diff insect_phenology_model.R @ 3:24fa0d35a8bf draft

Uploaded
author greg
date Thu, 09 Nov 2017 14:20:42 -0500 (2017-11-09)
parents 244c373f2a34
children e7b1fc0133bb
line wrap: on
line diff
--- a/insect_phenology_model.R	Mon Aug 14 13:47:50 2017 -0400
+++ b/insect_phenology_model.R	Thu Nov 09 14:20:42 2017 -0500
@@ -6,19 +6,18 @@
     make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"),
     make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"),
     make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"),
-    make_option(c("-d", "--latitude"), action="store", dest="latitude", type="double", help="Latitude of selected location"),
     make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"),
     make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
     make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
     make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"),
     make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"),
+    make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"),
     make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"),
     make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
     make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
     make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
     make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"),
-    make_option(c("-u", "--year"), action="store", dest="year", type="integer", help="Starting year"),
-    make_option(c("-v", "--temperature_dataset"), action="store", dest="temperature_dataset", help="Temperature data for selected location"),
+    make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"),
     make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)")
 )
 
@@ -26,40 +25,42 @@
 args <- parse_args(parser, positional_arguments=TRUE)
 opt <- args$options
 
-data.input=function(loc, year, temperature.dataset)
+convert_csv_to_rdata=function(temperature_data, data_matrix)
 {
-    expdata <- matrix(rep(0, 365 * 3), nrow=365)
-    namedat <- paste(loc,  year, ".Rdat", sep="")
-    temp.data <- read.csv(file=temperature.dataset, header=T)
-
-    expdata[,1] <- c(1:365)
+    # Integer day of the year.
+    data_matrix[,1] <- c(1:opt$num_days)
     # Minimum
-    expdata[,2] <- temp.data[c(1:365), 3]
+    data_matrix[,2] <- temperature_data[c(1:opt$num_days), 5]
     # Maximum
-    expdata[,3] <- temp.data[c(1:365), 2]
-    save(expdata, file=namedat)
+    data_matrix[,3] <- temperature_data[c(1:opt$num_days), 6]
+    namedat <- "tempdata.Rdat"
+    save(data_matrix, file=namedat)
     namedat
 }
 
-daylength=function(latitude)
+daylength=function(latitude, num_days)
 {
-    # from Forsythe 1995
+    # From Forsythe 1995.
     p=0.8333
     dl <- NULL
-    for (i in 1:365) {
+    for (i in 1:num_days) {
         theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (i - 186)))
         phi <- asin(0.39795 * cos(theta))
         dl[i] <- 24 - 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)))
     }
-    dl   # return a vector of daylength in 365 days
+    # Return a vector of daylength for the number of
+    # days specified in the input temperature data.
+    dl
 }
 
-hourtemp=function(latitude, date, temperature_file_path)
+hourtemp=function(latitude, date, temperature_file_path, num_days)
 {
     load(temperature_file_path)
-    threshold <- 14.17  # base development threshold for BMSB
-    dnp <- expdata[date, 2]  # daily minimum
-    dxp <- expdata[date, 3]  # daily maximum
+    # Base development threshold for Brown Marmolated Stink Bug
+    # insect phenology model.
+    threshold <- 14.17
+    dnp <- data_matrix[date, 2]  # daily minimum
+    dxp <- data_matrix[date, 3]  # daily maximum
     dmean <- 0.5 * (dnp + dxp)
     dd <- 0  # initialize degree day accumulation
 
@@ -67,22 +68,30 @@
         dd <- 0
     }
     else {
-        dlprofile <- daylength(latitude)  # extract daylength data for entire year
-        T <- NULL  # initialize hourly temperature
-        dh <- NULL #initialize degree hour vector
-        # date <- 200
-        y <- dlprofile[date]  # calculate daylength in given date
-        z <- 24 - y     # night length
-        a <- 1.86     # lag coefficient
-        b <- 2.20     # night coefficient
-        #tempdata <- read.csv("tempdata.csv") #import raw data set
-        # Should be outside function otherwise its redundant
-        risetime <- 12 - y / 2      # sunrise time
-        settime <- 12 + y / 2       # sunset time
+        # Extract daylength data for the number of
+        # days specified in the input temperature data.
+        dlprofile <- daylength(latitude, num_days)
+        # Initialize hourly temperature.
+        T <- NULL
+        # Initialize degree hour vector.
+        dh <- NULL
+        # Calculate daylength in given date.
+        y <- dlprofile[date]
+        # Night length.
+        z <- 24 - y
+        # Lag coefficient.
+        a <- 1.86
+        # Night coefficient.
+        b <- 2.20
+        # Sunrise time.
+        risetime <- 12 - y / 2
+        # Sunset time.
+        settime <- 12 + y / 2
         ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp
         for (i in 1:24) {
             if (i > risetime && i<settime) {
-                m <- i - 5  # number of hours after Tmin until sunset
+                # Number of hours after Tmin until sunset.
+                m <- i - 5
                 T[i]=(dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp
                 if (T[i]<8.4) {
                     dh[i] <- 0
@@ -189,73 +198,64 @@
     return
 }
 
