diff insect_phenology_model.R @ 5:1878a03f9c9f draft

Uploaded
author greg
date Wed, 22 Nov 2017 13:22:49 -0500
parents e7b1fc0133bb
children fe3f86012394
line wrap: on
line diff
--- a/insect_phenology_model.R	Mon Nov 13 12:57:46 2017 -0500
+++ b/insect_phenology_model.R	Wed Nov 22 13:22:49 2017 -0500
@@ -1,656 +1,647 @@
-#!/usr/bin/env Rscript
-
-suppressPackageStartupMessages(library("optparse"))
-
-option_list <- list(
-    make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"),
-    make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"),
-    make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"),
-    make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"),
-    make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
-    make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
-    make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"),
-    make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"),
-    make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"),
-    make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"),
-    make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
-    make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
-    make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
-    make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"),
-    make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"),
-    make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)")
-)
-
-parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
-args <- parse_args(parser, positional_arguments=TRUE)
-opt <- args$options
-
-get_daylight_length = function(latitude, temperature_data, num_days)
-{
-    # Return a vector of daylight length (photoperido profile) for
-    # the number of days specified in the input temperature data
-    # (from Forsythe 1995).
-    p = 0.8333
-    daylight_length_vector <- NULL
-    for (i in 1:num_days) {
-        # Get the day of the year from the current row
-        # of the temperature data for computation.
-        doy <- temperature_data[i, 4]
-        theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186)))
-        phi <- asin(0.39795 * cos(theta))
-        # Compute the length of daylight for the day of the year.
-        daylight_length_vector[i] <- 24 - (24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))))
-    }
-    daylight_length_vector
-}
-
-get_temperature_at_hour = function(latitude, temperature_data, daylight_length_vector, row, num_days)
-{
-    # Base development threshold for Brown Marmolated Stink Bug
-    # insect phenology model.
-    # TODO: Pass insect on the command line to accomodate more
-    # the just the Brown Marmolated Stink Bub.
-    threshold <- 14.17
-
-    # Input temperature currently has the following columns.
-    # # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX
-    # Minimum temperature for current row.
-    dnp <- temperature_data[row, 5]
-    # Maximum temperature for current row.
-    dxp <- temperature_data[row, 6]
-    # Mean temperature for current row.
-    dmean <- 0.5 * (dnp + dxp)
-    # Initialize degree day accumulation
-    dd <- 0
-    if (dxp < threshold) {
-        dd <- 0
-    }
-    else {
-        # Initialize hourly temperature.
-        T <- NULL
-        # Initialize degree hour vector.
-        dh <- NULL
-        # Daylight length for current row.
-        y <- daylight_length_vector[row]
-        # Darkness length.
-        z <- 24 - y
-        # Lag coefficient.
-        a <- 1.86
-        # Darkness coefficient.
-        b <- 2.20
-        # Sunrise time.
-        risetime <- 12 - y / 2
-        # Sunset time.
-        settime <- 12 + y / 2
-        ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp
-        for (i in 1:24) {
-            if (i > risetime && i < settime) {
-                # Number of hours after Tmin until sunset.
-                m <- i - 5
-                T[i] = (dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp
-                if (T[i] < 8.4) {
-                    dh[i] <- 0
-                }
-                else {
-                    dh[i] <- T[i] - 8.4
-                }
-            }
-            else if (i > settime) { 
-                n <- i - settime
-                T[i] = dnp + (ts - dnp) * exp( - b * n / z)
-                if (T[i] < 8.4) {
-                    dh[i] <- 0
-                }
-                else {
-                    dh[i] <- T[i] - 8.4
-                }
-            }
-            else {
-                n <- i + 24 - settime
-                T[i]=dnp + (ts - dnp) * exp( - b * n / z)
-                if (T[i] < 8.4) {
-                    dh[i] <- 0
-                }
-                else {
-                    dh[i] <- T[i] - 8.4
-                }
-            }
-        }
-        dd <- sum(dh) / 24
-    }
-    return=c(dmean, dd)
-    return
-}
-
-dev.egg = function(temperature)
-{
-    dev.rate= -0.9843 * temperature + 33.438
-    return = dev.rate
-    return
-}
-
-dev.young = function(temperature)
-{
-    n12 <- -0.3728 * temperature + 14.68
-    n23 <- -0.6119 * temperature + 25.249
-    dev.rate = mean(n12 + n23)
-    return = dev.rate
-    return
-}
-
-dev.old = function(temperature)
-{
-    n34 <- -0.6119 * temperature + 17.602
-    n45 <- -0.4408 * temperature + 19.036
-    dev.rate = mean(n34 + n45)
-    return = dev.rate
-    return
-}
-
-dev.emerg = function(temperature)
-{
-    emerg.rate <- -0.5332 * temperature + 24.147
-    return = emerg.rate
-    return
-}
-
-mortality.egg = function(temperature)
-{
-    if (temperature < 12.7) {
-        mort.prob = 0.8
-    }
-    else {
-        mort.prob = 0.8 - temperature / 40.0
-        if (mort.prob < 0) {
-            mort.prob = 0.01
-        }
-    }
-    return = mort.prob
-    return
-}
-
-mortality.nymph = function(temperature)
-{
-    if (temperature < 12.7) {
-        mort.prob = 0.03
-    }
-    else {
-        mort.prob = temperature * 0.0008 + 0.03
-    }
-    return = mort.prob
-    return
-}
-
-mortality.adult = function(temperature)
-{
-    if (temperature < 12.7) {
-        mort.prob = 0.002
-    }
-    else {
-        mort.prob = temperature * 0.0005 + 0.02
-    }
-    return = mort.prob
-    return
-}
-
-# Read in the input temperature datafile into a Data Frame object.
-# The input data currently must have 6 columns:
-# LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX
-temperature_data <- read.csv(file=opt$input, header=T, strip.white=TRUE, sep=",")
-start_date <- temperature_data[1, 3]
-end_date <- temperature_data[opt$num_days, 3]
-latitude <- temperature_data[1, 1]
-daylight_length_vector <- get_daylight_length(latitude, temperature_data, opt$num_days)
-
-cat("Number of days: ", opt$num_days, "\n")
-
-# Initialize matrix for results from all replications.
