Mercurial > repos > guerler > springsuite
diff planemo/lib/python3.7/site-packages/networkx/generators/expanders.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 (2020-07-31) |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/planemo/lib/python3.7/site-packages/networkx/generators/expanders.py Fri Jul 31 00:32:28 2020 -0400 @@ -0,0 +1,144 @@ +# -*- coding: utf-8 -*- +# Copyright 2014 "cheebee7i". +# Copyright 2014 "alexbrc". +# Copyright 2014 Jeffrey Finkelstein <jeffrey.finkelstein@gmail.com>. +"""Provides explicit constructions of expander graphs. + +""" +import itertools +import networkx as nx + +__all__ = ['margulis_gabber_galil_graph', 'chordal_cycle_graph'] + + +# Other discrete torus expanders can be constructed by using the following edge +# sets. For more information, see Chapter 4, "Expander Graphs", in +# "Pseudorandomness", by Salil Vadhan. +# +# For a directed expander, add edges from (x, y) to: +# +# (x, y), +# ((x + 1) % n, y), +# (x, (y + 1) % n), +# (x, (x + y) % n), +# (-y % n, x) +# +# For an undirected expander, add the reverse edges. +# +# Also appearing in the paper of Gabber and Galil: +# +# (x, y), +# (x, (x + y) % n), +# (x, (x + y + 1) % n), +# ((x + y) % n, y), +# ((x + y + 1) % n, y) +# +# and: +# +# (x, y), +# ((x + 2*y) % n, y), +# ((x + (2*y + 1)) % n, y), +# ((x + (2*y + 2)) % n, y), +# (x, (y + 2*x) % n), +# (x, (y + (2*x + 1)) % n), +# (x, (y + (2*x + 2)) % n), +# +def margulis_gabber_galil_graph(n, create_using=None): + r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes. + + The undirected MultiGraph is regular with degree `8`. Nodes are integer + pairs. The second-largest eigenvalue of the adjacency matrix of the graph + is at most `5 \sqrt{2}`, regardless of `n`. + + Parameters + ---------- + n : int + Determines the number of nodes in the graph: `n^2`. + create_using : NetworkX graph constructor, optional (default MultiGraph) + Graph type to create. If graph instance, then cleared before populated. + + Returns + ------- + G : graph + The constructed undirected multigraph. + + Raises + ------ + NetworkXError + If the graph is directed or not a multigraph. + + """ + G = nx.empty_graph(0, create_using, default=nx.MultiGraph) + if G.is_directed() or not G.is_multigraph(): + msg = "`create_using` must be an undirected multigraph." + raise nx.NetworkXError(msg) + + for (x, y) in itertools.product(range(n), repeat=2): + for (u, v) in (((x + 2 * y) % n, y), ((x + (2 * y + 1)) % n, y), + (x, (y + 2 * x) % n), (x, (y + (2 * x + 1)) % n)): + G.add_edge((x, y), (u, v)) + G.graph['name'] = "margulis_gabber_galil_graph({0})".format(n) + return G + + +def chordal_cycle_graph(p, create_using=None): + """Returns the chordal cycle graph on `p` nodes. + + The returned graph is a cycle graph on `p` nodes with chords joining each + vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit) + 3-regular expander [1]_. + + `p` *must* be a prime number. + + Parameters + ---------- + p : a prime number + + The number of vertices in the graph. This also indicates where the + chordal edges in the cycle will be created. + + create_using : NetworkX graph constructor, optional (default=nx.Graph) + Graph type to create. If graph instance, then cleared before populated. + + Returns + ------- + G : graph + The constructed undirected multigraph. + + Raises + ------ + NetworkXError + + If `create_using` indicates directed or not a multigraph. + + References + ---------- + + .. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and + invariant measures", volume 125 of Progress in Mathematics. + Birkhäuser Verlag, Basel, 1994. + + """ + G = nx.empty_graph(0, create_using, default=nx.MultiGraph) + if G.is_directed() or not G.is_multigraph(): + msg = "`create_using` must be an undirected multigraph." + raise nx.NetworkXError(msg) + + for x in range(p): + left = (x - 1) % p + right = (x + 1) % p + # Here we apply Fermat's Little Theorem to compute the multiplicative + # inverse of x in Z/pZ. By Fermat's Little Theorem, + # + # x^p = x (mod p) + # + # Therefore, + # + # x * x^(p - 2) = 1 (mod p) + # + # The number 0 is a special case: we just let its inverse be itself. + chord = pow(x, p - 2, p) if x > 0 else 0 + for y in (left, right, chord): + G.add_edge(x, y) + G.graph['name'] = "chordal_cycle_graph({0})".format(p) + return G