-cat("Replications: ", opt$replications, "\n")
-cat("Photoperiod: ", opt$photoperiod, "\n")
-cat("Oviposition rate: ", opt$oviposition, "\n")
-cat("Egg mortality rate: ", opt$egg_mort, "\n")
-cat("Nymph mortality rate: ", opt$nymph_mort, "\n")
-cat("Adult mortality rate: ", opt$adult_mort, "\n")
-cat("Min clutch size: ", opt$min_clutch_size, "\n")
-cat("Max clutch size: ", opt$max_clutch_size, "\n")
-cat("(egg->young nymph): ", opt$young_nymph_accum, "\n")
-cat("(young nymph->old nymph): ", opt$old_nymph_accum, "\n")
-cat("(old nymph->adult): ", opt$adult_accum, "\n")
+# Read in the input temperature datafile into a Data Frame object.
+temperature_data <- read.csv(file=opt$input, header=T, sep=",")
+start_date <- temperature_data[c(1:1), 3]
+end_date <- temperature_data[c(opt$num_days:opt$num_days), 3]
+raw_data_matrix <- matrix(rep(0, opt$num_days * 6), nrow=opt$num_days)
+temperature_file_path <- convert_csv_to_rdata(temperature_data, raw_data_matrix)
+latitude <- temperature_data[1, 1]
 
-# Read in the input temperature datafile
-temperature_file_path <- data.input(opt$location, opt$year, opt$temperature_dataset)
+cat("Number of days: ", opt$num_days, "\n")
 
-# Initialize matrix for results from all replications
-S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, 365 * opt$replications), ncol = opt$replications)
-newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, 365 * opt$replications), ncol=opt$replications)
+# Initialize matrix for results from all replications.
+S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol = opt$replications)
+newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol=opt$replications)
 
 # loop through replications
 for (N.rep in 1:opt$replications) {
-    # during each replication
-    # start with 1000 individuals -- user definable as well?
+    # During each replication start with 1000 individuals.
+    # TODO: user definable as well?
     n <- 1000
-    # Generation, Stage, DD, T, Diapause
+    # Generation, Stage, DD, T, Diapause.
     vec.ini <- c(0, 3, 0, 0, 0)
-    # overwintering, previttelogenic, DD=0, T=0, no-diapause
+    # Overwintering, previttelogenic, DD=0, T=0, no-diapause.
     vec.mat <- rep(vec.ini, n)
-    # complete matrix for the population
-    vec.mat <- t(matrix(vec.mat, nrow=5))
-    # complete photoperiod profile in a year, requires daylength function
-    ph.p <- daylength(opt$latitude)
+    # Complete matrix for the population.
+    vec.mat <- base::t(matrix(vec.mat, nrow=5))
+    # Complete photoperiod profile in a year, requires daylength function.
+    ph.p <- daylength(latitude, opt$num_days)
 
-    # time series of population size
+    # Time series of population size.
     tot.pop <- NULL
-    # gen.0 pop size
-    gen0.pop <- rep(0, 365)
-    gen1.pop <- rep(0, 365)
-    gen2.pop <- rep(0, 365)
-    S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, 365)
-    g0.adult <- g1.adult <- g2.adult <- rep(0, 365)
-    N.newborn <- N.death <- N.adult <- rep(0, 365)
-    dd.day <- rep(0, 365)
+    gen0.pop <- rep(0, opt$num_days)
+    gen1.pop <- rep(0, opt$num_days)
+    gen2.pop <- rep(0, opt$num_days)
+    S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, opt$num_days)
+    g0.adult <- g1.adult <- g2.adult <- rep(0, opt$num_days)
+    N.newborn <- N.death <- N.adult <- rep(0, opt$num_days)
+    dd.day <- rep(0, opt$num_days)
 
