_v3_small"}, +} +METRIC_DISPLAY_NAMES = { + "accuracy": "Accuracy", + "accuracy_micro": "Accuracy-Micro", + "loss": "Loss", + "roc_auc": "ROC-AUC", + "roc_auc_macro": "ROC-AUC-Macro", + "roc_auc_micro": "ROC-AUC-Micro", + "hits_at_k": "Hits at K", + "precision": "Precision", + "recall": "Recall", + "specificity": "Specificity", + "kappa_score": "Cohen's Kappa", + "token_accuracy": "Token Accuracy", + "avg_precision_macro": "Precision-Macro", + "avg_recall_macro": "Recall-Macro", + "avg_f1_score_macro": "F1-score-Macro", + "avg_precision_micro": "Precision-Micro", + "avg_recall_micro": "Recall-Micro", + "avg_f1_score_micro": "F1-score-Micro", + "avg_precision_weighted": "Precision-Weighted", + "avg_recall_weighted": "Recall-Weighted", + "avg_f1_score_weighted": "F1-score-Weighted", + "average_precision_macro": "Precision-Average-Macro", + "average_precision_micro": "Precision-Average-Micro", + "average_precision_samples": "Precision-Average-Samples", + "mean_squared_error": "Mean Squared Error", + "mean_absolute_error": "Mean Absolute Error", + "r2": "R² Score", + "root_mean_squared_error": "Root Mean Squared Error", + "mean_absolute_percentage_error": "Mean Absolute % Error", + "root_mean_squared_percentage_error": "Root Mean Squared % Error", +}