-S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol = opt$replications)
-newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol=opt$replications)
-
-# loop through replications
-for (N.rep in 1:opt$replications) {
-    # During each replication start with 1000 individuals.
-    # TODO: user definable as well?
-    n <- 1000
-    # Generation, Stage, DD, T, Diapause.
-    vec.ini <- c(0, 3, 0, 0, 0)
-    # Overwintering, previttelogenic, DD=0, T=0, no-diapause.
-    vec.mat <- rep(vec.ini, n)
-    # Complete matrix for the population.
-    vec.mat <- base::t(matrix(vec.mat, nrow=5))
-    # Time series of population size.
-    tot.pop <- NULL
-    gen0.pop <- rep(0, opt$num_days)
-    gen1.pop <- rep(0, opt$num_days)
-    gen2.pop <- rep(0, opt$num_days)
-    S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, opt$num_days)
-    g0.adult <- g1.adult <- g2.adult <- rep(0, opt$num_days)
-    N.newborn <- N.death <- N.adult <- rep(0, opt$num_days)
-    dd.day <- rep(0, opt$num_days)
-
-    # All the days included in the input temperature dataset.
-    for (row in 1:opt$num_days) {
-        # Get the integer day of the year for the current row.
-        doy <- temperature_data[row, 4]
-        # Photoperiod in the day.
-        photoperiod <- daylight_length_vector[row]
-        temp.profile <- get_temperature_at_hour(latitude, temperature_data, daylight_length_vector, row, opt$num_days)
-        mean.temp <- temp.profile[1]
-        dd.temp <- temp.profile[2]
-        dd.day[row] <- dd.temp
-        # Trash bin for death.
-        death.vec <- NULL
-        # Newborn.
-        birth.vec <- NULL
-
-        # All individuals.
-        for (i in 1:n) {
-            # Find individual record.
-            vec.ind <- vec.mat[i,]
-            # First of all, still alive?
-            # Adjustment for late season mortality rate.
-            if (latitude < 40.0) {
-                post.mort <- 1
-                day.kill <- 300
-            }
-            else {
-                post.mort <- 2
-                day.kill <- 250
-            }
-            if (vec.ind[2] == 0) {
-                # Egg.
-                death.prob = opt$egg_mort * mortality.egg(mean.temp)
-            }
-            else if (vec.ind[2] == 1 | vec.ind[2] == 2) {
-                death.prob = opt$nymph_mort * mortality.nymph(mean.temp)
-            }
-            else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) {
-                # For adult.
-                if (doy < day.kill) {
-                    death.prob = opt$adult_mort * mortality.adult(mean.temp)
-                }
-                else {
-                    # Increase adult mortality after fall equinox.
-                    death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp)
-                }
-            }
-            # (or dependent on temperature and life stage?)
-            u.d <- runif(1)
-            if (u.d < death.prob) {
-                death.vec <- c(death.vec, i)
-            } 
-            else {
-                # Aggregrate index of dead bug.
-                # Event 1 end of diapause.
-                if (vec.ind[1] == 0 && vec.ind[2] == 3) {
-                    # Overwintering adult (previttelogenic).
-                    if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && doy < 180) {
-                        # Add 68C to become fully reproductively matured.
-                        # Transfer to vittelogenic.
-                        vec.ind <- c(0, 4, 0, 0, 0)
-                        vec.mat[i,] <- vec.ind
-                    }
-                    else {
-                        # Add to dd.
-                        vec.ind[3] <- vec.ind[3] + dd.temp
-                        # Add 1 day in current stage.
-                        vec.ind[4] <- vec.ind[4] + 1
-                        vec.mat[i,] <- vec.ind
-                    }
-                }
-                if (vec.ind[1] != 0 && vec.ind[2] == 3) {
-                    # Not overwintering adult (previttelogenic).
-                    current.gen <- vec.ind[1]
-                    if (vec.ind[3] > 68) {
-                        # Add 68C to become fully reproductively matured.
-                        # Transfer to vittelogenic.
-                        vec.ind <- c(current.gen, 4, 0, 0, 0)
-                        vec.mat[i,] <- vec.ind
-                    }
-                    else {
-                        # Add to dd.
-                        vec.ind[3] <- vec.ind[3] + dd.temp
-                        # Add 1 day in current stage.
-                        vec.ind[4] <- vec.ind[4] + 1
-                        vec.mat[i,] <- vec.ind
-                    }
-                }
-
-                # Event 2 oviposition -- where population dynamics comes from.
-                if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10) {
-                    # Vittelogenic stage, overwintering generation.
-                    if (vec.ind[4] == 0) {
-                        # Just turned in vittelogenic stage.
-                        n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
-                    }
-                    else {
-                        # Daily probability of birth.
-                        p.birth = opt$oviposition * 0.01
-                        u1 <- runif(1)
-                        if (u1 < p.birth) {
-                            n.birth=round(runif(1, 2, 8))
-                        }
-                    }
-                    # Add to dd.
-                    vec.ind[3] <- vec.ind[3] + dd.temp
-                    # Add 1 day in current stage.
-                    vec.ind[4] <- vec.ind[4] + 1
-                    vec.mat[i,] <- vec.ind
-                    if (n.birth > 0) {
-                        # Add new birth -- might be in different generations.
-                        new.gen <- vec.ind[1] + 1
-                        # Egg profile.
-                        new.ind <- c(new.gen, 0, 0, 0, 0)
-                        new.vec <- rep(new.ind, n.birth)
-                        # Update batch of egg profile.
-                        new.vec <- t(matrix(new.vec, nrow=5))
-                        # Group with total eggs laid in that day.
-                        birth.vec <- rbind(birth.vec, new.vec)
-                    }
-                }
-
-                # Event 2 oviposition -- for gen 1.