-    # start tick
-    ptm <- proc.time()
-
-    # all the days
-    for (day in 1:365) {
-        # photoperiod in the day
+    # All the days included in the input temperature dataset.
+    for (day in 1:opt$num_days) {
+        # Photoperiod in the day.
         photoperiod <- ph.p[day]
-        temp.profile <- hourtemp(opt$latitude, day, temperature_file_path)
+        temp.profile <- hourtemp(latitude, day, temperature_file_path, opt$num_days)
         mean.temp <- temp.profile[1]
         dd.temp <- temp.profile[2]
         dd.day[day] <- dd.temp
-        # trash bin for death
+        # Trash bin for death.
         death.vec <- NULL
-        # new born
+        # Newborn.
         birth.vec <- NULL
 
-        # all individuals
+        # All individuals.
         for (i in 1:n) {
-            # find individual record
+            # Find individual record.
             vec.ind <- vec.mat[i,]
-            # first of all, still alive?  
-            # adjustment for late season mortality rate
-            if (opt$latitude < 40.0) {
+            # First of all, still alive?
+            # Adjustment for late season mortality rate.
+            if (latitude < 40.0) {
                 post.mort <- 1
                 day.kill <- 300
             }
@@ -264,19 +264,19 @@
                 day.kill <- 250
             }
             if (vec.ind[2] == 0) {
-                # egg
+                # Egg.
                 death.prob = opt$egg_mort * mortality.egg(mean.temp)
             }
             else if (vec.ind[2] == 1 | vec.ind[2] == 2) {
                 death.prob = opt$nymph_mort * mortality.nymph(mean.temp)
             }
             else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) {
-                # for adult
+                # For adult.
                 if (day < day.kill) {
                     death.prob = opt$adult_mort * mortality.adult(mean.temp)
                 }
                 else {
-                    # increase adult mortality after fall equinox
+                    # Increase adult mortality after fall equinox.
                     death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp)
                 }
             }
@@ -286,218 +286,216 @@
                 death.vec <- c(death.vec, i)
             } 
             else {
-                # aggregrate index of dead bug
-                # event 1 end of diapause
+                # Aggregrate index of dead bug.
+                # Event 1 end of diapause.
                 if (vec.ind[1] == 0 && vec.ind[2] == 3) {
-                    # overwintering adult (previttelogenic)
+                    # Overwintering adult (previttelogenic).
                     if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && day < 180) {
-                        # add 68C to become fully reproductively matured
-                        # transfer to vittelogenic
+                        # Add 68C to become fully reproductively matured.
+                        # Transfer to vittelogenic.
                         vec.ind <- c(0, 4, 0, 0, 0)
                         vec.mat[i,] <- vec.ind
                     }
                     else {
-                        # add to DD
+                        # Add to dd.
                         vec.ind[3] <- vec.ind[3] + dd.temp
-                        # add 1 day in current stage
+                        # Add 1 day in current stage.
                         vec.ind[4] <- vec.ind[4] + 1
                         vec.mat[i,] <- vec.ind
                     }
                 }
                 if (vec.ind[1] != 0 && vec.ind[2] == 3) {
-                    # NOT overwintering adult (previttelogenic)
+                    # Not overwintering adult (previttelogenic).
                     current.gen <- vec.ind[1]
                     if (vec.ind[3] > 68) {
-                        # add 68C to become fully reproductively matured
-                        # transfer to vittelogenic
+                        # Add 68C to become fully reproductively matured.
+                        # Transfer to vittelogenic.
                         vec.ind <- c(current.gen, 4, 0, 0, 0)
                         vec.mat[i,] <- vec.ind
                     }
                     else {
-                        # add to DD
+                        # Add to dd.
                         vec.ind[3] <- vec.ind[3] + dd.temp
-                        # add 1 day in current stage
+                        # Add 1 day in current stage.
                         vec.ind[4] <- vec.ind[4] + 1
                         vec.mat[i,] <- vec.ind
                     }
                 }
 
