Mercurial > repos > imgteam > binary2labelimage
comparison 2d_split_binaryimage_by_watershed.py @ 4:984358e43242 draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/binary2labelimage/ commit 00199464fa2aa1928a49e2379edf199c3db91533
author | imgteam |
---|---|
date | Tue, 14 Nov 2023 08:27:27 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:9bb446db4a1e | 4:984358e43242 |
---|---|
1 import argparse | |
2 import sys | |
3 | |
4 import skimage.io | |
5 import skimage.util | |
6 from scipy import ndimage as ndi | |
7 from skimage.feature import peak_local_max | |
8 from skimage.morphology import watershed | |
9 | |
10 | |
11 if __name__ == "__main__": | |
12 parser = argparse.ArgumentParser(description='Split binaryimage by watershed') | |
13 parser.add_argument('input_file', type=argparse.FileType('r'), default=sys.stdin, help='input file') | |
14 parser.add_argument('out_file', type=argparse.FileType('w'), default=sys.stdin, help='out file (TIFF)') | |
15 parser.add_argument('min_distance', type=int, default=100, help='Minimum distance to next object') | |
16 args = parser.parse_args() | |
17 | |
18 img_in = skimage.io.imread(args.input_file.name) | |
19 distance = ndi.distance_transform_edt(img_in) | |
20 local_maxi = peak_local_max(distance, | |
21 indices=False, | |
22 min_distance=args.min_distance, | |
23 labels=img_in) | |
24 markers = ndi.label(local_maxi)[0] | |
25 res = watershed(-distance, markers, mask=img_in) | |
26 | |
27 res = skimage.util.img_as_uint(res) | |
28 skimage.io.imsave(args.out_file.name, res, plugin="tifffile") |