-                if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && doy < 222) {
-                    # Vittelogenic stage, 1st generation
-                    if (vec.ind[4] == 0) {
-                        # Just turned in vittelogenic stage.
-                        n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
-                    }
-                    else {
-                        # Daily probability of birth.
-                        p.birth = opt$oviposition * 0.01
-                        u1 <- runif(1)
-                        if (u1 < p.birth) {
-                            n.birth = round(runif(1, 2, 8))
-                        }
-                    }
-                    # Add to dd.
-                    vec.ind[3] <- vec.ind[3] + dd.temp
-                    # Add 1 day in current stage.
-                    vec.ind[4] <- vec.ind[4] + 1
-                    vec.mat[i,] <- vec.ind
-                    if (n.birth > 0) {
-                        # Add new birth -- might be in different generations.
-                        new.gen <- vec.ind[1] + 1
-                        # Egg profile.
-                        new.ind <- c(new.gen, 0, 0, 0, 0)
-                        new.vec <- rep(new.ind, n.birth)
-                        # Update batch of egg profile.
-                        new.vec <- t(matrix(new.vec, nrow=5))
-                        # Group with total eggs laid in that day.
-                        birth.vec <- rbind(birth.vec, new.vec)
-                    }
-                }
-
-                # Event 3 development (with diapause determination).
-                # Event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg).
-                if (vec.ind[2] == 0) {
-                    # Egg stage.
-                    # Add to dd.
-                    vec.ind[3] <- vec.ind[3] + dd.temp
-                    if (vec.ind[3] >= (68 + opt$young_nymph_accum)) {
-                        # From egg to young nymph, DD requirement met.
-                        current.gen <- vec.ind[1]
-                        # Transfer to young nymph stage.
-                        vec.ind <- c(current.gen, 1, 0, 0, 0)
-                    }
-                    else {
-                        # Add 1 day in current stage.
-                        vec.ind[4] <- vec.ind[4] + 1
-                    }
-                    vec.mat[i,] <- vec.ind
-                }
-
-                # Event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause).
-                if (vec.ind[2] == 1) {
-                    # young nymph stage.
-                    # add to dd.
-                    vec.ind[3] <- vec.ind[3] + dd.temp
-                    if (vec.ind[3] >= (250 + opt$old_nymph_accum)) {
-                        # From young to old nymph, dd requirement met.
-                        current.gen <- vec.ind[1]
-                        # Transfer to old nym stage.
-                        vec.ind <- c(current.gen, 2, 0, 0, 0)
-                        if (photoperiod < opt$photoperiod && doy > 180) {
-                            vec.ind[5] <- 1
-                        } # Prepare for diapausing.
-                    }
-                    else {
-                        # Add 1 day in current stage.
-                        vec.ind[4] <- vec.ind[4] + 1
-                    }
-                    vec.mat[i,] <- vec.ind
-                }  
-
-                # Event 3.3 old nymph to adult: previttelogenic or diapausing?
-                if (vec.ind[2] == 2) {
-                    # Old nymph stage.
-                    # add to dd.
-                    vec.ind[3] <- vec.ind[3] + dd.temp
-                    if (vec.ind[3] >= (200 + opt$adult_accum)) {
-                        # From old to adult, dd requirement met.
-                        current.gen <- vec.ind[1]
-                        if (vec.ind[5] == 0) {
-                            # Non-diapausing adult -- previttelogenic.
-                            vec.ind <- c(current.gen, 3, 0, 0, 0)
-                        }
-                        else {
-                            # Diapausing.
-                            vec.ind <- c(current.gen, 5, 0, 0, 1)
-                        }
-                    }
-                    else {
-                        # Add 1 day in current stage.
-                        vec.ind[4] <- vec.ind[4] + 1
-                    }
-                    vec.mat[i,] <- vec.ind
-                }
-
-                # Event 4 growing of diapausing adult (unimportant, but still necessary).
-                if (vec.ind[2] == 5) {
-                    vec.ind[3] <- vec.ind[3] + dd.temp
-                    vec.ind[4] <- vec.ind[4] + 1
-                    vec.mat[i,] <- vec.ind
-                }
-            } # Else if it is still alive.
-        } # End of the individual bug loop.
-
-        # Find how many died.
-        n.death <- length(death.vec)
-        if (n.death > 0) {
-            vec.mat <- vec.mat[-death.vec, ]
-        }
-        # Remove record of dead.
-        # Find how many new born.
-        n.newborn <- length(birth.vec[,1])
-        vec.mat <- rbind(vec.mat, birth.vec)
-        # Update population size for the next day.
-        n <- n - n.death + n.newborn 
-
-        # Aggregate results by day.
-        tot.pop <- c(tot.pop, n) 
-        # Egg.
-        s0 <- sum(vec.mat[,2] == 0)
-        # Young nymph.
-        s1 <- sum(vec.mat[,2] == 1)
-        # Old nymph.
-        s2 <- sum(vec.mat[,2] == 2)
-        # Previtellogenic.
-        s3 <- sum(vec.mat[,2] == 3)
-        # Vitellogenic.
-        s4 <- sum(vec.mat[,2] == 4)
-        # Diapausing.
-        s5 <- sum(vec.mat[,2] == 5)
-        # Overwintering adult.
-        gen0 <- sum(vec.mat[,1] == 0)
-        # First generation.
-        gen1 <- sum(vec.mat[,1] == 1)
-        # Second generation.
-        gen2 <- sum(vec.mat[,1] == 2)
-        # Sum of all adults.
-        n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5)
-
-        # Generation 0 pop size.
-        gen0.pop[row] <- gen0
-        gen1.pop[row] <- gen1
-        gen2.pop[row] <- gen2
-
-        S0[row] <- s0
-        S1[row] <- s1
-        S2[row] <- s2
-        S3[row] <- s3
-        S4[row] <- s4
-        S5[row] <- s5
-
-        g0.adult[row] <- sum(vec.mat[,1] == 0)
-        g1.adult[row] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5))
-        g2.adult[row] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5))
-
-        N.newborn[row] <- n.newborn
-        N.death[row] <- n.death
-        N.adult[row] <- n.adult
-    }   # end of days specified in the input temperature data
-
-    dd.cum <- cumsum(dd.day)
-
-    # Collect all the outputs.
