Mercurial > repos > guerler > springsuite
comparison planemo/lib/python3.7/site-packages/networkx/generators/expanders.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:d30785e31577 | 1:56ad4e20f292 |
---|---|
1 # -*- coding: utf-8 -*- | |
2 # Copyright 2014 "cheebee7i". | |
3 # Copyright 2014 "alexbrc". | |
4 # Copyright 2014 Jeffrey Finkelstein <jeffrey.finkelstein@gmail.com>. | |
5 """Provides explicit constructions of expander graphs. | |
6 | |
7 """ | |
8 import itertools | |
9 import networkx as nx | |
10 | |
11 __all__ = ['margulis_gabber_galil_graph', 'chordal_cycle_graph'] | |
12 | |
13 | |
14 # Other discrete torus expanders can be constructed by using the following edge | |
15 # sets. For more information, see Chapter 4, "Expander Graphs", in | |
16 # "Pseudorandomness", by Salil Vadhan. | |
17 # | |
18 # For a directed expander, add edges from (x, y) to: | |
19 # | |
20 # (x, y), | |
21 # ((x + 1) % n, y), | |
22 # (x, (y + 1) % n), | |
23 # (x, (x + y) % n), | |
24 # (-y % n, x) | |
25 # | |
26 # For an undirected expander, add the reverse edges. | |
27 # | |
28 # Also appearing in the paper of Gabber and Galil: | |
29 # | |
30 # (x, y), | |
31 # (x, (x + y) % n), | |
32 # (x, (x + y + 1) % n), | |
33 # ((x + y) % n, y), | |
34 # ((x + y + 1) % n, y) | |
35 # | |
36 # and: | |
37 # | |
38 # (x, y), | |
39 # ((x + 2*y) % n, y), | |
40 # ((x + (2*y + 1)) % n, y), | |
41 # ((x + (2*y + 2)) % n, y), | |
42 # (x, (y + 2*x) % n), | |
43 # (x, (y + (2*x + 1)) % n), | |
44 # (x, (y + (2*x + 2)) % n), | |
45 # | |
46 def margulis_gabber_galil_graph(n, create_using=None): | |
47 r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes. | |
48 | |
49 The undirected MultiGraph is regular with degree `8`. Nodes are integer | |
50 pairs. The second-largest eigenvalue of the adjacency matrix of the graph | |
51 is at most `5 \sqrt{2}`, regardless of `n`. | |
52 | |
53 Parameters | |
54 ---------- | |
55 n : int | |
56 Determines the number of nodes in the graph: `n^2`. | |
57 create_using : NetworkX graph constructor, optional (default MultiGraph) | |
58 Graph type to create. If graph instance, then cleared before populated. | |
59 | |
60 Returns | |
61 ------- | |
62 G : graph | |
63 The constructed undirected multigraph. | |
64 | |
65 Raises | |
66 ------ | |
67 NetworkXError | |
68 If the graph is directed or not a multigraph. | |
69 | |
70 """ | |
71 G = nx.empty_graph(0, create_using, default=nx.MultiGraph) | |
72 if G.is_directed() or not G.is_multigraph(): | |
73 msg = "`create_using` must be an undirected multigraph." | |
74 raise nx.NetworkXError(msg) | |
75 | |
76 for (x, y) in itertools.product(range(n), repeat=2): | |
77 for (u, v) in (((x + 2 * y) % n, y), ((x + (2 * y + 1)) % n, y), | |
78 (x, (y + 2 * x) % n), (x, (y + (2 * x + 1)) % n)): | |
79 G.add_edge((x, y), (u, v)) | |
80 G.graph['name'] = "margulis_gabber_galil_graph({0})".format(n) | |
81 return G | |
82 | |
83 | |
84 def chordal_cycle_graph(p, create_using=None): | |
85 """Returns the chordal cycle graph on `p` nodes. | |
86 | |
87 The returned graph is a cycle graph on `p` nodes with chords joining each | |
88 vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit) | |
89 3-regular expander [1]_. | |
90 | |
91 `p` *must* be a prime number. | |
92 | |
93 Parameters | |
94 ---------- | |
95 p : a prime number | |
96 | |
97 The number of vertices in the graph. This also indicates where the | |
98 chordal edges in the cycle will be created. | |
99 | |
100 create_using : NetworkX graph constructor, optional (default=nx.Graph) | |
101 Graph type to create. If graph instance, then cleared before populated. | |
102 | |
103 Returns | |
104 ------- | |
105 G : graph | |
106 The constructed undirected multigraph. | |
107 | |
108 Raises | |
109 ------ | |
110 NetworkXError | |
111 | |
112 If `create_using` indicates directed or not a multigraph. | |
113 | |
114 References | |
115 ---------- | |
116 | |
117 .. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and | |
118 invariant measures", volume 125 of Progress in Mathematics. | |
119 Birkhäuser Verlag, Basel, 1994. | |
120 | |
121 """ | |
122 G = nx.empty_graph(0, create_using, default=nx.MultiGraph) | |
123 if G.is_directed() or not G.is_multigraph(): | |
124 msg = "`create_using` must be an undirected multigraph." | |
125 raise nx.NetworkXError(msg) | |
126 | |
127 for x in range(p): | |
128 left = (x - 1) % p | |
129 right = (x + 1) % p | |
130 # Here we apply Fermat's Little Theorem to compute the multiplicative | |
131 # inverse of x in Z/pZ. By Fermat's Little Theorem, | |
132 # | |
133 # x^p = x (mod p) | |
134 # | |
135 # Therefore, | |
136 # | |
137 # x * x^(p - 2) = 1 (mod p) | |
138 # | |
139 # The number 0 is a special case: we just let its inverse be itself. | |
140 chord = pow(x, p - 2, p) if x > 0 else 0 | |
141 for y in (left, right, chord): | |
142 G.add_edge(x, y) | |
143 G.graph['name'] = "chordal_cycle_graph({0})".format(p) | |
144 return G |