-                # event 2 oviposition -- where population dynamics comes from
+                # Event 2 oviposition -- where population dynamics comes from.
                 if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10) {
-                    # vittelogenic stage, overwintering generation
+                    # Vittelogenic stage, overwintering generation.
                     if (vec.ind[4] == 0) {
-                        # just turned in vittelogenic stage
+                        # Just turned in vittelogenic stage.
                         n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
                     }
                     else {
-                        # daily probability of birth
+                        # Daily probability of birth.
                         p.birth = opt$oviposition * 0.01
                         u1 <- runif(1)
                         if (u1 < p.birth) {
                             n.birth=round(runif(1, 2, 8))
                         }
                     }
-                    # add to DD
+                    # Add to dd.
                     vec.ind[3] <- vec.ind[3] + dd.temp
-                    # add 1 day in current stage
+                    # Add 1 day in current stage.
                     vec.ind[4] <- vec.ind[4] + 1
                     vec.mat[i,] <- vec.ind
                     if (n.birth > 0) {
-                        # add new birth -- might be in different generations
-                        # generation + 1
+                        # Add new birth -- might be in different generations.
                         new.gen <- vec.ind[1] + 1
-                        # egg profile
+                        # Egg profile.
                         new.ind <- c(new.gen, 0, 0, 0, 0)
                         new.vec <- rep(new.ind, n.birth)
-                        # update batch of egg profile
+                        # Update batch of egg profile.
                         new.vec <- t(matrix(new.vec, nrow=5))
-                        # group with total eggs laid in that day
+                        # Group with total eggs laid in that day.
                         birth.vec <- rbind(birth.vec, new.vec)
                     }
                 }
 
-                # event 2 oviposition -- for gen 1.
+                # Event 2 oviposition -- for gen 1.
                 if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && day < 222) {
-                    # vittelogenic stage, 1st generation
+                    # Vittelogenic stage, 1st generation
                     if (vec.ind[4] == 0) {
-                        # just turned in vittelogenic stage
+                        # Just turned in vittelogenic stage.
                         n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
                     }
                     else {
-                        # daily probability of birth
+                        # Daily probability of birth.
                         p.birth = opt$oviposition * 0.01
                         u1 <- runif(1)
                         if (u1 < p.birth) {
                             n.birth = round(runif(1, 2, 8))
                         }
                     }
-                    # add to DD
+                    # Add to dd.
                     vec.ind[3] <- vec.ind[3] + dd.temp
-                    # add 1 day in current stage
+                    # Add 1 day in current stage.
                     vec.ind[4] <- vec.ind[4] + 1
                     vec.mat[i,] <- vec.ind
                     if (n.birth > 0) {
-                        # add new birth -- might be in different generations
-                        # generation + 1
+                        # Add new birth -- might be in different generations.
                         new.gen <- vec.ind[1] + 1
-                        # egg profile
+                        # Egg profile.
                         new.ind <- c(new.gen, 0, 0, 0, 0)
                         new.vec <- rep(new.ind, n.birth)
-                        # update batch of egg profile
+                        # Update batch of egg profile.
                         new.vec <- t(matrix(new.vec, nrow=5))
-                        # group with total eggs laid in that day
+                        # Group with total eggs laid in that day.
                         birth.vec <- rbind(birth.vec, new.vec)
                     }
                 }
 
-                # event 3 development (with diapause determination)
-                # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg)
+                # Event 3 development (with diapause determination).
+                # Event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg).
                 if (vec.ind[2] == 0) {
-                    # egg stage
-                    # add to DD
+                    # Egg stage.
+                    # Add to dd.
                     vec.ind[3] <- vec.ind[3] + dd.temp
                     if (vec.ind[3] >= (68 + opt$young_nymph_accum)) {
-                        # from egg to young nymph, DD requirement met
+                        # From egg to young nymph, DD requirement met.
                         current.gen <- vec.ind[1]
-                        # transfer to young nym stage
+                        # Transfer to young nymph stage.
                         vec.ind <- c(current.gen, 1, 0, 0, 0)
                     }
                     else {
-                        # add 1 day in current stage
+                        # Add 1 day in current stage.
                         vec.ind[4] <- vec.ind[4] + 1
                     }
                     vec.mat[i,] <- vec.ind
                 }
 
-                # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause)
+                # Event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause).
                 if (vec.ind[2] == 1) {
-                    # young nymph stage
-                    # add to DD
+                    # young nymph stage.
+                    # add to dd.
                     vec.ind[3] <- vec.ind[3] + dd.temp
                     if (vec.ind[3] >= (250 + opt$old_nymph_accum)) {
-                        # from young to old nymph, DD requirement met
+                        # From young to old nymph, dd requirement met.
                         current.gen <- vec.ind[1]
-                        # transfer to old nym stage
+                        # Transfer to old nym stage.
                         vec.ind <- c(current.gen, 2, 0, 0, 0)
                         if (photoperiod < opt$photoperiod && day > 180) {
                             vec.ind[5] <- 1
-                        } # prepare for diapausing
+                        } # Prepare for diapausing.
                     }
                     else {
-                        # add 1 day in current stage
+                        # Add 1 day in current stage.
                         vec.ind[4] <- vec.ind[4] + 1
                     }
                     vec.mat[i,] <- vec.ind
                 }  
 