-    S0.rep[,N.rep] <- S0
-    S1.rep[,N.rep] <- S1
-    S2.rep[,N.rep] <- S2
-    S3.rep[,N.rep] <- S3
-    S4.rep[,N.rep] <- S4
-    S5.rep[,N.rep] <- S5
-    newborn.rep[,N.rep] <- N.newborn
-    death.rep[,N.rep] <- N.death
-    adult.rep[,N.rep] <- N.adult
-    pop.rep[,N.rep] <- tot.pop
-    g0.rep[,N.rep] <- gen0.pop
-    g1.rep[,N.rep] <- gen1.pop
-    g2.rep[,N.rep] <- gen2.pop
-    g0a.rep[,N.rep] <- g0.adult
-    g1a.rep[,N.rep] <- g1.adult
-    g2a.rep[,N.rep] <- g2.adult
-}
-
-# Data analysis and visualization can currently
-# plot only within a single calendar year.
-# TODO: enhance this to accomodate multiple calendar years.
-n.yr <- 1
-day.all <- c(1:opt$num_days * n.yr)
-
-# mean value for adults
-sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean)
-# mean value for nymphs
-sn <- apply((S1.rep + S2.rep), 1,mean)
-# mean value for eggs
-se <- apply(S0.rep, 1, mean)
-# mean value for P
-g0 <- apply(g0.rep, 1, mean)
-# mean value for F1
-g1 <- apply(g1.rep, 1, mean)
-# mean value for F2
-g2 <- apply(g2.rep, 1, mean)
-# mean value for P adult
-g0a <- apply(g0a.rep, 1, mean)
-# mean value for F1 adult
-g1a <- apply(g1a.rep, 1, mean)
-# mean value for F2 adult
-g2a <- apply(g2a.rep, 1, mean)
-
-# SE for adults
-sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications)
-# SE for nymphs
-sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd)
-# SE for eggs
-se.se <- apply(S0.rep, 1, sd) / sqrt(opt$replications)
-# SE value for P
-g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications)
-# SE for F1
-g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications)
-# SE for F2
-g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications)
-# SE for P adult
-g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications)
-# SE for F1 adult
-g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications)
-# SE for F2 adult
-g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications)
-
-dev.new(width=20, height=30)
-
-# Start PDF device driver to save charts to output.
-pdf(file=opt$output, width=20, height=30, bg="white")
-
-par(mar = c(5, 6, 4, 4), mfrow=c(3, 1))
-
-# Subfigure 1: population size by life stage
-title <- paste("BSMB total population by life stage :", opt$location, ": Lat:", latitude, ":", start_date, "to", end_date, sep=" ")
-plot(day.all, sa, main=title, type="l", ylim=c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
-# Young and old nymphs.
-lines(day.all, sn, lwd=2, lty=1, col=2)
-# Eggs
-lines(day.all, se, lwd=2, lty=1, col=4)
-axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
-axis(2, cex.axis=3)
-leg.text <- c("Egg", "Nymph", "Adult")
-legend("topleft", leg.text, lty=c(1, 1, 1), col=c(4, 2, 1), cex=3)
-if (opt$se_plot == 1) {
-    # Add SE lines to plot
-    # SE for adults
-    lines (day.all, sa + sa.se, lty=2)
-    lines (day.all, sa - sa.se, lty=2) 
-    # SE for nymphs
-    lines (day.all, sn + sn.se, col=2, lty=2)
-    lines (day.all, sn - sn.se, col=2, lty=2)
-    # SE for eggs
-    lines (day.all, se + se.se, col=4, lty=2)
-    lines (day.all, se - se.se, col=4, lty=2)
-}
-
-# Subfigure 2: population size by generation
-title <- paste("BSMB total population by generation :", opt$location, ": Lat:", latitude, ":", start_date, "to", end_date, sep=" ")
-plot(day.all, g0, main=title, type="l", ylim=c(0, max(g2)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
-lines(day.all, g1, lwd = 2, lty = 1, col=2)
-lines(day.all, g2, lwd = 2, lty = 1, col=4)
-axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
-axis(2, cex.axis=3)
-leg.text <- c("P", "F1", "F2")
-legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3)
-if (opt$se_plot == 1) {
-    # Add SE lines to plot
-    # SE for adults
-    lines (day.all, g0+g0.se, lty=2)
-    lines (day.all, g0-g0.se, lty=2) 
-    # SE for nymphs
-    lines (day.all, g1+g1.se, col=2, lty=2)
-    lines (day.all, g1-g1.se, col=2, lty=2)
-    # SE for eggs
-    lines (day.all, g2+g2.se, col=4, lty=2)
-    lines (day.all, g2-g2.se, col=4, lty=2)
-}
-
-# Subfigure 3: adult population size by generation
-title <- paste("BSMB adult population by generation :", opt$location, ": Lat:", latitude, ":", start_date, "to", end_date, sep=" ")
-plot(day.all, g0a, ylim=c(0, max(g2a) + 100), main=title, type="l", axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
-lines(day.all, g1a, lwd = 2, lty = 1, col=2)
-lines(day.all, g2a, lwd = 2, lty = 1, col=4)
-axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
-axis(2, cex.axis=3)
-leg.text <- c("P", "F1", "F2")
-legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3)
-if (opt$se_plot == 1) {
-    # Add SE lines to plot
-    # SE for adults
-    lines (day.all, g0a+g0a.se, lty=2)
-    lines (day.all, g0a-g0a.se, lty=2) 
-    # SE for nymphs
-    lines (day.all, g1a+g1a.se, col=2, lty=2)
-    lines (day.all, g1a-g1a.se, col=2, lty=2)
-    # SE for eggs
-    lines (day.all, g2a+g2a.se, col=4, lty=2)
-    lines (day.all, g2a-g2a.se, col=4, lty=2)
-}
-
-# Turn off device driver to flush output.
