Mercurial > repos > imgteam > landmark_registration
view landmark_registration.py @ 2:4e089a0983b1 draft
"planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/landmark_registration/ commit 927b78d47c31714776ccdf3d16f26c3779298abb"
author | imgteam |
---|---|
date | Sun, 20 Feb 2022 15:46:58 +0000 |
parents | b0503eec7bd6 |
children | aee73493bf53 |
line wrap: on
line source
""" Copyright 2017-2022 Biomedical Computer Vision Group, Heidelberg University. Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import numpy as np import pandas as pd from scipy.linalg import lstsq from skimage.measure import ransac from skimage.transform import AffineTransform def landmark_registration(pts_f1, pts_f2, out_f, res_th=None, max_ite=None, delimiter="\t"): points1 = pd.read_csv(pts_f1, delimiter=delimiter) points2 = pd.read_csv(pts_f2, delimiter=delimiter) src = np.concatenate([np.array(points1['x']).reshape([-1, 1]), np.array(points1['y']).reshape([-1, 1])], axis=-1) dst = np.concatenate([np.array(points2['x']).reshape([-1, 1]), np.array(points2['y']).reshape([-1, 1])], axis=-1) if res_th is not None and max_ite is not None: model_robust, inliers = ransac((src, dst), AffineTransform, min_samples=3, residual_threshold=res_th, max_trials=max_ite) pd.DataFrame(model_robust.params).to_csv(out_f, header=None, index=False, sep="\t") else: A = np.zeros((src.size, 6)) A[0:src.shape[0], [0, 1]] = src A[0:src.shape[0], 2] = 1 A[src.shape[0]:, [3, 4]] = src A[src.shape[0]:, 5] = 1 b = dst.T.flatten().astype('float64') x = lstsq(A, b) tmat = np.eye(3) tmat[0, :] = x[0].take([0, 1, 2]) tmat[1, :] = x[0].take([3, 4, 5]) pd.DataFrame(tmat).to_csv(out_f, header=None, index=False, sep="\t") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Estimate affine transformation matrix based on landmark coordinates") parser.add_argument("fn_pts1", help="Coordinates of SRC landmarks (tsv file)") parser.add_argument("fn_pts2", help="Coordinates of DST landmarks (tsv file)") parser.add_argument("fn_tmat", help="Path the output (transformation matrix)") parser.add_argument("--res_th", dest="res_th", type=float, help="Maximum distance for a data point to be classified as an inlier") parser.add_argument("--max_ite", dest="max_ite", type=int, help="Maximum number of iterations for random sample selection") args = parser.parse_args() res_th = None if args.res_th: res_th = args.res_th max_ite = None if args.max_ite: max_ite = args.max_ite landmark_registration(args.fn_pts1, args.fn_pts2, args.fn_tmat, res_th=res_th, max_ite=max_ite)