-                # event 3.3 old nymph to adult: previttelogenic or diapausing?
+                # Event 3.3 old nymph to adult: previttelogenic or diapausing?
                 if (vec.ind[2] == 2) {
-                    # old nymph stage
-                    # add to DD
+                    # Old nymph stage.
+                    # add to dd.
                     vec.ind[3] <- vec.ind[3] + dd.temp
                     if (vec.ind[3] >= (200 + opt$adult_accum)) {
-                        # from old to adult, DD requirement met
+                        # From old to adult, dd requirement met.
                         current.gen <- vec.ind[1]
                         if (vec.ind[5] == 0) {
-                            # non-diapausing adult -- previttelogenic
+                            # Non-diapausing adult -- previttelogenic.
                             vec.ind <- c(current.gen, 3, 0, 0, 0)
                         }
                         else {
-                            # diapausing 
+                            # Diapausing.
                             vec.ind <- c(current.gen, 5, 0, 0, 1)
                         }
                     }
                     else {
-                        # add 1 day in current stage
+                        # Add 1 day in current stage.
                         vec.ind[4] <- vec.ind[4] + 1
                     }
                     vec.mat[i,] <- vec.ind
                 }
 
-                # event 4 growing of diapausing adult (unimportant, but still necessary)## 
+                # Event 4 growing of diapausing adult (unimportant, but still necessary).
                 if (vec.ind[2] == 5) {
                     vec.ind[3] <- vec.ind[3] + dd.temp
                     vec.ind[4] <- vec.ind[4] + 1
                     vec.mat[i,] <- vec.ind
                 }
-            } # else if it is still alive
-        } # end of the individual bug loop
+            } # Else if it is still alive.
+        } # End of the individual bug loop.
 
-        # find how many died
+        # Find how many died.
         n.death <- length(death.vec)
         if (n.death > 0) {
             vec.mat <- vec.mat[-death.vec, ]
         }
-        # remove record of dead
-        # find how many new born  
+        # Remove record of dead.
+        # Find how many new born.
         n.newborn <- length(birth.vec[,1])
         vec.mat <- rbind(vec.mat, birth.vec)
-        # update population size for the next day
+        # Update population size for the next day.
         n <- n - n.death + n.newborn 
 
-        # aggregate results by day
+        # Aggregate results by day.
         tot.pop <- c(tot.pop, n) 
-        # egg
+        # Egg.
         s0 <- sum(vec.mat[,2] == 0)
-        # young nymph
+        # Young nymph.
         s1 <- sum(vec.mat[,2] == 1)
-        # old nymph
+        # Old nymph.
         s2 <- sum(vec.mat[,2] == 2)
-        # previtellogenic
+        # Previtellogenic.
         s3 <- sum(vec.mat[,2] == 3)
-        # vitellogenic
+        # Vitellogenic.
         s4 <- sum(vec.mat[,2] == 4)
-        # diapausing
+        # Diapausing.
         s5 <- sum(vec.mat[,2] == 5)
-        # overwintering adult
+        # Overwintering adult.
         gen0 <- sum(vec.mat[,1] == 0)
-        # first generation
+        # First generation.
         gen1 <- sum(vec.mat[,1] == 1)
-        # second generation
+        # Second generation.
         gen2 <- sum(vec.mat[,1] == 2)
-        # sum of all adults
+        # Sum of all adults.
         n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5)
-        # gen.0 pop size
+        # Gen eration 0 pop size.
         gen0.pop[day] <- gen0
         gen1.pop[day] <- gen1
         gen2.pop[day] <- gen2
@@ -514,11 +512,10 @@
         N.newborn[day] <- n.newborn
         N.death[day] <- n.death
         N.adult[day] <- n.adult
-        #print(c(N.rep, day, n, n.adult))
-    }   # end of 365 days
+    }   # end of days specified in the input temperature data
 
     dd.cum <- cumsum(dd.day)
-    # collect all the outputs
+    # Collect all the outputs.
     S0.rep[,N.rep] <- S0
     S1.rep[,N.rep] <- S1
     S2.rep[,N.rep] <- S2
@@ -537,15 +534,11 @@
     g2a.rep[,N.rep] <- g2.adult
 }
 