-dev.off()
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+
+option_list <- list(
+    make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"),
+    make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"),
+    make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"),
+    make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"),
+    make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
+    make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
+    make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"),
+    make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"),
+    make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"),
+    make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"),
+    make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
+    make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
+    make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
+    make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"),
+    make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"),
+    make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)"),
+    make_option(c("-x", "--insect"), action="store", dest="insect", help="Insect name")
+)
+
+parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
+args <- parse_args(parser, positional_arguments=TRUE)
+opt <- args$options
+
+parse_input_data = function(input_file, num_rows) {
+    # Read in the input temperature datafile into a data frame.
+    temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",")
+    num_columns <- dim(temperature_data_frame)[2]
+    if (num_columns == 6) {
+        # The input data has the following 6 columns:
+        # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX
+        # Set the column names for access when adding daylight length..
+        colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX")
+        # Add a column containing the daylight length for each day.
+        temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows)
+        # Reset the column names with the additional column for later access.
+        colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN")
+    }
+    return(temperature_data_frame)
+}
+
+add_daylight_length = function(temperature_data_frame, num_columns, num_rows) {
+    # Return a vector of daylight length (photoperido profile) for
+    # the number of days specified in the input temperature data
+    # (from Forsythe 1995).
+    p = 0.8333
+    latitude <- temperature_data_frame$LATITUDE[1]
+    daylight_length_vector <- NULL
+    for (i in 1:num_rows) {
+        # Get the day of the year from the current row
+        # of the temperature data for computation.
+        doy <- temperature_data_frame$DOY[i]
+        theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186)))
+        phi <- asin(0.39795 * cos(theta))
+        # Compute the length of daylight for the day of the year.
+        daylight_length_vector[i] <- 24 - (24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))))
+    }
+    # Append daylight_length_vector as a new column to temperature_data_frame.
+    temperature_data_frame[, num_columns+1] <- daylight_length_vector
+    return(temperature_data_frame)
+}
+
+get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) {
+    # Base development threshold for Brown Marmolated Stink Bug
+    # insect phenology model.
+    # TODO: Pass insect on the command line to accomodate more
+    # the just the Brown Marmolated Stink Bub.
+    threshold <- 14.17
+    # Minimum temperature for current row.
+    dnp <- temperature_data_frame$TMIN[row]
+    # Maximum temperature for current row.
+    dxp <- temperature_data_frame$TMAX[row]
+    # Mean temperature for current row.
+    dmean <- 0.5 * (dnp + dxp)
+    # Initialize degree day accumulation
+    dd <- 0
+    if (dxp < threshold) {
+        dd <- 0
+    }
+    else {
+        # Initialize hourly temperature.
+        T <- NULL
+        # Initialize degree hour vector.
+        dh <- NULL
+        # Daylight length for current row.
+        y <- temperature_data_frame$DAYLEN[row]
+        # Darkness length.
+        z <- 24 - y
+        # Lag coefficient.
+        a <- 1.86
+        # Darkness coefficient.
+        b <- 2.20
+        # Sunrise time.
+        risetime <- 12 - y / 2
+        # Sunset time.
+        settime <- 12 + y / 2
+        ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp
+        for (i in 1:24) {
+            if (i > risetime && i < settime) {
+                # Number of hours after Tmin until sunset.
+                m <- i - 5
+                T[i] = (dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp
+                if (T[i] < 8.4) {
+                    dh[i] <- 0
+                }
+                else {
+                    dh[i] <- T[i] - 8.4
+                }
+            }
+            else if (i > settime) { 
+                n <- i - settime
+                T[i] = dnp + (ts - dnp) * exp( - b * n / z)
+                if (T[i] < 8.4) {
+                    dh[i] <- 0
+                }
+                else {
+                    dh[i] <- T[i] - 8.4
+                }
+            }
+            else {
+                n <- i + 24 - settime
+                T[i]=dnp + (ts - dnp) * exp( - b * n / z)
+                if (T[i] < 8.4) {
+                    dh[i] <- 0
+                }
+                else {
+                    dh[i] <- T[i] - 8.4
+                }
+            }
+        }
+        dd <- sum(dh) / 24
+    }
+    return(c(dmean, dd))
+}
+
+dev.egg = function(temperature) {
+    dev.rate= -0.9843 * temperature + 33.438
+    return(dev.rate)
+}
+
+dev.young = function(temperature) {
+    n12 <- -0.3728 * temperature + 14.68
+    n23 <- -0.6119 * temperature + 25.249
+    dev.rate = mean(n12 + n23)
+    return(dev.rate)
+}
+
+dev.old = function(temperature) {
+    n34 <- -0.6119 * temperature + 17.602
+    n45 <- -0.4408 * temperature + 19.036
+    dev.rate = mean(n34 + n45)
+    return(dev.rate)
+}
+
+dev.emerg = function(temperature) {
+    emerg.rate <- -0.5332 * temperature + 24.147
+    return(emerg.rate)
+}
+
+mortality.egg = function(temperature) {
+    if (temperature < 12.7) {
+        mort.prob = 0.8
+    }
+    else {
+        mort.prob = 0.8 - temperature / 40.0
+        if (mort.prob < 0) {
+            mort.prob = 0.01
+        }
+    }
+    return(mort.prob)
+}
+
+mortality.nymph = function(temperature) {
+    if (temperature < 12.7) {
+        mort.prob = 0.03
+    }
+    else {
+        mort.prob = temperature * 0.0008 + 0.03
+    }
+    return(mort.prob)
+}
+
+mortality.adult = function(temperature) {
+    if (temperature < 12.7) {
+        mort.prob = 0.002
+    }
+    else {
+        mort.prob = temperature * 0.0005 + 0.02
+    }
+    return(mort.prob)
+}
+
+temperature_data_frame <- parse_input_data(opt$input, opt$num_days)
+# All latitude values are the same,
+# so get the value from the first row.
