diff planemo/lib/python3.7/site-packages/networkx/generators/expanders.py @ 1:56ad4e20f292 draft

"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author guerler
date Fri, 31 Jul 2020 00:32:28 -0400 (2020-07-31)
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/planemo/lib/python3.7/site-packages/networkx/generators/expanders.py	Fri Jul 31 00:32:28 2020 -0400
@@ -0,0 +1,144 @@
+# -*- coding: utf-8 -*-
+# Copyright 2014 "cheebee7i".
+# Copyright 2014 "alexbrc".
+# Copyright 2014 Jeffrey Finkelstein <jeffrey.finkelstein@gmail.com>.
+"""Provides explicit constructions of expander graphs.
+
+"""
+import itertools
+import networkx as nx
+
+__all__ = ['margulis_gabber_galil_graph', 'chordal_cycle_graph']
+
+
+# Other discrete torus expanders can be constructed by using the following edge
+# sets. For more information, see Chapter 4, "Expander Graphs", in
+# "Pseudorandomness", by Salil Vadhan.
+#
+# For a directed expander, add edges from (x, y) to:
+#
+#     (x, y),
+#     ((x + 1) % n, y),
+#     (x, (y + 1) % n),
+#     (x, (x + y) % n),
+#     (-y % n, x)
+#
+# For an undirected expander, add the reverse edges.
+#
+# Also appearing in the paper of Gabber and Galil:
+#
+#     (x, y),
+#     (x, (x + y) % n),
+#     (x, (x + y + 1) % n),
+#     ((x + y) % n, y),
+#     ((x + y + 1) % n, y)
+#
+# and:
+#
+#     (x, y),
+#     ((x + 2*y) % n, y),
+#     ((x + (2*y + 1)) % n, y),
+#     ((x + (2*y + 2)) % n, y),
+#     (x, (y + 2*x) % n),
+#     (x, (y + (2*x + 1)) % n),
+#     (x, (y + (2*x + 2)) % n),
+#
+def margulis_gabber_galil_graph(n, create_using=None):
+    r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes.
+
+    The undirected MultiGraph is regular with degree `8`. Nodes are integer
+    pairs. The second-largest eigenvalue of the adjacency matrix of the graph
+    is at most `5 \sqrt{2}`, regardless of `n`.
+
+    Parameters
+    ----------
+    n : int
+        Determines the number of nodes in the graph: `n^2`.
+    create_using : NetworkX graph constructor, optional (default MultiGraph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    Returns
+    -------
+    G : graph
+        The constructed undirected multigraph.
+
+    Raises
+    ------
+    NetworkXError
+        If the graph is directed or not a multigraph.
+
+    """
+    G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
+    if G.is_directed() or not G.is_multigraph():
+        msg = "`create_using` must be an undirected multigraph."
+        raise nx.NetworkXError(msg)
+
+    for (x, y) in itertools.product(range(n), repeat=2):
+        for (u, v) in (((x + 2 * y) % n, y), ((x + (2 * y + 1)) % n, y),
+                       (x, (y + 2 * x) % n), (x, (y + (2 * x + 1)) % n)):
+            G.add_edge((x, y), (u, v))
+    G.graph['name'] = "margulis_gabber_galil_graph({0})".format(n)
+    return G
+
+
+def chordal_cycle_graph(p, create_using=None):
+    """Returns the chordal cycle graph on `p` nodes.
+
+    The returned graph is a cycle graph on `p` nodes with chords joining each
+    vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit)
+    3-regular expander [1]_.
+
+    `p` *must* be a prime number.
+
+    Parameters
+    ----------
+    p : a prime number
+
+        The number of vertices in the graph. This also indicates where the
+        chordal edges in the cycle will be created.
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    Returns
+    -------
+    G : graph
+        The constructed undirected multigraph.
+
+    Raises
+    ------
+    NetworkXError
+
+        If `create_using` indicates directed or not a multigraph.
+
+    References
+    ----------
+
+    .. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and
+           invariant measures", volume 125 of Progress in Mathematics.
+           Birkhäuser Verlag, Basel, 1994.
+
+    """
+    G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
+    if G.is_directed() or not G.is_multigraph():
+        msg = "`create_using` must be an undirected multigraph."
+        raise nx.NetworkXError(msg)
+
+    for x in range(p):
+        left = (x - 1) % p
+        right = (x + 1) % p
+        # Here we apply Fermat's Little Theorem to compute the multiplicative
+        # inverse of x in Z/pZ. By Fermat's Little Theorem,
+        #
+        #     x^p = x (mod p)
+        #
+        # Therefore,
+        #
+        #     x * x^(p - 2) = 1 (mod p)
+        #
+        # The number 0 is a special case: we just let its inverse be itself.
+        chord = pow(x, p - 2, p) if x > 0 else 0
+        for y in (left, right, chord):
+            G.add_edge(x, y)
+    G.graph['name'] = "chordal_cycle_graph({0})".format(p)
+    return G