-# save(dd.day, dd.cum, S0.rep, S1.rep, S2.rep, S3.rep, S4.rep, S5.rep, newborn.rep, death.rep, adult.rep, pop.rep, g0.rep, g1.rep, g2.rep, g0a.rep, g1a.rep, g2a.rep, file=opt$output)
-# maybe do not need to export this bit, but for now just leave it as-is
-# do we need to export this Rdat file? 
-
 # Data analysis and visualization
 # default: plot 1 year of result
 # but can be expanded to accommodate multiple years
 n.yr <- 1
-day.all <- c(1:365 * n.yr)
+day.all <- c(1:opt$num_days * n.yr)
 
 # mean value for adults
 sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean)
@@ -593,30 +586,32 @@
 par(mar = c(5, 6, 4, 4), mfrow=c(3, 1))
 
 # Subfigure 2: population size by life stage
-plot(day.all, sa, main = "BSMB Total Population Size by Life Stage", type = "l", ylim = c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
-# Young and old nymphs
-lines(day.all, sn, lwd = 2, lty = 1, col = 2)
+title <- paste("BSMB Total Population Size by Life Stage:", opt$location, ", Latitude:", latitude, ", Temperature Dates:", start_date, "to", end_date, sep=" ")
+plot(day.all, sa, main=title, type="l", ylim=c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes=F, lwd=2, xlab="", ylab="Number", cex=2, cex.lab=2, cex.axis=2, cex.main=2)
+# Young and old nymphs.
+lines(day.all, sn, lwd=2, lty=1, col=2)
 # Eggs
-lines(day.all, se, lwd = 2, lty = 1, col = 4)
-axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
+lines(day.all, se, lwd=2, lty=1, col=4)
+axis(1, at = c(1:12) * 30 - 15, cex.axis=2, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
 axis(2, cex.axis = 2)
 leg.text <- c("Egg", "Nymph", "Adult")
-legend("topleft", leg.text, lty = c(1, 1, 1), col = c(4, 2, 1), cex = 2)
+legend("topleft", leg.text, lty=c(1, 1, 1), col=c(4, 2, 1), cex=2)
 if (opt$se_plot == 1) {
     # add SE lines to plot
     # SE for adults
-    lines (day.all, sa + sa.se, lty = 2)
-    lines (day.all, sa - sa.se, lty = 2) 
+    lines (day.all, sa + sa.se, lty=2)
+    lines (day.all, sa - sa.se, lty=2) 
     # SE for nymphs
-    lines (day.all, sn + sn.se, col = 2, lty = 2)
-    lines (day.all, sn - sn.se, col = 2, lty = 2) 
+    lines (day.all, sn + sn.se, col=2, lty=2)
+    lines (day.all, sn - sn.se, col=2, lty=2) 
     # SE for eggs
-    lines (day.all, se + se.se, col = 4, lty = 2)
-    lines (day.all, se - se.se, col = 4, lty = 2) 
+    lines (day.all, se + se.se, col=4, lty=2)
+    lines (day.all, se - se.se, col=4, lty=2) 
 }
 
 # Subfigure 3: population size by generation
-plot(day.all, g0, main = "BSMB Total Population Size by Generation", type = "l", ylim = c(0, max(g2)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
+title <- paste("BSMB Total Population Size by Generation:", opt$location, ", Latitude:", latitude, ", Temperature Dates:", start_date, "to", end_date, sep=" ")
+plot(day.all, g0, main=title, type="l", ylim=c(0, max(g2)), axes=F, lwd=2, xlab="", ylab="Number", cex=2, cex.lab=2, cex.axis=2, cex.main=2)
 lines(day.all, g1, lwd = 2, lty = 1, col = 2)
 lines(day.all, g2, lwd = 2, lty = 1, col = 4)
 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
@@ -637,7 +632,8 @@
 }
 
 # Subfigure 4: adult population size by generation
-plot(day.all, g0a, ylim = c(0, max(g2a) + 100), main = "BSMB Adult Population Size by Generation", type = "l", axes = F, lwd = 2, xlab = "Year", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
+title <- paste("BSMB Adult Population Size by Generation:", opt$location, ", Latitude:", latitude, ", Temperature Dates:", start_date, "to", end_date, sep=" ")
+plot(day.all, g0a, ylim=c(0, max(g2a) + 100), main=title, type="l", axes=F, lwd=2, xlab="Year", ylab="Number", cex=2, cex.lab=2, cex.axis=2, cex.main=2)
 lines(day.all, g1a, lwd = 2, lty = 1, col = 2)
 lines(day.all, g2a, lwd = 2, lty = 1, col = 4)
 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))