+latitude <- temperature_data_frame$LATITUDE[1]
+
+cat("Number of days: ", opt$num_days, "\n")
+
+# Initialize matrix for results from all replications.
+S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol = opt$replications)
+newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol=opt$replications)
+
+# Loop through replications.
+for (N.rep in 1:opt$replications) {
+    # During each replication start with 1000 individuals.
+    # TODO: user definable as well?
+    n <- 1000
+    # Generation, Stage, DD, T, Diapause.
+    vec.ini <- c(0, 3, 0, 0, 0)
+    # Overwintering, previttelogenic, DD=0, T=0, no-diapause.
+    vec.mat <- rep(vec.ini, n)
+    # Complete matrix for the population.
+    vec.mat <- base::t(matrix(vec.mat, nrow=5))
+    # Time series of population size.
+    tot.pop <- NULL
+    gen0.pop <- rep(0, opt$num_days)
+    gen1.pop <- rep(0, opt$num_days)
+    gen2.pop <- rep(0, opt$num_days)
+    S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, opt$num_days)
+    g0.adult <- g1.adult <- g2.adult <- rep(0, opt$num_days)
+    N.newborn <- N.death <- N.adult <- rep(0, opt$num_days)
+    dd.day <- rep(0, opt$num_days)
+    # All the days included in the input temperature dataset.
+    for (row in 1:opt$num_days) {
+        # Get the integer day of the year for the current row.
+        doy <- temperature_data_frame$DOY[row]
+        # Photoperiod in the day.
+        photoperiod <- temperature_data_frame$DAYLEN[row]
+        temp.profile <- get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days)
+        mean.temp <- temp.profile[1]
+        dd.temp <- temp.profile[2]
+        dd.day[row] <- dd.temp
+        # Trash bin for death.
+        death.vec <- NULL
+        # Newborn.
+        birth.vec <- NULL
+        # All individuals.
+        for (i in 1:n) {
+            # Find individual record.
+            vec.ind <- vec.mat[i,]
+            # First of all, still alive?
+            # Adjustment for late season mortality rate.
+            if (latitude < 40.0) {
+                post.mort <- 1
+                day.kill <- 300
+            }
+            else {
+                post.mort <- 2
+                day.kill <- 250
+            }
+            if (vec.ind[2] == 0) {
+                # Egg.
+                death.prob = opt$egg_mort * mortality.egg(mean.temp)
+            }
+            else if (vec.ind[2] == 1 | vec.ind[2] == 2) {
+                death.prob = opt$nymph_mort * mortality.nymph(mean.temp)
+            }
+            else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) {
+                # For adult.
+                if (doy < day.kill) {
+                    death.prob = opt$adult_mort * mortality.adult(mean.temp)
+                }
+                else {
+                    # Increase adult mortality after fall equinox.
+                    death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp)
+                }
+            }
+            # (or dependent on temperature and life stage?)
+            u.d <- runif(1)
+            if (u.d < death.prob) {
+                death.vec <- c(death.vec, i)
+            } 
+            else {
+                # Aggregrate index of dead bug.
+                # Event 1 end of diapause.
+                if (vec.ind[1] == 0 && vec.ind[2] == 3) {
+                    # Overwintering adult (previttelogenic).
+                    if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && doy < 180) {
+                        # Add 68C to become fully reproductively matured.
+                        # Transfer to vittelogenic.
+                        vec.ind <- c(0, 4, 0, 0, 0)
+                        vec.mat[i,] <- vec.ind
+                    }
+                    else {
+                        # Add to dd.
+                        vec.ind[3] <- vec.ind[3] + dd.temp
+                        # Add 1 day in current stage.
+                        vec.ind[4] <- vec.ind[4] + 1
+                        vec.mat[i,] <- vec.ind
+                    }
+                }
+                if (vec.ind[1] != 0 && vec.ind[2] == 3) {
+                    # Not overwintering adult (previttelogenic).
+                    current.gen <- vec.ind[1]
+                    if (vec.ind[3] > 68) {
+                        # Add 68C to become fully reproductively matured.
+                        # Transfer to vittelogenic.
+                        vec.ind <- c(current.gen, 4, 0, 0, 0)
+                        vec.mat[i,] <- vec.ind
+                    }
+                    else {
+                        # Add to dd.
+                        vec.ind[3] <- vec.ind[3] + dd.temp
+                        # Add 1 day in current stage.
+                        vec.ind[4] <- vec.ind[4] + 1
+                        vec.mat[i,] <- vec.ind
+                    }
+                }
+                # Event 2 oviposition -- where population dynamics comes from.
+                if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10) {
+                    # Vittelogenic stage, overwintering generation.
+                    if (vec.ind[4] == 0) {
+                        # Just turned in vittelogenic stage.
+                        n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
+                    }
+                    else {
+                        # Daily probability of birth.
+                        p.birth = opt$oviposition * 0.01
+                        u1 <- runif(1)
+                        if (u1 < p.birth) {
+                            n.birth=round(runif(1, 2, 8))
+                        }
+                    }
+                    # Add to dd.
+                    vec.ind[3] <- vec.ind[3] + dd.temp
+                    # Add 1 day in current stage.
+                    vec.ind[4] <- vec.ind[4] + 1
+                    vec.mat[i,] <- vec.ind
+                    if (n.birth > 0) {
+                        # Add new birth -- might be in different generations.
+                        new.gen <- vec.ind[1] + 1
+                        # Egg profile.
+                        new.ind <- c(new.gen, 0, 0, 0, 0)
+                        new.vec <- rep(new.ind, n.birth)
+                        # Update batch of egg profile.
+                        new.vec <- t(matrix(new.vec, nrow=5))
+                        # Group with total eggs laid in that day.
+                        birth.vec <- rbind(birth.vec, new.vec)
+                    }
+                }
+                # Event 2 oviposition -- for generation 1.
+                if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && doy < 222) {
+                    # Vittelogenic stage, 1st generation
+                    if (vec.ind[4] == 0) {
+                        # Just turned in vittelogenic stage.
+                        n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
+                    }
+                    else {
+                        # Daily probability of birth.
+                        p.birth = opt$oviposition * 0.01
+                        u1 <- runif(1)
+                        if (u1 < p.birth) {
+                            n.birth = round(runif(1, 2, 8))
+                        }
+                    }
+                    # Add to dd.
+                    vec.ind[3] <- vec.ind[3] + dd.temp
+                    # Add 1 day in current stage.
+                    vec.ind[4] <- vec.ind[4] + 1
+                    vec.mat[i,] <- vec.ind
+                    if (n.birth > 0) {
+                        # Add new birth -- might be in different generations.
+                        new.gen <- vec.ind[1] + 1
+                        # Egg profile.
+                        new.ind <- c(new.gen, 0, 0, 0, 0)
+                        new.vec <- rep(new.ind, n.birth)
+                        # Update batch of egg profile.
+                        new.vec <- t(matrix(new.vec, nrow=5))
+                        # Group with total eggs laid in that day.
+                        birth.vec <- rbind(birth.vec, new.vec)
+                    }
+                }
+                # Event 3 development (with diapause determination).
+                # Event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg).
+                if (vec.ind[2] == 0) {
+                    # Egg stage.
+                    # Add to dd.
+                    vec.ind[3] <- vec.ind[3] + dd.temp
+                    if (vec.ind[3] >= (68 + opt$young_nymph_accum)) {
+                        # From egg to young nymph, DD requirement met.
+                        current.gen <- vec.ind[1]
+                        # Transfer to young nymph stage.
+                        vec.ind <- c(current.gen, 1, 0, 0, 0)
+                    }
+                    else {
+                        # Add 1 day in current stage.
+                        vec.ind[4] <- vec.ind[4] + 1
+                    }
+                    vec.mat[i,] <- vec.ind
+                }
+                # Event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause).
+                if (vec.ind[2] == 1) {
+                    # young nymph stage.
+                    # add to dd.
+                    vec.ind[3] <- vec.ind[3] + dd.temp
+                    if (vec.ind[3] >= (250 + opt$old_nymph_accum)) {
+                        # From young to old nymph, dd requirement met.
+                        current.gen <- vec.ind[1]
+                        # Transfer to old nym stage.
+                        vec.ind <- c(current.gen, 2, 0, 0, 0)
+                        if (photoperiod < opt$photoperiod && doy > 180) {
+                            vec.ind[5] <- 1
+                        } # Prepare for diapausing.
+                    }
+                    else {
+                        # Add 1 day in current stage.
+                        vec.ind[4] <- vec.ind[4] + 1
+                    }
+                    vec.mat[i,] <- vec.ind
+                }  
+                # Event 3.3 old nymph to adult: previttelogenic or diapausing?
+                if (vec.ind[2] == 2) {
+                    # Old nymph stage.
+                    # add to dd.
+                    vec.ind[3] <- vec.ind[3] + dd.temp
+                    if (vec.ind[3] >= (200 + opt$adult_accum)) {
+                        # From old to adult, dd requirement met.
+                        current.gen <- vec.ind[1]
+                        if (vec.ind[5] == 0) {
+                            # Non-diapausing adult -- previttelogenic.
+                            vec.ind <- c(current.gen, 3, 0, 0, 0)
+                        }
+                        else {
+                            # Diapausing.
+                            vec.ind <- c(current.gen, 5, 0, 0, 1)
+                        }
+                    }
+                    else {
+                        # Add 1 day in current stage.
+                        vec.ind[4] <- vec.ind[4] + 1
+                    }
+                    vec.mat[i,] <- vec.ind
+                }
+                # Event 4 growing of diapausing adult (unimportant, but still necessary).
+                if (vec.ind[2] == 5) {
+                    vec.ind[3] <- vec.ind[3] + dd.temp
+                    vec.ind[4] <- vec.ind[4] + 1
+                    vec.mat[i,] <- vec.ind
+                }
+            } # Else if it is still alive.
+        } # End of the individual bug loop.
+        # Find how many died.
+        n.death <- length(death.vec)
+        if (n.death > 0) {
+            vec.mat <- vec.mat[-death.vec, ]
+        }
+        # Remove record of dead.
+        # Find how many new born.
+        n.newborn <- length(birth.vec[,1])
+        vec.mat <- rbind(vec.mat, birth.vec)
+        # Update population size for the next day.
+        n <- n - n.death + n.newborn 
+
+        # Aggregate results by day.
+        tot.pop <- c(tot.pop, n) 
+        # Egg.
+        s0 <- sum(vec.mat[,2] == 0)
+        # Young nymph.
+        s1 <- sum(vec.mat[,2] == 1)
+        # Old nymph.
+        s2 <- sum(vec.mat[,2] == 2)
+        # Previtellogenic.
+        s3 <- sum(vec.mat[,2] == 3)
+        # Vitellogenic.
+        s4 <- sum(vec.mat[,2] == 4)
+        # Diapausing.
+        s5 <- sum(vec.mat[,2] == 5)
+        # Overwintering adult.
+        gen0 <- sum(vec.mat[,1] == 0)
+        # First generation.
+        gen1 <- sum(vec.mat[,1] == 1)
+        # Second generation.
+        gen2 <- sum(vec.mat[,1] == 2)
+        # Sum of all adults.
+        n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5)
+
+        # Generation 0 pop size.
+        gen0.pop[row] <- gen0
+        gen1.pop[row] <- gen1
+        gen2.pop[row] <- gen2
+
+        S0[row] <- s0
+        S1[row] <- s1
+        S2[row] <- s2
+        S3[row] <- s3
+        S4[row] <- s4
+        S5[row] <- s5
+
+        g0.adult[row] <- sum(vec.mat[,1] == 0)
+        g1.adult[row] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5))
+        g2.adult[row] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5))
+
+        N.newborn[row] <- n.newborn
+        N.death[row] <- n.death
+        N.adult[row] <- n.adult
+    }   # end of days specified in the input temperature data
+
+    dd.cum <- cumsum(dd.day)
+
+    # Collect all the outputs.
+    S0.rep[,N.rep] <- S0
+    S1.rep[,N.rep] <- S1
+    S2.rep[,N.rep] <- S2
+    S3.rep[,N.rep] <- S3
+    S4.rep[,N.rep] <- S4
+    S5.rep[,N.rep] <- S5
+    newborn.rep[,N.rep] <- N.newborn
+    death.rep[,N.rep] <- N.death
+    adult.rep[,N.rep] <- N.adult
+    pop.rep[,N.rep] <- tot.pop
+    g0.rep[,N.rep] <- gen0.pop
+    g1.rep[,N.rep] <- gen1.pop
+    g2.rep[,N.rep] <- gen2.pop
+    g0a.rep[,N.rep] <- g0.adult
+    g1a.rep[,N.rep] <- g1.adult
+    g2a.rep[,N.rep] <- g2.adult
+}
+
+# Data analysis and visualization can currently
+# plot only within a single calendar year.
+# TODO: enhance this to accomodate multiple calendar years.
+start_date <- temperature_data_frame$DATE[1]
+end_date <- temperature_data_frame$DATE[opt$num_days]
+
+n.yr <- 1
+day.all <- c(1:opt$num_days * n.yr)
+
+# mean value for adults
+sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean)
+# mean value for nymphs
+sn <- apply((S1.rep + S2.rep), 1,mean)
+# mean value for eggs
+se <- apply(S0.rep, 1, mean)
+# mean value for P
+g0 <- apply(g0.rep, 1, mean)
+# mean value for F1
+g1 <- apply(g1.rep, 1, mean)
+# mean value for F2
+g2 <- apply(g2.rep, 1, mean)
+# mean value for P adult
+g0a <- apply(g0a.rep, 1, mean)
+# mean value for F1 adult
+g1a <- apply(g1a.rep, 1, mean)
+# mean value for F2 adult
+g2a <- apply(g2a.rep, 1, mean)
+
+# SE for adults
+sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications)
+# SE for nymphs
+sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd)
+# SE for eggs
+se.se <- apply(S0.rep, 1, sd) / sqrt(opt$replications)
+# SE value for P
+g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications)
+# SE for F1
+g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications)
+# SE for F2
+g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications)
+# SE for P adult
+g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications)
+# SE for F1 adult
+g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications)
+# SE for F2 adult
+g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications)
+
+dev.new(width=20, height=30)
+
+# Start PDF device driver to save charts to output.
+pdf(file=opt$output, width=20, height=30, bg="white")
+
+par(mar = c(5, 6, 4, 4), mfrow=c(3, 1))
+
+# Subfigure 1: population size by life stage
+title <- paste(opt$insect, ": Total pop. by life stage :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
+plot(day.all, sa, main=title, type="l", ylim=c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
+# Young and old nymphs.
+lines(day.all, sn, lwd=2, lty=1, col=2)
+# Eggs
+lines(day.all, se, lwd=2, lty=1, col=4)
+axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
+axis(2, cex.axis=3)
+leg.text <- c("Egg", "Nymph", "Adult")
+legend("topleft", leg.text, lty=c(1, 1, 1), col=c(4, 2, 1), cex=3)
+if (opt$se_plot == 1) {
+    # Add SE lines to plot
+    # SE for adults
+    lines (day.all, sa + sa.se, lty=2)
+    lines (day.all, sa - sa.se, lty=2) 
+    # SE for nymphs
+    lines (day.all, sn + sn.se, col=2, lty=2)
+    lines (day.all, sn - sn.se, col=2, lty=2)
+    # SE for eggs
+    lines (day.all, se + se.se, col=4, lty=2)
+    lines (day.all, se - se.se, col=4, lty=2)
+}
+
+# Subfigure 2: population size by generation
+title <- paste(opt$insect, ": Total pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
+plot(day.all, g0, main=title, type="l", ylim=c(0, max(g2)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
+lines(day.all, g1, lwd = 2, lty = 1, col=2)
+lines(day.all, g2, lwd = 2, lty = 1, col=4)
+axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
+axis(2, cex.axis=3)
+leg.text <- c("P", "F1", "F2")
+legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3)
+if (opt$se_plot == 1) {
+    # Add SE lines to plot
+    # SE for adults
+    lines (day.all, g0+g0.se, lty=2)
+    lines (day.all, g0-g0.se, lty=2) 
+    # SE for nymphs
+    lines (day.all, g1+g1.se, col=2, lty=2)
+    lines (day.all, g1-g1.se, col=2, lty=2)
+    # SE for eggs
+    lines (day.all, g2+g2.se, col=4, lty=2)
+    lines (day.all, g2-g2.se, col=4, lty=2)
+}
+
+# Subfigure 3: adult population size by generation
+title <- paste(opt$insect, ": Adult pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
+plot(day.all, g0a, ylim=c(0, max(g2a) + 100), main=title, type="l", axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
+lines(day.all, g1a, lwd = 2, lty = 1, col=2)
+lines(day.all, g2a, lwd = 2, lty = 1, col=4)
+axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
+axis(2, cex.axis=3)
+leg.text <- c("P", "F1", "F2")
+legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3)
+if (opt$se_plot == 1) {
+    # Add SE lines to plot
+    # SE for adults
+    lines (day.all, g0a+g0a.se, lty=2)
+    lines (day.all, g0a-g0a.se, lty=2) 
+    # SE for nymphs
+    lines (day.all, g1a+g1a.se, col=2, lty=2)
+    lines (day.all, g1a-g1a.se, col=2, lty=2)
+    # SE for eggs
+    lines (day.all, g2a+g2a.se, col=4, lty=2)
+    lines (day.all, g2a-g2a.se, col=4, lty=2)
+}
+
+# Turn off device driver to flush output.
+dev.off()